
Probabilistic Congestion Control for Non-Adaptable Flows

Jörg Widmer
Praktische Informatik IV,
University of Mannheim,

Germany

widmer@informatik.uni-
mannheim.de

Martin Mauve
Praktische Informatik IV,
University of Mannheim,

Germany

mauve@informatik.uni-
mannheim.de

Jan Peter Damm
Praktische Informatik IV,
University of Mannheim,

Germany

jpdamm@web.de

ABSTRACT
In this paper we present a TCP-friendly congestion control scheme
for non-adaptable flows. The main characteristic of these flows is
that their data rate is determined by an application and cannot be
adapted to the current congestion situation of the network. Typical
examples of non-adaptable flows are those produced by networked
computer games or live audio and video transmissions where adap-
tation of the quality is not possible (e.g., since it is already at the
lowest possible quality level). We propose to perform congestion
control for non-adaptable flows by suspending them at appropri-
ate times so that the aggregation of multiple non-adaptable flows
behaves in a TCP-friendly manner. The decision whether or not a
flow is to be suspended is based on random experiments. In order
to allocate probabilities for these experiments, the data rate of the
non-adaptable flow is compared to the rate that a TCP flow would
achieve under the same conditions. We present a detailed discus-
sion of the proposed scheme and evaluate it through extensive sim-
ulation with the network simulator ns-2.

Keywords
Congestion Control, Non-Adaptable Flows, TCP-Friendliness

1. INTRODUCTION
Congestion control is a vital element of computer networks such

as the Internet. It has been widely discussed in the literature –
and experienced in reality – that the lack of appropriate congestion
control mechanisms will lead to undesirable situations such as a
congestion collapse [6]. Under such conditions, the network ca-
pacity is almost exclusively used up by traffic that never reaches its
destination.

In the current Internet, congestion control is primarily performed
by TCP. During recent years, new congestion control schemes were
devised, supporting networked applications that cannot use TCP.
Typical examples of such applications are audio and video trans-
missions over the Internet. One prime aim of these congestion
control schemes is to share the available bandwidth in a fair man-
ner with TCP-based applications, thus falling into the category of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’02, May 12-14, 2002, Miami, Florida, USA.
Copyright 2002 ACM 1-58113-512-2/02/0005 ...$5.00.

TCP-friendly congestion control mechanisms.
TCP, as well as existing TCP-friendly congestion control algo-

rithms, require that the data rate of an individual flow can be adapted
to network conditions. Using TCP, it may take a variable amount
of time to transmit a fixed amount of data, or with TCP-friendly
congestion control, the quality of an audio or video stream may be
adapted to the available bandwidth.

While for a large number of applications this not a problem, there
are cases where the data rate of an individual flow is determined by
the application and cannot be adjusted to the network conditions.
Networked computer games are a typical example, considering the
fact that players are very reluctant to accept the delayed transmis-
sion of information about a remote player’s actions. Live audio and
video transmissions with a fixed minimum quality, below which
reception is useless, fall into the same category. For this class of
applications there are only two acceptable states: either a flow is
on and the sender transmits at the data rate determined by the ap-
plication or it is off and no data is transmitted at all. We call network
flows produced by these applications non-adaptable flows.

In this paper we describe a TCP-friendly end-to-end congestion
control mechanism for non-adaptable unicast flows called Proba-
bilistic Congestion Control (PCC). The main idea of PCC is

� to calculate a probability for the two possible states (on/off)
so that the expected average rate of the flow is TCP-friendly,

� to perform a corresponding random experiment to determine
the new state of the non-adaptable flow, and

� to repeat the previous steps continuously to account for changes
in network conditions.

Through this mechanism it is ensured that the aggregate of mul-
tiple PCC flows behaves in a TCP-friendly manner.

The remainder of this paper is structured as follows. Section 2
summarizes related work. An introduction to non-adaptable flows
and a description of the PCC mechanism is given in Section 3. In
Section 4, we discuss an example of PCC operation for an easier
understanding of how the protocol works in detail. The results of
the simulation studies that were conducted are presented in Sec-
tion 5 and we conclude the paper with a summary and an outlook
on future work in Section 6.

2. RELATED WORK
Much work has been done on TCP-friendly congestion control

schemes for applications that do not use TCP. Prominent examples
of these schemes are PGMCC [11], TEAR [10], TFRC [7], and
FLID-DL [4]. A discussion of such TCP-friendly congestion con-
trol mechanisms can be found in [12]. TCP, as well as all existing

TCP-friendly congestion control schemes, requires that the band-
width consumed by a flow be adapted to the level of congestion in
the network. By definition, non-adaptable flows cannot use such
congestion control mechanisms.

It is conceivable to use reservation mechanisms such as Intserv
[2] or Diffserv [1] for non-adaptable flows so as to prevent con-
gestion altogether. However, these mechanisms require that the
network supports the reservation of resources or provides differ-
ent service classes. This is currently not the case for the Internet.
In contrast, PCC is an end-to-end mechanism that does not require
support from the network. With PCC it is possible to “partly” admit
a flow and to continuously adjust the number of flows to network
conditions.

We are not aware of any previous work that directly matches the
category of probabilistic congestion control.

3. PROBABILISTIC CONGESTION
CONTROL

The Probabilistic Congestion Control scheme (PCC) provides
congestion control for non-adaptable unicast flows by suspending
flows at appropriate times. PCC is an end-to-end mechanism and
does not require the support of routers or other intermediate sys-
tems in the network.

