
Implementation of a Mesh-based Overlay
for Location-based Search

Bachelor Thesis
by

Mustafa Yilmaz
born in

Düsseldorf

submitted to

Technology of Social Networks Lab
Jun.-Prof. Dr.-Ing. Kalman Graffi

Heinrich-Heine-Universität Düsseldorf

Juli 2015

Supervisor:
Jun.-Prof. Dr.-Ing. Kalman Graffi

Abstract

In this thesis, I will present a novel location-based peer-to-peer overlay which is called GeoMesh.

It supports location-based search in multidimensional space. The main focus is to create and im-

plement an overlay that can handle the requirements of location-based overlays such as finding the

k-closest nodes to a given location or finding all nodes respectively data objects in a certain area. Ad-

ditionally, it should preserve some important properties such as locality and directionality which will

be discussed and explained in the upcoming chapters. This overlay is currently implemented in the

PeerfactSim.KOM overlay network simulator, hence implementation details will be presented. The

overlay is scalable, efficient and stable in terms of churn.

iii

Acknowledgments

I want to thank my family, my fellow student Erol Yildirim and all the people who have supported

me.

I especially want to thank Tobias Amft who gave me feedback and answered my questions during my

work on this thesis.

v

Contents

List of Figures ix

List of Tables xi

1 Motivation 1

1.1 Peer-to-Peer Overlays . 1

1.2 Location-based Overlays . 1

1.3 Overview . 2

2 Related Work 3

3 Design of Mesh 5

3.1 Overview . 5

3.2 Requirements . 6

3.3 Positioning and Distance . 6

3.4 Routing Table . 6

3.5 Find k-Closest Nodes . 8

3.6 Area Search . 10

3.7 Join and Leave . 11

3.8 Routing Table Maintenance . 12

3.9 Finger Table . 12

3.10 Conclusion . 13

4 Implementation 15

4.1 Identifier, Contact Information and Position . 15

4.2 Routing Table . 18

4.3 Messages and Operations . 19

4.4 Node . 22

5 Evaluation 25

5.1 Routing Table Size and Search Results . 25

5.2 Metrics . 27

vii

Contents

5.2.1 Scalability . 27

5.2.2 Stability and Efficiency . 27

5.2.3 Area Search . 28

5.3 Setup . 28

5.3.1 Scalability . 29

5.3.2 Stability and Efficiency . 29

5.3.3 Area Search . 29

5.4 Results . 30

5.4.1 Scalability . 31

5.4.2 Stability and Efficiency . 33

5.4.3 Area Search . 36

5.5 Analysis of the Results . 38

5.5.1 Scalability . 38

5.5.2 Stability and Efficiency . 38

5.5.3 Area Search . 38

6 Conclusion 39

6.1 Future Work . 39

Bibliography 41

viii

List of Figures

3.1 Bearing angle . 7

3.2 Routing table structure (k = 8) . 7

3.3 Node n initiates an iterative search for the k-closest nodes to position P. 9

3.4 Node n returns the k-closest nodes to position P that are not in the identifier set S. . . 9

3.5 Node n initiates an area search with radius r, with parameter k which should first find

the k-closest nodes to P. 10

3.6 Node n returns nodes if his nodes lie within the search area which is defined by the

radius r around point P. 11

3.7 This function returns true if P1 is a point in an area defined by point P and radius r . . 11

3.8 Node n, periodically, executes the f ix_ f ingers procedure to update the respective

finger table entry, given a direction i ∈ {0,1,2,3} which describes the bearing angle

of i ·90◦ from n’s position . 13

3.9 Given a starting point P, a direction i ∈ {0,1,2,3} and a distance d, this function

returns the end point, which is d away and has a bearing angle of i ·90◦ to position P

on a sphere with Radius R (see [Bea]). 13

5.1 Success ratio when s = 16 . 26

5.2 Success ratio when s = 24 . 26

5.3 Success ratio when s = 32 . 26

5.4 Success ratio when s = 40 . 26

5.5 Average Hop Count of Find k-Closest Nodes Operations 31

5.6 Average Response Time of Find k-Closest Nodes Operations 31

5.7 Overlay Traffic Per Peer . 32

5.8 Number of Present Peers Per Minute . 33

5.9 Success Ratio of Find k-Closest Nodes Operation Per Minute 33

5.10 Success Ratio of Finding at Least One Node Per Minute 34

5.11 Hop Count of Successful Find k-Closest Nodes Operations Per Minute 34

5.12 Response Time of Successful Find k-Closest Nodes Operations Per Minute 35

5.13 Number of Present Peers Per Minute . 36

5.14 Success Ratio of Area Search Operations Per Minute 36

5.15 Number of Present Peers Per Minute . 37

ix

List of Figures

5.16 Success Ratio of Area Search Operations Per Minute 37

x

List of Tables

xi

Chapter 1

Motivation

1.1 Peer-to-Peer Overlays

A P2P system consist of peers which are participants of an overlay network. An overlay network is

a network built on top of another network. Unlike the basic client-server model in which a central

server provides services, ressources or data, each peer in in a P2P overlay network act as a server and a

client at the same time. This means that peers in overlay networks are are able to retrieve and provide

data from and for peers. Peer-to-peer overlays can be divided into two categories, the centralized and

decentralized overlays. In decentralized overlays each node queries nodes to find data in the system,

while nodes in centralized overlays query a central indexing server to find the respective node which

provides the desired data. Decentralized overlays can be further subdivided into two categories, the

structured overlays and the unstructured overlays. In unstructured overlays, data is searched using

keywords. These types of overlays have some major drawbacks in terms of scalability and efficiency.

In structured overlays, on the other hand, these problems do not occur. The most common structured

overlays base on the idea of distributed hash tables (DHT). A DHT can be described as portions of

a hash table distributed to peers where data objects are stored in those hash tables. Data objects and

peers can be identified by identifiers (calculated by a hash function), that means in the (key, value)

pair of a hash table entry, the key is used to retrieve the data object which is stored in the hash table.

1.2 Location-based Overlays

Recently, location-based services are becoming more and more popular. These services, as the name

implies, allow users to get spatial information just by searching for certain locations and keywords

such as restaurants or cinemas. In P2P environments, these services are provided by location-based

overlays. Unlike overlays which use one-dimensional identifiers to find data, peers in location-based

1

Chapter 1 Motivation

overlays have coordinates which describe the location of a peer in multidimensional space. Each peer

in the system stores spatial information to which he is locally and relatively close to in order to enable

other peers to find spatial information by searching for nodes which are close to the search location.

1.3 Overview

The next Chapter discusses related work and their drawbacks, it highlights some existing work which

influenced the design of GeoMesh. In Chapter 3, the design is presented, along with important defini-

tions and formulas. In Chapter 4, the implementation of GeoMesh in the overlay network Simulator

PeerfactSim.KOM [SGR+11] is presented. In Chapter 5, the overlay is evaluated using different met-

rics and setups.

2

Chapter 2

Related Work

In this Chapter, existing work and their drawbacks are examined. We will briefly talk about and ex-

plain tree-based and DHT-based approaches and continue on with Geodemlia and SpatialP2P which

are overlays that mostly influenced the design choice of GeoMesh.

Recently, a lot of work has been made in order to be able to implement location-based services in

P2P environments. Most of these approaches are either tree-based [THS07] [AB09] or are built on

top of DHT overlays using space filling curves.

In tree-based overlays, the underlying multidimensional space is progressively subdivided into

zones or areas and peers which are positioned in those areas are responsible for spatial information

in it. Peers are therefore ordered hierarchically as the divided space. The root of the tree represents

the peer which is responsible for the whole area, whereas the lower levels of the tree represents the

peers which are responsible for the subdivided areas. Also, peers which are at the leafs of the tree

provide information of their area, while peers at the upper levels of the tree, are used to route to those

peers. This structure has some major drawbacks in terms of scalability and load-balancing, because

each peer in the overlay always needs to contact peers at the upper level of the tree, when searching

for spatial information. Also, those overlays can become unstable or can completely fail when peers,

especially peers in the upper level of the tree, leave the system (due to failure).

Other approaches are built on top of DHT overlays using space filling curves. Because of the prop-

erties of the underlying DHT overlay the above mentioned problems do not occur, but performance

problems do occur, because neighboring multidimensional information is not always stored in neigh-

boring nodes in the one-dimensional structure of DHT overlays.

In P2P overlays such as SpatialP2P [KSS09] and Geodemlia [GSR+12], the above mentioned prob-

lems do not occur. In addition to that it is very efficient in terms of searching for location-based

information, because both overlays provide properties such as locality and directionality. Locality im-

plies that neighboring multidimensional information is stored in the neighboring nodes in the system

while directionality implies that the structure of the system preserves orientation in multidimensional

space [KSS09]. For example, directionality is preserved when an information which lies north of

a peer p’s position (in multidimensional space), also lies north of p’s position in the system. This

3

Chapter 2 Related Work

actually means, that searching for location-based information in an overlay is like searching in multi-

dimensional space.

Considering all the mentioned aspects, the main goal is to design an overlay which is stable under

churn and efficient at once. Because of the fact that Geodemlia is an overlay which fulfills these prop-

erties, the focus was mainly on it. In fact, the iterative search and the idea of dividing the space into

directions is adopted from Geodemlia, which is explained in detail in the upcoming Chapter.

In this Chapter, we have seen existing location-based overlays which are either not stable or not

efficient. We have seen Geodemlia and SpatialP2P which are efficient overlays, especially Geodemlia

is stable and efficient at once. In the next Chapter the design of GeoMesh is presented.

4

Chapter 3

Design of Mesh

This Chapter first gives an overview of the properties and functions provided by the GeoMesh over-

lay. Subsequently, we will define the requirements which peers need to fulfil in order to participate

in the overlay network. Then, we will step by step construct the protocol, first by defining the posi-

tioning of peers and the respective distance function. Then, definitions and important formulas will

be introduced in order to understand the routing table structure. After understanding the routing ta-

ble structure, we can finally introduce functional elements such as search, join and leave. Lastly, to

improve the routing efficiency, a second routing table will be introduced which is called finger table.

The term finger table is referring to the term in Chord [SMLN+03].

3.1 Overview

GeoMesh provides methods such as finding the set of k-closest nodes to a position or searching

for nodes within a circular area in multidimensional space. Peers find their routing table contacts by

using the find k-closest nodes function to be able to join the overlay. GeoMesh also provides important

properties such as locality and directionality, by using an appropriate routing table structure. Again,

locality implies that neighboring multidimensional information is stored in the neighboring nodes

in the system while directionality implies that the structure of the system preserves orientation in

multidimensional space [KSS09]. To improve the efficiency in terms of routing steps, peers also use a

second routing table structure which is called finger table referring to the term in Chord [SMLN+03]

which provides contacts in each cardinal direction relative to p’s positon (in Section 3.9 the finger table

is discussed in detail). In addition to that, GeoMesh is designed to work with spherical coordinates.

5

Chapter 3 Design of Mesh

3.2 Requirements

Peers in GeoMesh use the underlay protocol TCP to contact each other. An identifier is required to

uniquely identify a peer in the system. A peer, who wants to participate in the overlay network, has to

determine an identifier first. In GeoMesh, a peer calculates his identifier id ∈ [0,2160) by hashing his

IP-address and Port number, this is done by using SHA-1 [ErJ01]. In addition to that, each peer also

must determine his position in space in terms of geographic coordinates.

3.3 Positioning and Distance

In GeoMesh, peers and data objects are bound to spherical points. A (spherical or geographical)

point P = (φ ,λ) is a coordinate tuple where φ ∈
[
−π

2 ,
π

2

]
is denoted as the latitude and λ ∈ [−π,π]

as the longitude. The distance between two points P1 = (φ1,λ1) and P2 = (φ2,λ2) on a sphere can be

calculated by using the Haversine-Formula [Sin84] which is shown in (3.1).

d (P1,P2) = R ·arcsin
(
min

(
1,
√

a
))

(3.1)

where

a = sin2
(

φ2 − φ1

2

)
+ cos(φ1)cos(φ2)sin2 (λ2 − λ1) (3.2)

and R is the radius of the sphere.

3.4 Routing Table

In this Section we will deal with important formulas and definitions, to be able to understand and

introduce the routing table structure of peers in this overlay. We will straightaway start with the

definition of a bearing angle and will see the use of it later in the Section.

A bearing angle can be roughly described as the clockwise angle between a reference line and the

line which connects the point of measurement and the point of interest(Figure 3.1). The term line is

defined as the shortest route between two points on a sphere, the reference line is a line which connects

the point of measurement and the reference point. For the sake of simplicity and clarity, each peer

in the system uses the north line as the reference line and with this, a peer is able to determine in

which direction another peer is positioned by using (3.3) in order to calculate the bearing angle [Bea],

6

3.4 Routing Table

which is illustrated in 3.1. So, given a point of measurement P1 = (φ1,λ1) and a point of interest

N
 Quadrant 0

Quadrant 1Quadrant 2

Quadrant 3

E

S

W

θ

Point of interest

Point of
Measurement

Figure 3.1: Bearing angle

N

E

S

W

Figure 3.2: Routing table structure (k = 8)

P2 = (φ2,λ2), the bearing angle θ ∈ [0,2π] can be calculated by using formula (3.3).

θ = (atan2(c,d) + π) mod 2π (3.3)

where

b = sin(λ2 − λ1)cos(φ2) (3.4)

and

c = cos(φ1)sin(φ2) − sin(φ1)cos(φ2)cos(λ2 − λ1) (3.5)

In Figure 3.1, the term quadrant is used to abstract bearing angles. Given two peers, p1 at a point

of measurement and p2 at a point of interest, p1 can determine the quadrant i ∈ {0,1,2,3} in which

p2 is positioned, by calculating (3.3) and (3.6)

i =
⌊

θ

2π

⌋
(3.6)

With the help of these definitions, we can now introduce the routing table structure and design of

GeoMesh:

• Each peer p maintains a set S of peers and contact information which should depict the routing

table

– A peer and his contact information in S is stored in the following way:

7

Chapter 3 Design of Mesh

∗ IP address and port

∗ Identifier id ∈ [0,2160)

∗ Position

– Set S = S0∪S1∪S2∪S3 can be subdivided

– Set Si stores at most k peers, it only consists of peers, which are located in quadrant i

and peers which are stored in Si are nodes closest to p’s position, that p knows about.

(i ∈ {0,1,2,3})

The idea of dividing the space into four quadrants and using the peers in each quadrant is adopted

from [GSR+12]. To get an overview, the routing table of a peer is shown in 3.2. So, the routing table

structure ensures properties such as directionality and locality, this means that peers in GeoMesh can

actually use the space for routing for position-based information, which is depicted in the upcoming

Sections.