3.1 Non-Adaptable Flows
A non-adaptable flow is defined as a data flow with a sending rate

that is determined by the application and which cannot be adjusted
to the level of congestion in the network. It has exactly two possible
states: either it is in the state on, carrying data at the rate determined
by the application, or it is off, meaning that no data is transmitted
at all. Any data rate in between those two states is inefficient, since
the application is not able to utilize the offered rate.

Examples of applications using non-adaptable flows are com-
mercial network games such as Diablo II, Quake III, Ultima On-
line, and Everquest. These games typically employ a client-server
architecture. The data rate of the flows between client and server
is determined by the fact that the actions of the players must be
transmitted instantaneously. Similar restrictions hold for the flows
between participants of distributed virtual environments without a
centralized server. If a congestion control scheme delays the trans-
mission of actions too long, the application quickly becomes un-
usable. This can easily be experienced by experimenting with a
state-of-the-art TCP-based networked computer game during peak
hours. For this reason, a number of applications resort to UDP and
avoid congestion control altogether.

A situation with either no congestion control at all or vastly re-
duced utility in the face of moderate congestion is not desirable.
A preferable approach is to turn the flows of some participants off
and to inform the applications accordingly. All other participants
do not need to react to the congestion. On average, all users should
be able to participate in the session for a reasonable amount of time
between off-periods to ensure utility of the application. At the same
time, off-periods should be distributed fairly among all participants.

Other examples of applications with non-adaptable flows are au-
dio or video transmissions with a fixed quality. There are two main
reasons why it may not be possible to scale down a media flow:
either the user does not accept a lower quality, or the quality is al-
ready at the lowest possible level. The second reason indicates that
a congestion control mechanism for non-adaptable flows can com-
plement congestion control schemes that adapt the rate of a flow to
current network conditions.

3.2 PCC Requirements
The key aspect of PCC is that – as long as there is a sufficiently

high level of statistical multiplexing – it is not important that each
single non-adaptable flow behave TCP-friendly at any specific point
of time. What is important is that the aggregation of all non-adapt-
able flows on a given link behave as if the flows were TCP-friendly.
Due to the law of large numbers this can be achieved if each PCC
flow has an expected average rate which is TCP-friendly and if each
link is traversed by a sufficiently large number of independent PCC
flows.

At first glance, the latter requirement may be considered prob-
lematic because it is possible that a link is traversed only by a small
number of PCC flows. However, further reflection reveals that in
this case the PCC flows will only be significant in terms of network
congestion if each individual PCC flow occupies a high percent-
age of the link’s bandwidth. We therefore relax the condition as
follows: a single PCC flow is expected to have a rate that is only a
small fraction of the available bandwidth on any link that it crosses.
Given the current development of available bandwidth in computer
networks, this is a condition that is likely to hold true.

Altogether, the following requirements have to be fulfilled in or-
der for PCC to be applicable:

R1: Network conditions are relatively independent from the ac-
tions of a single PCC flow. The network has a high level of
statistical multiplexing or single PCC flows occupy only a
small fraction of the available bandwidth.

R2: No synchronization of PCC flows at startup. PCC flows start
up independent of each other.

R3: The average rate of a PCC flow can be predicted. In order
for PCC to work, it must be possible to predict the average
rate of a PCC flow.1

R4: The average rate of a TCP flow under the same conditions
can be estimated. We expect that there is a reasonably ac-
curate method to estimate the average bandwidth that a TCP
flow would have under the same network conditions.

3.3 Architecture
A simple overview of the PCC architecture is depicted in Fig-

ure 1. A PCC receiver monitors the network conditions and esti-
mates a TCP-friendly rate using a model of long-term TCP through-
put. Whenever a PCC receiver observes a degradation in network
conditions, it conducts a random experiment to determine whether
or not the flow should be suspended. In the case the experiment
fails, a control packet is sent to notify the sender that it is tem-
porarily required to stop. After a certain off-period, the sender may
resume data transmission. For PCC, we chose to allocate as much
functionality to the receiver as possible in order to facilitate a future
extension of PCC to multicast.

While a flow is in the on-state, control packets are sent by the
receivers at certain time intervals. They are needed to continuously
measure the round-trip time required to determine the TCP-friendly
rate and they serve as a backup mechanism in case of very heavy
network congestion. In the absence of these periodic control mes-
sages, the sender stops sending, thus safeguarding against the loss
of notifications to stop. As long as the flow is in the on-state, the
data packets are transmitted at the rate determined by the applica-
tion. The sender includes in each data packet the timestamp of the
1There are multiple ways in which this can be done, ranging from
a constant bit-rate flow where this prediction is trivial, to the usage
of application level knowledge or prediction based on past samples
of the data rate.

(data, reflected timestamp, sequence number)
data packets

receiver

sender

control packets
(flow state: on/off, timestamp)

− start / stop flow
− reflect timestamp

 on/off−probability calculation

− parameter measurements
− TCP−friendly rate and

− random experiment

Figure 1: PCC architecture

most recent control packet it received as well as the time interval
between receiving the control packet and sending the data packet.
With this information the receiver is able to determine the round-
trip time. Each data packet also contains a sequence number to
allow the receiver to detect packet losses.

For the remainder of this work we use a slightly simplified ver-
sion of the TCP throughput formula of Padhye et al. [8] to compute
the TCP-friendly rate:

rTCP =
s

tRTT

�q
2l

3
+

�
12

q
3l

8

�
l (1 + 32l2)

� (1)

The expected throughput rTCP of a TCP flow is calculated as a
function of the steady-state loss event rate l, the round-trip time
tRTT , and the packet size s. In order to determine the parameters
required for the formula, the current version of PCC uses the mea-
surement mechanisms proposed for the TCP-Friendly Rate Control
Protocol (TFRC). RTT samples are smoothed with an exponentially
weighted moving average. The loss event rate is calculated as the
inverse of the weighted average of a number of loss intervals, where
a loss intervals consists of the number of packets between two con-
secutive loss events. A detailed description of these mechanism can
be found in [7].

It is important to note that PCC is independent of the specific
mechanism used to estimate the throughput of a TCP flow for given
network conditions, as long as it provides a sufficiently accurate
TCP-friendly rate. A possible alternative, for example, would be to
use the rate calculation mechanism of TCP Emulation At Receivers
(TEAR) [10].

3.4 Basic PCC Mechanism
To determine the probability with which a PCC flow is allowed

to send for a certain time interval T , it is necessary to compare the
average rate rNA of PCC to the TCP-friendly rate rTCP :

p � T � rNA = T � rTCP =) p =
rTCP

rNA
(2)

where p denotes the ratio of rNA to rTCP . When solving the equa-
tion, two outcomes are possible:

� p � 1: The non-adaptable flow consumes less than or the
same amount of bandwidth that would be TCP-friendly and
should therefore stay on.

� 0 � p < 1: The non-adaptable flow consumes more band-
width than a comparable TCP-friendly flow. In this case, p is
taken as a probability and the non-adaptable flow should be
turned off with probability 1� p.

For p 2 [0; 1], a uniformly distributed random number x is drawn
from the interval (0; 1]. If x > p holds, the PCC flow is turned off
for a time of T . After that time interval the flow may be turned on

again. If x � p, the flow remains in the on-state. Since we require
a sufficient level of statistical multiplexing (R1) and because of the
law of large numbers, the aggregation of all PCC flows over a given
link behaves in a TCP-friendly manner. A state diagram of a PCC
receiver is depicted in Figure 2. The runtime of the timer used in
this state machine is always T .

timeout

INIT

se
t t

im
er

OFF
T’ over and p’<x/

set timer

T
’

ov
er

 a
nd

 p
’>

=
x/

ON

p’>=x p>=x

p<
x/

se
t t

im
er

se
t t

im
er

p’
<x/

timeout

First T
(ON)

Figure 2: Finite State Machine of a PCC Receiver

T is an application-specific parameter that is crucial for the util-
ity of the protocol and thus for the user acceptance of the con-
gestion control mechanism. For example, if short news clips are
transmitted, T should be equal to the length of these clips. If a
networked computer game is played, T should be determined so
that in “normal” congestion situations the player is able to perform
some meaningful tasks during the average time the flow stays on.
If the network is designed to carry the required traffic (i.e., conges-
tion is low), then the average on-time will be a large multiple of T .
T should be adjusted by some random offset to prevent synchro-
nization of PCC flows in case several flows with the same value
for T were forced to cease sending simultaneously due to heavy
congestion.

When setting T to very small values, PCC behaves more and
more like a conventional rate-based congestion control algorithm.
In the extreme case, the application rate is the line speed of the out-
going interface of the PCC sender, the on-time is the time required
to send a single packet and the off-time corresponds to the inter-
packet interval, resulting in a protocol that behaves very much like
TFRC. At the other end of the spectrum, for very large values of T
PCC behaves like an admission control scheme based on snapshots
of the current network conditions as determined with Equation (1).

3.5 Continuous Evaluation
Under the assumption of a relatively constant level of congestion,

the further behavior of PCC is very simple. After a time of T , a flow
that is in the on-state will repeat the random experiment using the
same rTCP . However, in a real network the level of congestion
is not constant but may change significantly within a time much
shorter than T . There are two cases to consider: network conditions
may improve (increasing rTCP) or the congestion may get worse.

The first case is not problematic since it does not endanger the
network itself. PCC flows may be treated unfairly in that they are
turned off with a higher probability than they should be. However,
after a time of T the decision will be reevaluated with the correct
probability, and PCC will adjust to the new level of congestion.

The second case is much more dangerous to the network. In or-
der to prevent unfair treatment of competing adaptive flows or even
a congestion collapse, it is very important that PCC flows respond
quickly to an increase in congestion. Therefore, during T PCC
periodically updates the value for p and performs further random
experiments if necessary.

Obviously, it is not acceptable to simply recalculate p without
accounting for the fact that the flow could have been turned off
during one of the previous experiments. Without any adjustments,
PCC would continue to perform the same random experiment again
and again and the probability to survive those experiments would
drop to 0. The general idea of how to avoid this drop-to-zero be-
havior is to adjust the rate used in the equations to represent the
current expected average data rate of the flow.

PCC modifies the value rNA, taking into account the last random
experiments that have been performed for the flow. To this end,
PCC maintains a set P of the probabilities pi with which the flow
stayed on in the random experiments during the last T seconds.2

The so-called effective rate rEFF is determined according to the
following equation:

rEFF =

�
rNA

Q
pi2P

pi for P 6= ;

rNA for P = ;
(3)

For the continuous evaluation and the random experiments rEFF
replaces rNA in Equation (2). After a time span of T , the corre-
sponding pi is removed from the set. Thus, the overall probability
for a PCC flow to stay on for a given interval T corresponds to the
worst network conditions PCC experienced during that interval.