3.5 Find k-Closest Nodes

In previous Sections, we mainly focused on the structure of GeoMesh. We dealt with important

formulas along with important definitions, in order to be able to create a system in which peers can

actually use the space for routing, yet we have not specified a protocol how this can be done. So, in

this Chapter we will see how peers actually search for nodes in the overlay. In this Section and in the

upcoming Sections the term node instead of peer is used.

In Figure 3.3, we can see the pseudo-code which shows how a peer finds the set of k-closest

nodes to a position P = (φ ,λ). Before we can discuss the pseudo-code, we have to understand which

information the sets S1, S2, S3 and S4 contain. The sets S2 and S3 only consist of node identifiers, while

the remaining sets consist of objects which store contact information, position and the identifier of the

respective node. For simplicity, we treat these objects as nodes(e.g. for a node n ∈ S1, n.position

would return the position of n).

A node n who wants to find the k-closest nodes to a position P, first sets himself as the contact

node n′ (line 6) and sends n′ (himself) a message (line 8) which contains the position P, the number

of nodes k which should be returned and S3 which consists of node identifiers that have been found

during the search process, in order to not receive those nodes again. In particular, a node n′ who

receives a message from n, iterates through a set of contacts C which are contacts from his routing

table and only returns the k-closest nodes from the set C to position P, which are not in the identifier

set that he received from n. This is shown in the pseudo-code in Figure 3.4. After that, node n, who

8

3.5 Find k-Closest Nodes

1: n.find_closest_nodes(P,k)
2: S1 = /0
3: S2 = /0
4: S3 = {n.identi f ier}
5: S4 = /0
6: n′ = n
7: do
8: S1 = n′.get_closest_nodes(P,k,S3)
9: S2 = S2∪{n′.identi f ier}

10: for each node ∈ S1 do
11: S4 = S4∪{node}
12: S3 = S3∪{node.identi f ier}
13: for each node ∈ S4 do
14: if (d (node.position,P)< d (n′.position,P)) then
15: n′ = node
16: while (n′.identi f ier /∈ S2)
17: return S4

Figure 3.3: Node n initiates an iterative search for the k-closest nodes to position P.

1: n.get_closest_nodes(P,k,S)
2: L1 = []
3: C = n.routing_table.all_contacts
4: for each node ∈C do
5: if (node /∈ S) then
6: L1.add(node)
7: sort(L1,P)
8: return L1.sub_list(0,k).to_set()

Figure 3.4: Node n returns the k-closest nodes to position P that are not in the identifier set S.

receives the reply, temporarily stores these nodes in S1 (line 8). Then he puts n′ to the set S2 (line 9),

which is a set that consists of nodes that already have been contacted. After that, those nodes in S1 are

stored in S4 and the identifiers are stored in S3 (line 10-12). Then, node n determines the closest node

n′ out of all nodes that he have encountered at that time which are nodes in S4 (with the help of the

haversine formula (3.1)) (line 13-15). Then, if the identifier of node n′ is in the set S2, the search is

over and the set S4 contains the k-closest nodes to position P including nodes which have been found

during the search process. Otherwise, the search goes on and node n′, is the next node to be contacted.

The algorithm in Figure 3.4 is for the most part self-explanatory, but lines 7-8 might be unclear. In

line 7, n′ sorts the nodes in list L according to their distances to P in ascending order. In line 8, the

function sub_list(0,k), returns a list from L from index 0 (inclusive) to k (exclusive). The function

to_set() converts the list into a set.

To sum it up, in each step n encounters new nodes, he then determines the closest node to position

9

Chapter 3 Design of Mesh

P out of all nodes that he have encountered at that time. If he already contacted the closest node, then

the search is finished and the k-closest nodes (including all nodes that have been found during the

search process) are returned.

Important note: The algorithm in Figure 3.3 describes searching in a graph, in reality, the searching

node would first ping the closest contact node and wait for a reply, if no reply is sent back after some

time, he would choose the next closest contact node and repeat this prodecure until he gets a reply.

After that, he would ask this contact node for his k-closest nodes (to the target point). Also, nodes

who are not responding can be removed from the search result.

3.6 Area Search

1: n.area_search(P,k,r)

2: S1 = /0

3: S2 = n. f ind_closest_nodes(P,k)

4: for each node ∈ S2 do
5: if (point_within_area(node.position,P,r)) then
6: S2 = S2∪{node}

7: if (S2.is_empty()) then
8: return S2

9: else
10: S3 = /0

11: S4 = /0

12: while (S2.is_not_empty()) do
13: for each node ∈ S2 do
14: S3 = S3∪{node.identi f ier}

15: n′ ∈ S2

16: S2 = S2 \{n′}
17: S4 = S4∪n′.get_nodes_within_area(P,r,S3)

18: S2 = S2∪S4

19: return S2

Figure 3.5: Node n initiates an area search with radius r, with parameter k which should first find the

k-closest nodes to P.

10

3.7 Join and Leave

1: n.get_nodes_within_area(P,r,S)

2: S1 = /0

3: for each node ∈ n.routing_table.all_contacts do
4: if (point_within_area(node.position,P,r)) then
5: if (node.identi f ier /∈ S) then
6: S1 = S1∪{node}

7: return S1

Figure 3.6: Node n returns nodes if his nodes lie within the search area which is defined by the radius

r around point P.

1: point_within_area(P1,P,r)

2: if (r > d(P,P1)) then
3: return true

4: else
5: return f alse

Figure 3.7: This function returns true if P1 is a point in an area defined by point P and radius r

The area_search function internally utilizes the f ind_closest_nodes f unction. If no point lies in an

area then the k-closest nodes are returned. Otherwise each node in the search area who have been

found is queried and asked for additional nodes in the search area. If there is no node left to contact

in the set S2, the search is finished.

3.7 Join and Leave

In Section 3.5 we saw the most crucial part of the system, which is the find k-closest nodes function,

this function enables joining peers to find the k-closest nodes. Due to the fact that each peer stores

maximum s nodes in his routing table, it is recommended that each joining peer searches for the

s-closest nodes to join the overlay, as it was successfully evaluated with it. With this, we can now

discuss the join and leave process of nodes. A node n who wants to join the overlay first needs to have

at least one node in his routing table to initiate a search for the closest nodes to his position. This can

be done by using a bootstrapping node. More precisely, a bootstrapping node is a node who is already

participating in the overlay. So, node n adds the bootstrapping node into his routing table and would

call the function n. f ind_closest_nodes(n.position,k) which returns a set S of k-closest nodes and

nodes who were additionally found during the search process, this is depicted in the previous Section

11

Chapter 3 Design of Mesh

and Figure 3.3. When the operation is finished, node n then stores the contacts in S to his routing

table. Important, each node can store at most k nodes from each quadrant to his routing table, which

was depicted in Section 3.4. So, node n stores the k-closest nodes from each quadrant, if possible,

to his routing table, which was found during the search process. After that node n sends a notifier

message in order to inform them. Nodes which receive this message, can add n to their routing table.

A node who wants to leave, on the other hand, doesn’t need to perform some extra procedures, he

can directly leave the overlay. A node who becomes aware (during a search or a ping operation) that

a node in his routing table is not answering, would then remove this particular node.

3.8 Routing Table Maintenance

Each peer, periodically, sends a ping message to the nodes in his routing table. If nodes reply, we

store them in a set which we is called reachable contacts, if nodes are not responding we remove

them from the set. Each node uses the contacts in the reachable contacts set, to search or to reply to

searches.