3.6 Initialization
At the initial startup and after a suspended flow restarts, a re-

ceiver does not have a valid estimate of the current condition of the
network and thus is not able to instantaneously compute a mean-
ingful TCP-friendly rate. To avoid unstable behavior, a flow will
stay in the on-state for at least a protected time T

0, where T
0 is

the amount of time required to get the necessary number of mea-
surements to obtain a sufficiently accurate estimate of the network
conditions.

After T 0, PCC determines whether it should cease to send or
may continue. In order to take the data transmitted during the pro-
tected time into account, the probability of turning the flow off is
increased during the first interval of T so that the average amount of
data transmitted during T

0
+T is equal to that carried by a compet-

ing TCP flow. Let r0NA denote the average rate of the non-adaptive
flow during the protected time and r

0

TCP the average rate a TCP
flow would have achieved during the same time. For

T
0
� r

0

NA + p
0
� T � rNA = T

0
� r

0

TCP + T � rTCP

the adjusted ratio p
0 can be calculated as

=) p
0

=
T � rTCP + T

0
� (r

0

TCP � r
0

NA)

T � rNA

= p�
T
0
(r

0

NA � r
0

TCP)

T � rNA
(4)

Again, for 0 � p
0
� 1 we use p

0 as the probability for the
random experiment. If the flow is turned off, the application may
resume sending after it has been off for at least T seconds, starting
again with the initialization step. If the flow is not turned off, then
the flow will stay on for at least T more seconds, provided that the
congestion situation of the network does not get worse.

2Note that pi = 1 if the corresponding p � 1.

Note that it is now possible that p0 � 0 if the non-adaptable flow
transmits more data during T

0 than a TCP flow would carry during
T
0
+ T . Obviously, in this case p0 cannot be used as a probability

for the random experiment. Instead, it is necessary to turn the flow
off and to increase T , so that p0 = 0.

Through the above mechanism the excess data transmitted dur-
ing the protected time T

0 is distributed over a time span of T . At
time T 0, r0TCP = rTCP and r

0

NA = rNA but in contrast to r
0

TCP

and r
0

NA, rTCP and rNA continue to be updated after T 0.
When a random experiment has to be conducted, it is necessary

to calculate not only p
0 but also the corresponding p. Each is in-

cluded in their respective set P 0 and P . As long as PCC is in the
first T slot and the protected time has to be accounted for, the val-
ues in P

0 are used to calculate the effective rate and thus the on-
probability. Later on, the set P is used.

It may be considered problematic to let a flow send at its full
rate for T 0 as this violates the idea of exploring the available band-
width as is done, e.g., by TCP slow-start. However, requirements
R1 (high level of statistical multiplexing) and R2 (no synchroniza-
tion at startup) prevent this causing excessive congestion. In ad-
dition, the value of T 0 will usually decrease the more congested
the network is since the actual measurement of the loss event rate
makes up most of the time interval T 0. Loss events become more
frequent as congestion increases, and therefore the estimate of the
network conditions converges faster to the real value. While rTCP
is determined, the receiver also calculates the average rate of the
non-adaptable flow rNA.3 Summing up, three important values are
determined during initialization: rTCP , rNA, and T

0.

3.7 PCC Options
While the current version of PCC works as described above,

there are a number of options and possible improvements that we
have investigated. In the following we outline possible modifica-
tions to PCC that have not yet been included in the protocol.

3.7.1 Loss Rate Monitoring
PCC flows do not take into account the impact of their actions

on the network conditions. Assume that the random experiments
of a number of PCC flows fail due to increased congestion, but that
the congestion was largely caused by these PCC flows. Then too
many flows will be suspended since it is impossible to include the
expected improvement in the network conditions in the calculation
of the on-probability. Similarly, when the bandwidth consumed by
PCC flows during the protected time is a significant fraction of the
bottleneck link bandwidth, severe congestion may be inevitable.
Even after the protected time, the changes in network conditions
caused by PCC flows that consume a large fraction of the band-
width are undesirable.

For these reasons it is vital that the condition of a sufficient
level of statistical multiplexing holds and that the PCC flows do
not consume too large a fraction of the bandwidth of the bottleneck
link. By continuously monitoring the packet loss rate (e.g., through
probe packets) and correlating it with the on- and off-times of a
PCC flow, it is possible to estimate the impact of the flow on the
network conditions. If the PCC flow causes very large variations
in the loss rate when it is switched on or off, the flow should be
suspended permanently. With this extension it is possible to use
PCC in environments where it is unclear whether the condition of
a sufficient level of statistical multiplexing is fulfilled.

3In our implementation, we use an exponentially weighted moving
average of past PCC rates, but as noted in requirement R3, other
options are possible.

3.7.2 Fixed On-Time
Through the continuous evaluation, a flow stays on for a certain

amount of time (possibly for the whole session if network condi-
tions permit) before being suspended. Applications that require a
fixed on-time to transmit a certain amount of data but are flexible
with regard to the time they are turned off, may reverse this be-
havior. It is possible to modify PCC so that flows stay on for a
time of T and during that time determine how long they have to
be suspended in order to be TCP-friendly. However, under such
circumstances the value of T should be within reasonable bounds
of the timescale over which changes in the network conditions oc-
cur. If network conditions deteriorate significantly after a number
of PCC flows are turned on, it is not acceptable for a congestion
control mechanism to not react at all for a time T , if T is much
larger than the time over which the change occurs. Furthermore,
network conditions might already have improved when the flows
are finally suspended in which case suspending the flows would be
futile.

3.7.3 Probe While Off
PCC flows may on average receive less bandwidth than compet-

ing TCP flows since a flow that has been turned off may resume
only after a time of T , even if network conditions improve earlier.
This degrades PCC’s performance, particularly if T is large. In
order to improve average PCC throughput, flows that are off could
monitor network congestion by sending probe packets at a very low
rate from the sender to the receiver. The rate rOFF produced by the
probe packets needs to be taken into account in Equations (2) and
(4) by including an additional factor (1� p) � rOFF � T .

If the loss rate and the round-trip time of the probe packets sig-
nal that rTCP has improved, a flow that has been turned off may be
turned on again immediately, without waiting for the remainder of
T to pass, and without performing an initialization step. This may
be done only if, under the new network conditions, all experiments
within the last T interval had been successful. If the congestion
situation worsens later on, it must be checked whether any of the
experiments during the last T interval had failed. If this is the case,
the flow must be turned off again. Only after the last entry in set
P has timed out may the flow resume normal operation. For Probe
While Off to work correctly, it is of major importance that estimat-
ing the network parameters is independent from the packet rate at
which the measurements are performed.

3.7.4 Probe Before On
In PCC, a flow is turned on upon initialization. This has two

drawbacks. First, it violates the idea of exploring the available
bandwidth as in TCP slowstart. Second, the flow may be turned
off immediately after the initialization is complete, so that the user
perceives only a brief moment where the application seems to work,
before it is turned off. An alternative would be to send probe pack-
ets at an increasing rate before deciding whether or not to turn on
the flow. Only after the parameters have been estimated and the
random experiment has succeeded will real data for the flow be
transmitted.

The current version of PCC does not include Probe Before On
or Probe While Off. The drawback of Probe Before On is that
bandwidth is wasted by probe packets and that the initial startup
of a flow is delayed. Probe While Off improves PCC performance
under quickly changing network conditions but leads to more fre-
quent changes between the states “on” and “off”, which is likely to
be distracting to the user of the application. The mechanism can
be improved by including a threshold, so that the flow is turned on
again only if the available bandwidth increases significantly.

4. EXAMPLE OF PCC OPERATION
To provide a better understanding of the behavior of PCC, let

us demonstrate how PCC operates by means of an example. As
depicted in Figure 3, the sender starts transmitting at the rate de-
termined by the application. After T 0

= 10 seconds the receiver
arrives at an initial estimate of rNA = 100KBit=s and rTCP =

80KBit=s. Furthermore, let us assume that the application devel-
oper decided that T = 50 seconds is a good value for the given
application. Now p can be calculated as:

p =
80

KBit

s

100
KBit

s

= 0:8

The value of p is included in the set P and p
0 is calculated since

we are in the first T interval and have to make up for the data trans-
mitted during the protected time.

p
0
= p�

10s � (100
KBit

s
� 80

KBit

s
)

50s � 100
KBit

s

= 0:8 � 0:04 = 0:76

T’+T = 60

rate

time

r
TCP

NA
r

200

100

80

40

T’ = 10

Figure 3: Example of PCC Operation

Now a random number is drawn from the interval (0; 1], deciding
whether the flow will stay on or be turned off. Given a high level of
statistical multiplexing, this will result in roughly 1 out of 4 PCC
flows being turned off, with the aggregation of the remaining PCC
flows using a fair, TCP-friendly share of the bandwidth.

Let us assume that the random number drawn is smaller than p
0

and that the flow will stay in the on-state. As depicted in Figure 3,
at some later point in time, the bandwidth required by the applica-
tion increases to rNA = 200KBit=s. A new value for p is then
calculated as follows:

p =
80

KBit

s

200
KBit

s
� 0:8

= 0:5

This value for p is saved to the set P for later use. The adjusted
probability p

0 has to be calculated based on the past value of p0.

p
0

=
80

KBit

s

200
KBit

s
� 0:76

�
10s � (100

KBit

s
� 80

KBit

s
)

50s � 200
KBit

s
� 0:76

= 0:5

Let the random number drawn for this decision be below 0:5 so
that the flow remains on. A few seconds after this decision the

TCP-friendly rate drops to rTCP = 40KBit=s. Consequently
new values for p and p

0 are calculated:

p =
40

KBit

s

200
KBit

s
� 0:8 � 0:5

= 0:5

p
0

=
40

KBit

s

200
KBit

s
� 0:76 � 0:5

�
10s � (100

KBit

s
� 80

KBit

s
)

50s � 200
KBit

s
� 0:76 � 0:5

= 0:47

Again the value p is stored in P while the random number drawn
is below p

0.
At T 0

+ T = 60s two things happen: first, the data transmitted
during the protected time need no longer be accounted for since
PCC has made up for that during the past T interval. Therefore
p
0 is no longer calculated. Second, the first value within P times

out and is removed from the set. If the network situation has not
changed this will result in the following new value for p:

p =
40

KBit

s

200
KBit

s
� 0:5 � 0:5

= 0:8

This time let us assume that the random number is larger than p. As
a consequence the flow is suspended for the next T interval before
it may start again with a protected time. It should be noted that this
example was designed to demonstrate how PCC works. Usually,
the protected time is much shorter than 10 seconds, random exper-
iments will be more frequent as network conditions change contin-
uously, and an application rate of five times the TCP-friendly rate
strongly indicates that the network resources are not sufficient for
the application.