3.9 Finger Table

To improve the overlay protocol in terms of routing steps, peers can also use a second routing table

structure which we will call finger table referring to the term finger table in Chord [SMLN+03]. The

idea of using finger tables is adopted from [KSS09] which is referred as indexed peers.

The finger table of a peer is a two-dimensional 4×m array. In particular, for a peer in position

P1, f inger_table[i][j] (i ∈ {0,1,2,3}) returns the closest peer to position P2 which is 2 j away from

the position P1 (here the earth is being modelled and we use meter as default unit) and has a bearing

angle of i ·90◦ measured from P1. The bearing angles 0◦, 90◦, 180◦ and 270◦ (in degrees) describe the

cardinal directions, which was illustrated and discussed in Section 3.4. The procedure in Figure 3.8

shows how the finger table entries are updated. This procedure is periodically executed to ensure the

finger table is correctly maintained and permanently updated. The input argument can be described

as the bearing angle i · 90◦, for instance, if i = 0, then the finger table entry in north direction from

n’s position is updated, as 0 ·90◦ = 0◦, bearing angles and directions are discussed in Section 3.4 and

illustrated in Figure 3.1, for simplicity we denote the variable i as direction. The pseudo-code is for

the most part self-explanatory, so we concentrate on the important parts. In line 5 n calls the function

in Figure 3.9 which returns him a position P which is 2next away in direction i from his own position.

Node n, then, searches for the closest node to position P (line 6). The function f ind_closest_nodes

returns a set which has the closest node including nodes which were found during the search process

12

3.10 Conclusion

1: n.fix_fingers(i)
2: next = next +1
3: if (next > m) then
4: next = 0
5: P = get_position(n.position,direction,2next)
6: S = n. f ind_closest_nodes(P,1)
7: n′ ∈ S
8: for each node ∈ S do
9: if (d (node.position,P)< d (n′.position,P)) then

10: n′ = node
11: f inger_table[direction][next] = n′

Figure 3.8: Node n, periodically, executes the f ix_ f ingers procedure to update the respective finger
table entry, given a direction i ∈ {0,1,2,3} which describes the bearing angle of i · 90◦

from n’s position

and therefore determines the closest node out of S (line 8-10). He, then, updates his respective finger

table entry (line 11) in direction i and next.

1: get_position(P, i,d)
2: φ1 = P [0]
3: λ1 = P [1]
4: θ = i ·π/2
5: δ = d/R
6: φ2 = arcsin(sin(φ1)cos(δ) + cos(φ1)sin(δ)cos(θ))
7: λ2 = λ1 + atan2(sin(θ)sin(δ)cos(φ1) ,cos(δ) − sin(φ1)sin(φ2))
8: return {φ2,λ2}

Figure 3.9: Given a starting point P, a direction i ∈ {0,1,2,3} and a distance d, this function returns
the end point, which is d away and has a bearing angle of i ·90◦ to position P on a sphere
with Radius R (see [Bea]).

An important note, as we will model the earth, we use the mean radius of the earth (in meters). In the

pseudo-code in Figure 3.9 the radius R is kept general.

3.10 Conclusion

The main goal was to establish an overlay which should preserve properties such as locality and

directionality [KSS09], because only these properties enables peers to search for position-based in-

formation efficiently by using the actual space in which they are positioned. Also, the use of spherical

coordinates enables us to actually implement this overlay protocol in real applications. The overlay

currently supports iterative search, but can be modified to support recursive search. The iterative

13

Chapter 3 Design of Mesh

search has the advantage, that the node who started the search has a somehow global view of the

network, because as the search progresses, he more and more encounters new nodes and can pick

the right node to contact. With the help of the finger table, peers are able to route in logarithmic

amount of steps with respect to the number of peers in the system. In the next Chapter, we will see the

implementation of this overlay in the overlay network simulator PeerfactSim.KOM [SGR+11].

14

Chapter 4

Implementation

In this Chapter, we will mainly focus on the implementation of the GeoMesh overlay which was

developed throughout this thesis in the overlay network simulator PeerfactSim.KOM [SGR+11]. This

Chapter will have a similiar approach as the previous Chapter, because we first focus on the base

components of the system and later on we will see the functional components.

4.1 Identifier, Contact Information and Position

MeshContact
In the previous Chapter, we have seen that each peer in the overlay has to determine an identifier by

using the SHA-1 hash function and his position in the (multidimensional) space to participate in the

overlay network. In the implementation, this kind of information is stored in an object of the class

MeshContact. Each time a new node is created, along with that, an object of the class MeshContact

is created. This object stores contact information such as IP address, the identifier of that node in

the overlay and his position in the "space". These objects also represent routing table entries in the

system. An object of MeshContact is created by using the following constructor:

• MeshContact(TransInfo info, double[] coord)

TransInfo is an interface and every class which implements this interface has to have the following

methods:

• getPort()

• getNetID()

15

Chapter 4 Implementation

As we use IPv4, getNetID() will return an IP address. The second argument is an array of type double

and denoted as coord, coord[0] holds the longitude and coord[1] holds the latitude. For simplicity,

we will also say x which represents the longitude and y which represents the latitude.

The class MeshContact contains the following fields:

• nodeId

The node identifier which is a BigInteger object that can handle large numbers, as we use an

identifier space of 160 bits.

• nodeInfo

A TransInfo object which holds the IP address and port number as mentioned above.

• MESH_BIT_LENGTH

A static variable which defines the overlay identifier space which is set to 160 by default.

• coord

The position information of a node in multidimensional space as mentioned above.

The class contains the following methods:

• getIdentifier()

Returns the BigInteger object nodeId.

• getTransInfo()

Returns the TransInfo object nodeInfo.

• getCoord()

Returns the double array coord.

• getSHA1Hash(String stringToHash)

A static utility method which generates a SHA-1 hash value of length MESH_BIT_LENGTH

by hashing stringToHash. With this the node identifier nodeId is calculated.

• equals(Object obj)

A method which determines if this object is equal to obj by checking the identifiers for equality.

• getTransmissionSize()

Returns the size of this object which is the sum of the sizes of nodeId, nodeInfo and coord in

Bytes.

16

4.1 Identifier, Contact Information and Position

• hashCode()

It calculates a hash code for an object of MeshContact to be able to use those objects in data

structures such as HashMap or HashSet.

MeshNodeGeographicalPositioning
Since each node in the overlay uses coordinates for searching, the class MeshNodeGeographicalPosi-

tioning is used by peers to calculate their position, to calculate the distance between two points, to be

able determine the quadrant of a peer. Also the function pointWithInArea is introduced in the previ-

ous Chapter, which the area_search function utilizes. The function getCoordByAddingDistanceTo is

introduced with the name get_position in the previous Chapter, which the fix_fingers function utilizes.

The following methods are provided by MeshNodeGeographicalPositioning class:

• getPosition()

Returns a double array with the longitude and latitude. The longitude is by default a random

value from−π to π and the latitude is by default a random value from−π/2 to π/2. Each node

uses this function to determine his position.

• getDistance(double[] coord1, double[] coord2)

This method returns the distance (in double) between coord1 and coord2 by using the haversine

formula in equation (3.1), R is set to 6371 which is the mean radius of the earth in kilometer.

• getQuadrant(double[] coord1, double[] coord2)

This method returns the number of the quadrant in which the point coord2 lies measured from

coord1.

• pointWithinArea(double[] loc, double[] coord, double r)

This method returns true if the coordinates of loc lie within an circular area defined by the radius

r around a point coord.

• getCoordByAddingDistanceTo(double[] coord, int direction, double distance, String unit)

This method returns a double array which holds the coordinates of a point which is distance unit

away from coord in direction 0−3 which describes the four cardinal directions, as we discussed

in the previous Chapter. As the earth is being modelled, the String unit should be either "cm",

"m" or "km".

• getCoordInDegrees(double[] coord)

This method expects coordinates in radians. It converts the coordinates coord to degrees and

returns them.

17

Chapter 4 Implementation

4.2 Routing Table

MeshRoutingTable
Each node in the overlay creates an object of the MeshRoutingTable class. In the previous Chapter, we

have seen that the routing table of each node n consists of four parts. Each part i∈{0,1,2,3} has nodes

from quadrant i relative to n’s position. In order to achieve that, each object of the MeshRoutingTable

class contains a list of lists of MeshContact objects which is called neighborsListByQuadrant. For in-

stance, the contact list from quadrant i can be accessed with neighborsListByQuadrant.get(i). We will

first have a look on the field variables and then discuss the methods provided by the class MeshRout-

ingTable.

The class MeshRoutingTable contains the following fields:

• nodeCoord

This field variable is an array of type double. It holds the coordinates of the node to which the

MeshRoutingTable object belongs.

• maxNeighborsFromEachQuadrant

With this field variable a node knows the maximum number of contacts he can store from each

of the four quadrants in his routing table. (Note: This is a system wide parameter)

• neighborsListByQuadrant

As mentioned above.

• neighbors

This field variable is a set which contains all neighbors from neighborsListByQuadrant.

• reachableContacts

This field variable is a set which contains all nodes which were online during the last Period-

icPingOperation (which is described below).

The class MeshRoutingTable has the following methods:

• init()

Initializes the lists neighborsListByQuadrant and neighbors.

• contains(MeshContact contact)

Returns true if the routing table contains contact.

• addContact(MeshContact contact)

18

4.3 Messages and Operations

Adds contact to the list neighbors and neighborsListByQuadrant.get(i) where

i =getQuadrant(nodeCoord, contact.getPosition()) from the class MeshNodeGeographicalPo-

sitioning.

• removeContact(MeshContact contact)

Removes contact from the routing table, if it is present.

• isEmpty()

Returns true if the routing table is empty, otherwise false.

• clear()

Removes all contacts from the routing table.

• getContactsAsSet()

Returns all contacts from the routing table in a set.

• getReachableContacts()

Returns all reachable contacts which were online during the last periodicPingOperation (which

is described below).

• getContactsFromQuadrant(int i)

Returns contacts from neighborsByQuadrant.get(i).

• getContactWithMaxDistInQuad(int i)

Returns the furthest away contact(in the space) from neighborsByQuadrant.get(i).

• buildRoutingTableFrom(ClosestNodesResult result)

This method is used to build the routing table from result, which will be described in the up-

coming Sections.

• size()

Returns the number of contacts in the routing table.

4.3 Messages and Operations

Messages
In a P2P overlay network, nodes are only able to communicate with each other by sending messages

through the underlay. A message can trigger different actions at the receiving node. For instance, a

19

Chapter 4 Implementation

simple ping message only needs to be replied, while a message for the k-closest nodes would trigger

more actions. More precisely, the receiving node would extract all the information from the arrived

message, would query his routing table for the k-closest nodes and could only then reply. In the

simulation environment a MeshNode class implements the TransMessageListener interface, in order

to receive messages. Messages which arrive at a node have different types which we will see in the

following.

The EduBaseMessage class provides the most basic properties such as the TransInfo objects which

identifies the sender and receiver of the message in the underlay. Each type of message class in

GeoMesh extends the EduBaseMessage class.

The following types of messages are implemented:

• GetNeighborsMessage

This message is sent by nodes who are searching for the k-closest nodes(to a target point). The

message contains the target point, a list of node identifiers which were already found.

• GetNeighborsResponse

This message is the response of the GetNeighborsMessage, the node replies with the k-closest

nodes he knows about and which were also not in the list of node identifiers which he received.

• NotifyMessage

This message is sent by nodes who have successfully found their neighbors in order to no-

tify them. The message contains the MeshContact object of the sender node. A node who

receives this message can add the sender node to his routing table. If his routing table neigh-

borsByQuadrant.get(i) (where i is the quadrant in which the sender node is positioned) is full,

he will pick the furthest away node out of this list and compare the distance with the sender

node. If the sender node has a shorter distance, he will remove the furthest away node out of

neighborsByQuadrant(i) and add the sender node.

• NotifyResponse

This message informs the sender of the NotifyMessage that the message arrived.

• PingMessage

This message is sent by nodes who want to check the online status of nodes in their routing

table.

• PingResponse

This message is the response of the PingMessage. A node who receives this message knows

that the sender node is alive.

• AreaSearchMessage

20

4.3 Messages and Operations

This message is sent by nodes who are searching for nodes(or data objects) in a certain area. A

search area is defined by the radius around a point. So the message consists of a target point

(while the radius is a system wide parameter) and list of node identifiers which were already

found.

• AreaSearchResponse

This message is the response of the AreaSearchMessage, the sender node replies with nodes

that lie within an area and were not in the list of node identifiers which he received.

Operations
The term operation can be described as the action performed by a node, e.g. a node who wants to

search for the k-closest nodes invokes a FindClosestNodesOperation in order to find them. In the

following we will focus on important operations which we discussed in Chapter 3.

An operation is an instance of a class that extends the abstract class AbstractOperation. An oper-

ation can be invoked by methods such as scheduleImmediately() which should execute an operation

immediately or scheduleWithDelay(t ∗ Simulator.SECOND_UNIT) which should be executed in t

seconds. A class which extends the class AbstractOperation, must also implement:

• execute()

This method is being executed when an operation has been invoked.

• getResult()

The result of an operation.

Also, a node, who started an operation, is able to send messages during an operation to other nodes. If

the operation class implements the TransMessageCallback then he is able to receive messages in the

operation class.

A class which implements the TransMessageCallback, must also implement:

• messageTimeoutOccured(int commId)

If a timeout has occured, this method is called.

• receive(Message msg, TransInfo senderInfo, int commId)

The received message is the response of the sent message.

Following operations are currently implemented:

• FindClosestNodesOperation

Is the implementation of the find_closest_nodes(P, k) function from Chapter 3. It utilizes the

class GetNeighborsMessage and GetNeighborsResponse.

21

Chapter 4 Implementation

• AreaSearchOperation

Is the implementation of the area_search(P, k, r) function from Chapter 3. It utilizes the class

AreaSearchMessage and AreaSearchResponse.

• FixFingersOperation

Is the implementation of the fix_fingers(i) procedure from Chapter 3, this operation is periodi-

cally executed and utilizes the FindClosestNodesOperation class.

• NotifyOperation

A node which notifies his neighbors executes this operation. For more details see above.

• PeriodicPingOperation

A node periodically pings contacts in his routing table and stores the nodes which responded

in the reachableContacts set in the MeshRoutingTable class. Nodes which not responded are

removed from the reachableContacts set. In the current version, this operation pretends to ping

the nodes, but it internally checks from a global list if nodes are online and simulates a ping

operation.

• PeriodicSearchOperation

A node periodically searches for the k-closest nodes to a random point.

• PeriodicAreaSearchOperation

A node periodically starts an AreaSearchOperation to a random point.