5. SIMULATIONS
In this section, we use network simulation to analyze PCC’s be-

havior. Simulations are based on the dumbbell topology (Figure 4)
since it is sufficient to analyze PCC fairness, and the results can be
compared to those of other congestion control protocols evaluated
with it. For the same reason, simulations were carried out with the
ns-2 network simulator [3], commonly used to evaluate such pro-
tocols. Drop-tail queuing (with a buffer size of 50 packets) was
employed at the routers. We used the standard ns implementation
of TCP SACK for the flows competing with PCC.

Router
1

PCC 1

Router
2

PCC 1

TCP 1

...

...

...

...

ReceiversSenders

PCC n

TCP 1

PCC n

TCP mTCP m

Bottleneck Link

Figure 4: Simulation Topology

5.1 TCP-Friendliness
A typical example of PCC behavior is shown in Figure 5. For

this simulation, 32 PCC flows and 32 TCP flows were run over
the same bottleneck link with 32MBit/s capacity. At an application
sending rate of 750KBit/s, the PCC flows should ideally be in the

on-state for two thirds of the time. In this example, T was set to
60s, leading to an expected average on-time of 120s. The graph
depicts the throughput of one sample TCP flow and one sample
PCC flow, as well as the average throughput of all 32 PCC flows.
The starting time of the PCC flows is spread out over the first 50s
to avoid synchronization.

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600 700 800 900

T
hr

ou
gh

pu
t [

K
B

it/
s]

Time [s]

sample TCP
sample PCC

average PCC

Figure 5: PCC and TCP throughput

The TCP rate shows the usual oscillations around the fair rate of
500KBit/s. PCC’s behavior is nearly perfect, with an average rate
that closely matches the fair rate and an on-off ratio of two to one.
Naturally, not all of the 32 PCC flows achieve exactly this ratio;
some stay on for more, some for less time.

While 64 flows in total may not be considered a high level of
statistical multiplexing, it suffices to render the overall network
conditions relatively independent of the behavior of a single flow.
Simulations with a higher number of flows result in very similar
behavior.

5.2 Intra-Protocol Fairness
Usually, it is desirable to evenly distribute the necessary off-

times over all PCC flows instead of severely penalizing only a few.
To examine PCC’s intra-protocol fairness, a simulation setup simi-
lar to the previous one was used, yet the number of concurrent PCC
and TCP flows varied between 2 and 128. The probability density
function of the throughput distribution from these simulations is
shown in Figure 6. As expected, the throughput range is larger for
PCC. The coefficient of variation (standard deviation over mean)
for PCC throughput is 15% compared to a TCP coefficient of vari-
ation of only about 3%.

0

0.2

0.4

0.6

0.8

1

0 250 500 750 1000

F
ra

ct
io

n
of

 F
lo

w
s

Average Throughput (KBit/s)

TCP
PCC

Figure 6: Distribution of Flow Throughput

This results from the time frame for changes in the states of the
PCC flows being 60s instead of a few RTTs for TCP flows. There
is a direct tradeoff between the parameter T and the intra-protocol

fairness. Long on-times, achieved by a large T , are desirable for
many applications but they are offset by a decrease in intra-protocol
fairness as other PCC flows may be suspended for a long period of
time. Taken to the extreme, for very large T flows may stay on for
the whole duration of the session, or they are not permitted at all,
leading to a form of admission control scheme.

5.3 Responsiveness
In addition to inter- and intra-protocol fairness, sufficient respon-

siveness of a flow to changes in the network conditions is impor-
tant to ensure acceptable protocol behavior. TCP adapts almost
immediately to an increase in congestion (manifest in the form of
packet loss). Through the continuous evaluation at timescales of
less than T , as described in Section 3.5, PCC can react nearly as
fast as TCP to increased congestion, however, it will react to im-
proved network conditions on a timescale of T . Figure 7 depicts
the average throughput of 32 PCC flows, again with parameter T
set to 60s, and 32 TCP flows. A rather dynamic network environ-
ment was chosen where the loss rate increased abruptly from 2.5%
to 5% from time 200s to 300s and from time 400s to 420s.

0

100

200

300

400

500

600

700

800

100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t [

K
B

it/
s]

Time [s]

avg. TCP
avg. PCC

Figure 7: Loss Bursts

When the loss rate changes at time 200s, PCC does not adapt as
fast as TCP but still achieves an overall average rate that is quite
close to the TCP rate after only a few seconds. 60 seconds later
we can see a little spike in the average PCC rate, resulting from the
PCC flows that reenter the protected time to probe for bandwidth
once their off-time is over. With a randomized offset as mentioned
in Section 3.4, this spike can be avoided. Since the loss rate is still
high at that time, the average PCC rate once again settles at the ap-
propriate TCP-friendly rate shortly thereafter. As soon as the loss
rate is reduced to its original value, the probability that suspended
flows reentering the protected time will immediately be suspended
again (and the probability that the random experiment of flows in
the on-state will fail) decreases. Thus, after time 300s, the random
experiments of more and more flows succeed, until about 50 sec-
onds later the TCP-friendly rate is reached again. Although PCC
reacts more slowly than TCP, the average throughput of TCP and
PCC up to time 350s is very similar. In contrast to long periods
with a high loss rate, short loss spikes (or in general a very high
variability in the network conditions) hurt PCC performance much
more than TCP performance. When the loss rate increases again
at time 400s, suspended PCC flows will stay in the off-state for at
least 60s, while the actual congestion persists for only 20s. From
the time the congestion ends until the time the PCC flows are al-
lowed to reenter the protected time, TCP throughput is consider-
ably higher than PCC throughput. However, we can also see from
the graph that during periods of congestion PCC throughput does
not quite drop to the level of TCP throughput but remains slightly

higher. In the section about PCC throughput for different applica-
tion sending rates we will analyze this effect in more detail.