4.4 Node

MeshNode

In the simulator, the objects of the class MeshNode depict nodes in the overlay. Each of these objects

uses the above mentioned components and functional elements.

The MeshNode class has the following field variables:

• nodeContact

Each instance of MeshNode creates a nodeContact object of type MeshContact where contact

information, position and the identifier is stored.

• MESH_PORT

A static variable and therefore a system wide paramater. Each node is reachable under MESH_PORT.

22

4.4 Node

• fingerTable

A two-dimensional array. For more details please refer to Chapter 3.

• fixFingersOperationEast

A periodically executed operation which updates finger table entries in east direction. For more

details please refer to Chapter 3.

• fixFingersOperationWest

A periodically executed operation which updates finger table entries in west direction. For more

details please refer to Chapter 3.

• fixFingersOperationNorth

A periodically executed operation which updates finger table entries in north direction. For

more details please refer to Chapter 3.

• fixFingersOperationSouth

A periodically executed operation which updates finger table entries in south direction. For

more details please refer to Chapter 3.

• isActive

Set to true or false. In reality, this variable is not necessary. But a node in the simulator should

somehow stop executing operations or stop replying to other nodes, if he is not present anymore.

• routingTable An instance of MeshRoutingTable, described in the previous Section.

• fingerUnit

A String which is either "cm", "m" or "km". As the earth is being modelled, we can specify a

unit. For instance, fingerTable[i][j] is 2 j units away in direction i, as discussed in Chapter 2.

• fingerRange

The range of each finger table. By default fingerRange is set to 25.

The MeshNode class has the following methods:

• join()

This method is used by nodes to join the overlay. A node searches for the closest nodes to his

position by using the operation FindClosestNodesOperation. If the search was successful, the

method joinOperationSuccess(ClosestNodesResult result) is called.

• joinOperationSuccess(ClosestNodesResult result)

23

Chapter 4 Implementation

This method is called, when a node successfully found his neighbors. All components and

operations are instantiated. Periodic operations are scheduled immediately and neighbors are

notified.

• messageArrived(TransMsgEvent receivingEvent)

The MeshNode class implements TransMessageListener, so it can receive messages. Those

messages are handled in this method. This method handles messages of type GetNeighborsMes-

sage, AreaSearchMessage, NotifyMessage and PingMessage (see above).

• closestFinger(double[] target, int i)

This method is called to calculate the closest "finger" contact from direction i.

• closestFinger(double[] target)

This method is called to calculate the closest "finger" from all directions. It internally utilizes

the closestFinger(double[] target, int i) method.

• getClosestContactsTo(double[] target, int k)

This method determines the k-closest contacts from the reachableContacts set and finger table.

• connectivityChanged(ConnectivityEvent ce)

This method is invoked whenever a node’s online status has changed.

24

Chapter 5

Evaluation

5.1 Routing Table Size and Search Results

Before we begin with the actual evaluation, we first want to test if searching initiated from different

positions on a sphere, always returns the k-closest nodes to target point P, which is calculated before

the experiment starts and globally known by each peer in the system. Due to the fact that the routing

table size also has a big impact on the search result, we will vary the routing table sizes in each test.

Also, each peer needs to have the right contact nodes in his routing table, in order to sufficiently reply

to queries (see Chapter 3), so each peer who joins the overlay initiates a search for the k′-closest

nodes to his position where k′ is the maximum routing table size. We will run each test five times with

different seeds and average the results. No finger tables or routing table maintenance operations were

used during each test.

First, a random point P on the sphere is calculated. Then, we let 5000 peers join the overlay. Then,

each peer initiates a search to point P (which is globally known by every peer in the system). If a peer

has found the k-closest nodes, we denote this as successful search, and the success ratio is calculated

by the number of successful searches of every peer divided by the number of peers(which searched for

the k-closest nodes to P) in the system. The following table should again highlight the test cases.

Parameters

Peer Distribution Uniformly Distributed on a Sphere

Number of Peers 5000

Maximum Routing Table Size s 16,32,40,48

Number of Closest Nodes k to Find 1,2,4,8,16

A reminder: A routing table can store up to s nodes and can also be subdivided into four parts each

part stores up to s/4 contacts from each of the four quadrants (Chapter 3).

Figure (5.1) shows that the closest node to the same target position is found by almost every peer in

25

Chapter 5 Evaluation

the system. It also shows that nodes taking an inconvenient search path (due to their position) might

not find the closest node. An inconvenient search path can occur, when a node on the search path does

not return closer nodes to the target position although there might be closer nodes in the system, this

happens in cases when the maximum routing table size is relatively speaking small. More precisely,

a node n who joins the overlay notifies his contact nodes in his routing table in order to be known by

them. But n ignores those nodes that can and must also store n. This problem becomes more apparent

for k > 2, while the success ratio is more or less the same for k = 2, it decreases when searching for

four or more closest nodes. This can be simply solved by slightly increasing the maximum routing

table size, as illustrated in figure (5.2), (5.3) and (5.4).

����

����

����

����

����

����

����

����

��

� � � � ��

�
�
�
�
�
�
�
��
�
���

�

Figure 5.1: Success ratio when s = 16

�����

����

�����

����

�����

��

� � � � ��

�
�
�
�
�
�
�
��
�
���

�

Figure 5.2: Success ratio when s = 24

�����

����

�����

�����

�����

�����

��

� � � � ��

�
�
�
�
�
�
�
��
�
���

�

Figure 5.3: Success ratio when s = 32

�����

������

������

������

������

��

� � � � ��

�
�
�
�
�
�
�
��
�
���

�

Figure 5.4: Success ratio when s = 40

In this Section, we saw that the parameter maximum routing table size s is an important factor. We

saw that for s = 40 and k = 1,2,4,8 each node is always able to find the k-closest nodes to a target

point. Although s = 48 showed a slightly better result, we will evaluate the overlay with s = 40.

26

5.2 Metrics

5.2 Metrics

5.2.1 Scalability

• Average Hop Count of Find k-Closest Nodes Operations: The average hop count per find

k-closest nodes operation is the overall number of messages sent by nodes to find the k-closest

nodes to a random point divided by the overall number of find k-closest nodes operations started

by each peer in the overlay. This metric is used to test the performance of the find k-closest

nodes operation by varying the overlay size. It also indicates if an overlay is scalable.

• Average Response Time of Find k-Closest Nodes Operations: The response time per find

k-closest nodes operation is the time the operation needs to find the k-closest nodes to a random

point. The average response time per find k-closest nodes operation is the sum of all response

times divided by the the overall number of find k-closest nodes operations started by each peer

in the overlay. This metric is used to test if the overlay is responsive by varying the overlay size.

• Overlay Traffic Per Peer: The overlay traffic in bytes/sec per peer, this metric is used to check

the average number of bytes a peer receives every second during a simulation. The overlay size

is increased in each experiment.

5.2.2 Stability and Efficiency

• Number of Present Peers Per Minute: This metric describes the number of present peers in

the overlay per minute. This metric is useful in scenarios where churn is active.

• Success Ratio of Find k-Closest Nodes Operations Per Minute: If a peer has found the k-

closest nodes, we denote this as successful search and the success ratio is calculated by the

number of successful searches of every peer per minute divided by the number of peers who

searched for the k-closest nodes per minute. This metric is useful in scenarios where churn is

active, to test the find k-closest nodes operation in changing conditions, due to peers joining

and leaving the system.

• Success Ratio of Finding at Least One Closest Node Per Minute: If a peer has found at least

one node out of the k-closest nodes, we denote this as a successful operation, the success ratio

is calculated by the number of successful operation per minute divided by the number of all find

k-closest nodes operations started by each peer in the overlay per minute. This metric is useful

in scenarios where churn is active, to test if the find k-closest nodes operation can find at least

27

Chapter 5 Evaluation

one node sufficiently.

• Hop Count of Successful Find k-Closest Nodes Operations Per Minute: The number of

messages sent by nodes which successfully find the k-closest nodes per minute divided by the

number of all find k-closest nodes operation started by each peer in the overlay per minute. This

metric is useful in scenarios where churn is active, to test if joining and leaving peers influences

the performance of the system.

• Response Time of Successful Find k-Closest Nodes Operations Per Minute: The response

time of each successful find k-closest nodes operation per minute divided by all find k-closest

nodes operations. This metric is useful in scenarios where churn is active, to test the respon-

siveness of the overlay in changing conditions, due to peers joining and leaving the system.

5.2.3 Area Search

• Success Ratio of Area Search Operations Per Minute: If a peer has contacted every node in

an area, we denote this as successful area search operation and the success ratio of successful

area search operations per minute is calculated by the number of successful area search opera-

tions per minute divided by the number of started area search operations per minute. This metric

is used in order to test if each area search operation can return all location-based information in

an area with the assumption that each node would return his location-based information.

5.3 Setup

In this Section, we will shortly present the parameters and scenarios and the metrics used for each

test. The following global parameters are used for each of the upcoming tests:

Global Parameters

Peer Distribution Uniformly Distributed on the Earth

Latency Model GNP Latency

Maximum Routing Table Size s 40

Ping Operation Interval 60 Seconds

Finger Range 25

Finger Unit Meter

Update Next Finger Table Entry Interval 10 Seconds

Churn (If Active) KAD Churn

28

5.3 Setup

Note: A node only sends ping messages to nodes in his routing table and not to nodes in his finger

table.

5.3.1 Scalability

The number of peers are increased in each test (50, 100, 250, 500, 1000, 2000, 5000). We use the

metrics from Subsection 5.2.1. In the first half hour we let peers join the overlay. Then, we wait 10

minutes, so each peer is able to update their fingers. Subsequently, from the 40th minute to 100th

minute, each peer starts a find k-closest nodes operation every minute (to a random point on the earth)

which we will measure as described by the first two metrics. The last metric in Subsection 5.2.1 is

used to measure the overlay traffic per peer during each simulation. Also, no churn occurs during each

simulation. The tests are repeated with different values of k (k = 1,4,8) to compare the results.

5.3.2 Stability and Efficiency

In the first half hour we let 2000 peers join the overlay. Then, we wait 10 minutes, so each peer is

able to update their fingers. Subsequently, from the 40th minute to 100th minute, each peer starts a

find k-closest nodes operation (to a random point on the earth) every minute which we will measure

as described by the metrics in Subsection 5.2.2. Also, from the 40th minute to 100th minute, churn

occurs, to test the efficiency and stability under changing conditions. The tests are repeated with

different values of k (k = 1,4,8) to compare the results.

5.3.3 Area Search

In the first half hour we let 2000 peers join the overlay. Then, we wait 10 minutes, so each peer is

able to update their finger table. Subsequently, from the 40th minute to 100th minute, each peer starts

an area search operation every minute (to a random point on the earth) which we will measure as

described by the metric in Subsection 5.2.3. The search radius r is set to 500 km and the parameter k

is set to 4, as the area search operation internally utilizes the find k-closest nodes operation. In the first

test churn will not occur, in the second test churn will occur from the 40th minute to 100th minute.

Important Note: The search radius r is intentionally set to 500 km, in order to ensure that nodes are

positioned in search areas. If no node is positioned in an area, the area search operation returns the

k-closest nodes to the search position.

29

Chapter 5 Evaluation

5.4 Results

The results are presented in the upcoming pages.

30

5.4 Results

5.4.1 Scalability

����

��

����

��

����

��

����

��

����

��

�� ���� ����� ����� ����� ����� ����� ����� ����� ����� �����

�
�
�
��
�
�
�
�

���������������

���
���
���

Figure 5.5: Average Hop Count of Find k-Closest Nodes Operations

����

����

����

����

����

����

�����

�����

�����

�� ���� ����� ����� ����� ����� ����� ����� ����� ����� �����

�
�
�
�
�
�
�
�
��
��
�
��
�
�
�

���������������

���
���
���

Figure 5.6: Average Response Time of Find k-Closest Nodes Operations

31

Chapter 5 Evaluation

����

����

����

����

����

����

����

�� ���� ����� ����� ����� ����� ����� ����� ����� ����� �����

�
��
��
�
��
�
�
��
�
��
�
�
�

���������������

���
���
���

Figure 5.7: Overlay Traffic Per Peer

32

5.4 Results

5.4.2 Stability and Efficiency

��

����

�����

�����

�����

��� ��� ��� ��� ��� ��� ����

�
�
�
�
�
��
�
��
�
�
�
��

��������������

Figure 5.8: Number of Present Peers Per Minute

��

����

����

����

����

��

��� ��� ��� ��� ��� ��� ����

�
�
�
�
�
�
�
��
�
���

��������������

���
���
���

Figure 5.9: Success Ratio of Find k-Closest Nodes Operation Per Minute

33

Chapter 5 Evaluation

��

����

����

����

����

��

��� ��� ��� ��� ��� ��� ����

�
�
�
�
�
�
�
��
�
���

��������������

���
���
���

Figure 5.10: Success Ratio of Finding at Least One Node Per Minute

��

��

��

��

��

��

��

��

��

��� ��� ��� ��� ��� ��� ����

�
�
�
�
�
��
�
��
�
�
�
�

��������������

���
���
���

Figure 5.11: Hop Count of Successful Find k-Closest Nodes Operations Per Minute

34

5.4 Results

��

����

����

����

����

�����

�����

�����

��� ��� ��� ��� ��� ��� ����

�
�
�
�
�
�
�
�
��
��
�
��
�
�
�

��������������

���
���
���

Figure 5.12: Response Time of Successful Find k-Closest Nodes Operations Per Minute

35

Chapter 5 Evaluation

5.4.3 Area Search

No Churn

��

����

�����

�����

�����

��� ��� ��� ��� ��� ��� ����

�
�
�
�
�
��
�
��
�
�
�
��

��������������

Figure 5.13: Number of Present Peers Per Minute

��

����

����

����

����

��

��� ��� ��� ��� ��� ��� ����

�
�
�
�
�
�
�
��
�
���

��������������

Figure 5.14: Success Ratio of Area Search Operations Per Minute

36

5.4 Results

Churn

��

����

�����

�����

�����

��� ��� ��� ��� ��� ��� ����

�
�
�
�
�
��
�
��
�
�
�
��

��������������

Figure 5.15: Number of Present Peers Per Minute

��

����

����

����

����

��

��� ��� ��� ��� ��� ��� ����

�
�
�
�
�
�
�
��
�
���

��������������

Figure 5.16: Success Ratio of Area Search Operations Per Minute

37

Chapter 5 Evaluation

5.5 Analysis of the Results

5.5.1 Scalability

In Figure 5.5 we can see that the average hop count logarithmically increases with increasing number

of peers in the system. This indicates that the overlay is scalable. Figure 5.6 and Figure 5.7 confirms

it, because we can again observe that the curves in both Figures are logarithmic. The first two Figures

show that the efficiency for all values of k is fairly the same. The last figure illustrates that for k = 4,8

the overlay traffic per peer is much worse, which is to be expected.