5.4 Varying Off Times
As discussed in the protocol section, the parameter T plays a

major role in terms of usability of PCC and with respect to proto-
col fairness. To analyze the impact of the parameter, we set up a
simulation scenario with 32 PCC and TCP flows over a common
bottleneck of 32 MBit/s with a PCC application rate of 750 KBit/s.
An additional 32 TCP flows are started every 200 seconds and stay
on for 100 seconds for the whole duration of the experiment of
1000 seconds to introduce changes in the network conditions and
force PCC to adjust the number of PCC flows.

 0

 100

 200

 300

 400

 500

 5 10 20 40 80 160 320 640

A
ve

ra
ge

 T
hr

ou
gh

pu
t [

K
B

it/
s]

Off Time [s]

TCP
PCC

Figure 8: PCC with Different Off Times

Figure 8 shows TCP and PCC throughput and throughput vari-
ance for different T , averaged over a number of experiments. When
T is low, the frequent protected times of PCC hurt TCP perfor-
mance. The larger T gets, the less often PCC flows restart with a
new protected time and the more likely it is that PCC flows cannot
immediately make use of improved network conditions, since flows
are suspended for longer periods of time. For T � 160, the latter
effect outweighs the former and PCC throughput drops below TCP
throughput.4 Furthermore, large values for T reduce intra-protocol
fairness as evidenced by a higher throughput variance of PCC.

5.5 Fairness at Different Application Sending
Rates

Ideally, no PCC flows would be suspended as long as the PCC
application sending rate is below the TCP-friendly rate. For higher
application sending rates the average PCC rate should remain at
exactly the fair rate through the use of the random experiments. In
Figure 9 we notice that an average PCC rate of exactly the fair rate
is not reached when the application sending rate equals the fair rate
but for an application sending rate that is about 25% higher. The
latter effect can be explained by PCC’s susceptibility to dynamic
network conditions. TCP’s typical sawtooth-like sending rate re-
sults in variations in the network conditions which unduly cause
suspension of PCC flows. When we compare the average PCC
throughput to TCP throughput for high PCC application sending
rates, we find that PCC throughput and thus PCC’s aggressiveness
continues to increase with the application sending rate once the fair
rate has been reached.
4This value for T is not fixed for all network conditions but de-
pends on the particular simulation setup (i.e., topology, number of
flows, and buffer size at the bottleneck).

0

50

100

150

200

0 50 100 150 200 250 300

A
ve

ra
ge

 R
at

e
[%

 o
f F

ai
r

R
at

e]

PCC Application Sendrate [% of Fair Rate]

Ideal
PCC

TCP Model

Figure 9: Comparison with Estimated TCP-Friendly Rate

The effect of increased aggressiveness at higher application send-
ing rates can be attributed to the TCP model used by PCC. As stated
in [8], the TCP model is based on the so-called loss event rate. A
loss event occurs when one or more packets are lost within a round-
trip time, and the loss event rate is consequently defined as the ratio
of loss events to the number of packets sent. The denominator of
the loss-event rate increases as more and more packets are sent dur-
ing a round-trip time due to a higher application sending rate. At
the same time, the number of loss events does not increase to the
same extent since more and more lost packets are aggregated to a
single loss event. An in-depth analysis of this effect can be found
in [9]. When relating the estimated TCP-friendly rate at different
application sending rates to the average PCC rate achieved in these
simulations, it becomes obvious that PCC’s aggressiveness is not
caused by PCC’s congestion control mechanism but by the depen-
dence of the TCP model on the measurement of the loss event rate
at sending rates close to the actual TCP rate. If the measurement is
performed at a sending rate that is much higher or lower than the
rate of a TCP flow, the resulting loss event rate may be different
from the one experienced by TCP.

5.6 PCC with Low Levels of Statistical Multi-
plexing

As stated in Section 3.2, PCC is suitable for environments where
the number of PCC flows is sufficiently high or PCC throughput
represents only a small fraction of overall throughput at the bottle-
neck link. By continuously monitoring the loss rate, a PCC flow
should be able to tell whether switching it on significantly changed
the network conditions and thus the above requirements are not
met. To analyze PCC behavior in such an environment, we chose
the following simulation setup. Four PCC flows and four TCP flows
compete for the same bottleneck link with a capacity of 2 MBit/s.
The application rate is set to 500 KBit/s, so that the PCC flows
alone are able to completely fill the link and a fair resource distri-
bution is reached for two PCC flows in the on state.

Figure 10 depicts cumulative PCC and TCP throughput as well
as the overall loss rate at the bottleneck. Averaged over the sim-
ulation time, PCC and TCP achieve about the same throughput.
About half the time, a fair bandwidth distribution is achieved. For
most of the other half of the time, either one or three PCC flows
are on. Only for a very short period of time does PCC occupy the
link completely before backing off a few seconds later. Whenever
a new PCC flow is switched on, we can observe a distinct increase
in the loss rate at the bottleneck. Thus, loss monitoring would help

 0

 500

 1000

 1500

 2000

 2500

T
hr

ou
gh

pu
t [

K
B

it/
s]

sum of TCP
sum of PCC

 0

 0.04

 0.08

 0.12

 0.16

 0 100 200 300 400 500 600 700 800

Lo
ss

 R
at

e

Time [s]

Figure 10: Throughput and Loss Rate

to detect that traffic conditions are determined to a large degree by
the PCC flows.