5.5.2 Stability and Efficiency

In Figure 5.8, we can see from 40th minute onwards that the number of peers in the system de-

creases, this has a big impact on the success of the find k-closest nodes operation for k = 1, as we

can see in Figure 5.9 the success ratio decreases. The reason for that is that during the search process

for the closest node (to a point) only one node is returned in each step, if k > 1 and if the closest

node does not reply after a certain time, the operation would choose the next best node to contact (see

Chapter 3), but for k = 1 the search is over if a node on the search path does not reply. For k = 4 and

k = 8, this problem does not occur and the success ratio is close to 1. Figure 5.10 shows that the find

k-closest nodes operation is successful at finding at least one node out of the k-closest nodes when

k = 4,8. Figure 5.11 shows that the hop count of successful find k-closest nodes operation per minute

is almost the same for each value of k. While the hop count is more or less the same the response time

increases as shown in Figure 5.12, the reason for that is that for k > 1 the next best node is chosen

after a connection cannot be established with the closest node.

All in all we can say that the results indicates that the overlay is stable in terms of churn when

using k = 4,8. We can observe a small increase in response time, but apart from that the efficiency

does not suffer under churn.

5.5.3 Area Search

The area search operation is tested with the assumption that each peer stores location-based informa-

tion, so when a node contacts every peer in an area he has found every data objects in that area. The

test without churn shows that each area search operation per minute is successful. The test with churn

shows that the value is very close to 1, because it internally utilizes the find k-closest nodes operation,

which is analyzed in the previous Subsection.

38

Chapter 6

Conclusion

During this thesis a novel location-based peer-to-peer overlay was developed and implemented in

the overlay network simulator PeerfactSim.KOM which is called GeoMesh. Related work has been

considered, in order to design an overlay which is efficient, scalable and stable at once. Most of the

work on this topic has problems under changing conditions when peers join and leave the overlay

which is often referred as churn. These problems are discussed in Chapter 2. Also, overlays such as

Geodemlia and SpatialP2P have been considered. Both overlays are efficient and scalable at once,

so the main focus was on both overlays which also influenced the design of GeoMesh. Chapter 3

begins with definitions and explanations, which should depict the requirements of such an overlay.

The join, leave, search methods are important components in every peer-to-peer overlay, because a

P2P overlay network is a self-organizing network. So, these procedures and functions are also pre-

sented in Chapter 3. Location-based overlays uses peer positions to find location-based information,

so methods such as find k-closest nodes or area search are important components. In Chapter 4, the

implementation is presented, which shows how GeoMesh can be implemented in the overlay network

simulator PeerfactSim.KOM. Subsequently, the overlay is evaluated in Chapter 5, which shows good

results in terms of scalability, efficiency and stability.

6.1 Future Work

The current version of the implementation does not support retrieving data objects, this can be further

improved, also another improvement would be data replication in which a peer can store his location-

based data in his neighboring peers, so data objects are permanently present in the system.

39

Bibliography

[AB09] Shah Asaduzzaman and Gregor v Bochmann. Geop2p: an adaptive and fault-tolerant

peer-to-peer overlay for location based search. The 29th IEEE ICDCS, 2009.

[Bea] Calculate distance, bearing and more between latitude/longitude points. http://

www.movable-type.co.uk/scripts/latlong.html. Accessed: 2015-05-

20.

[ErJ01] D Eastlake 3rd and Paul Jones. Us secure hash algorithm 1 (sha1). Technical report,

2001.

[GSR+12] Christian Gross, Dominik Stingl, Björn Richerzhagen, Andreas Hemel, Ralf Steinmetz,

and David Hausheer. Geodemlia: A robust peer-to-peer overlay supporting location-

based search. In Peer-to-Peer Computing (P2P), 2012 IEEE 12th International Confer-

ence on, pages 25–36. IEEE, 2012.

[KSS09] Verena Kantere, Spiros Skiadopoulos, and Timos Sellis. Storing and indexing spa-

tial data in p2p systems. Knowledge and Data Engineering, IEEE Transactions on,

21(2):287–300, 2009.

[SGR+11] Dominik Stingl, Christian Gross, Julius Rückert, Leonhard Nobach, Aleksandra Ko-

vacevic, and Ralf Steinmetz. Peerfactsim. kom: A simulation framework for peer-to-

peer systems. In High Performance Computing and Simulation (HPCS), 2011 Interna-

tional Conference on, pages 577–584. IEEE, 2011.

[Sin84] Roger W Sinnott. Sky and telescope. Virtues of the Haversine, 68(2):159, 1984.

[SMLN+03] Ion Stoica, Robert Morris, David Liben-Nowell, David R Karger, M Frans Kaashoek,

Frank Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-peer lookup protocol

for internet applications. Networking, IEEE/ACM Transactions on, 11(1):17–32, 2003.

[THS07] Egemen Tanin, Aaron Harwood, and Hanan Samet. Using a distributed quadtree index

in peer-to-peer networks. The VLDB Journal, 16(2):165–178, 2007.

41

http://www.movable-type.co.uk/scripts/latlong.html
http://www.movable-type.co.uk/scripts/latlong.html

Ehrenwörtliche Erklärung

Hiermit versichere ich, die vorliegende Bachelorarbeit selbstständig verfasst und keine anderen als die

angegebenen Quellen und Hilfsmittel benutzt zu haben. Alle Stellen, die aus den Quellen entnommen

wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in gleicher oder ähnlicher Form

noch keiner Prüfungsbehörde vorgelegen.

Düsseldorf, 22.Juli 2015 Mustafa Yilmaz

43

Please add here

the DVD holding sheet

This DVD contains:

• A pdf Version of this bachelor thesis

• All LATEXand grafic files that have been used, as well as the corresponding scripts

• [adapt] The source code of the software that was created during the bachelor thesis

• [adapt] The measurment data that was created during the evaluation

• The referenced websites and papers

	Title Page
	Abstract
	Danksagung
	Contents
	List of Figures
	List of Tables
	1 Motivation
	1.1 Peer-to-Peer Overlays
	1.2 Location-based Overlays
	1.3 Overview

	2 Related Work
	3 Design of Mesh
	3.1 Overview
	3.2 Requirements
	3.3 Positioning and Distance
	3.4 Routing Table
	3.5 Find k-Closest Nodes
	3.6 Area Search
	3.7 Join and Leave
	3.8 Routing Table Maintenance
	3.9 Finger Table
	3.10 Conclusion

	4 Implementation
	4.1 Identifier, Contact Information and Position
	4.2 Routing Table
	4.3 Messages and Operations
	4.4 Node

	5 Evaluation
	5.1 Routing Table Size and Search Results
	5.2 Metrics
	5.2.1 Scalability
	5.2.2 Stability and Efficiency
	5.2.3 Area Search

	5.3 Setup
	5.3.1 Scalability
	5.3.2 Stability and Efficiency
	5.3.3 Area Search

	5.4 Results
	5.4.1 Scalability
	5.4.2 Stability and Efficiency
	5.4.3 Area Search

	5.5 Analysis of the Results
	5.5.1 Scalability
	5.5.2 Stability and Efficiency
	5.5.3 Area Search

	6 Conclusion
	6.1 Future Work

	Bibliography