When running the same experiments with a higher number of
TCP flows, the PCC flows only have a marginal effect on the net-
work conditions and do not harm the TCP flows even if more than
the ideal number of PCC flows are on at some point in time. If the
number of PCC flows increases, the probability that far too many
flows are on at a certain point in time is very small. Even more so,
if many PCC flows compete with few TCP flows, the large vari-
ations in throughput caused by TCP’s AIMD congestion control
cause more than the fair number of PCC flows to be suspended, as
discussed in Section 5.3.

5.7 PCC Fairness for Different Combinations
of Flows

Figure 11 shows the average throughput achieved by PCC for
different combinations of PCC and TCP flows when the fair rate is
500KBit/s and the application sending rate is 750KBit/s. Generally,
PCC throughput increases with the number of TCP flows since the
higher the level of statistical multiplexing, the lower the variations
in the network conditions that degrade PCC performance. This ef-
fect is the more pronounced, the lower the number of PCC flows
is.

 2
 4

 8
 16

 32
 64

Number of PCC flows

 2
 4

 8
 16

 32
 64

Number of TCP flows

 0

 250

 500

 750

Throughput [KBit/s]

 2
 4

 8
 16

 32
 64

Number of PCC flows

 2
 4

 8
 16

 32
 64

Number of TCP flows

 0

 250

 500

 750

Throughput [KBit/s]

Figure 11: Average PCC Throughput for Different Numbers of
Flows

For a more detailed analysis of PCC and further network simu-
lations we refer the reader to [5].

6. CONCLUSIONS
In this paper we presented a congestion control scheme for non-

adaptable flows. This type of flow carries data at a rate determined
by the application. It cannot be adapted to the level of congestion
in the network in any way other than by suspending the entire flow.
Existing congestion control approaches are thus not viable for non-
adaptable flows.

We proposed to perform congestion control for these flows by
suspending individual flows in such a way that the aggregation of
all non-adaptable flows on a given link behaves in a TCP-friendly
manner. The decision about suspending a given flow is made by
means of random experiments.

In a series of simulations we have shown that PCC displays a
TCP-friendly behavior under a wide range of network conditions.
We further identified the conditions under which PCC throughput
does not correspond to the TCP-friendly rate. To some extent, these
effects on the average PCC sending rate cancel each other out. Nev-
ertheless, they may degrade PCC performance.

We are currently investigating a method to perform a more accu-
rate estimate of the fair TCP rate if the loss event rate is measured at
a sending rate that differs considerably from the TCP-friendly rate.
Furthermore, we plan to evaluate if and how PCC can complement
congestion control for multicast transmissions.

Acknowledgments
We would like to thank Jon Crowcroft, Sally Floyd, Kostas Pentik-
ousis, Wolfgang Effelsberg, and the anonymous reviewers for their
helpful comments on the paper.

7. REFERENCES
[1] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and

W. Weiss. An architecture for differentiated services. RFC
2475, IETF Network Working Group, 1998.

[2] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin.
Resource reservation protocol (RSVP) – version 1 functional
specification. RFC 2205, IETF Network Working Group,
1997.

[3] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann,
A. Helmy, P. Huang, S. McCanne, K. Varadhan, Y. Xu, and
H. Yu. Advances in network simulation. IEEE Computer,
33(5):59–67, May 2000.

[4] J. Byers, M. Frumin, G. Horn, M. Luby, M. Mitzenmacher,
A. Roetter, and W. Shaver. FLID-DL: Congestion control for
layered multicast. In Proc. Second International Workshop
on Networked Group Communication (NGC 2000), pages
71–81, Palo Alto, CA, USA, Nov. 2000.

[5] J. P. Damm. Probabilistic congestion control for
non-adaptable flows. Master’s thesis, University of
Mannheim, Apr. 2001.

[6] S. Floyd and K. Fall. Promoting the use of end-to-end
congestion control in the Internet. IEEE/ACM Transactions
on Networking, 7(4):458–472, Aug. 1999.

[7] S. Floyd, M. Handley, J. Padhye, and J. Widmer.
Equation-based congestion control for unicast applications.
In Proc. ACM SIGCOMM, pages 43 – 56, Stockholm,
Sweden, Aug. 2000.

[8] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose.
Modeling TCP Reno performance: a simple model and its

empirical validation. IEEE/ACM Transactions on
Networking, 8(2):133–145, Apr. 2000.

[9] S. Ramesh and I. Rhee. Issues in TCP model-based flow
control. Technical Report TR-99-15, Department of
Computer Science, NCSU, 1999.

[10] I. Rhee, V. Ozdemir, and Y. Yi. TEAR: TCP emulation at
receivers - flow control for multimedia streaming. Technical
report, Department of Computer Science, North Carolina
State University, Apr. 2000.

[11] L. Rizzo. pgmcc: A TCP-friendly single-rate multicast
congestion control scheme. In Proc. ACM SIGCOMM, pages
17 – 28, Stockholm, Sweden, Aug. 2000.

[12] J. Widmer, R. Denda, and M. Mauve. A survey on
TCP-friendly congestion control. Special Issue of the IEEE
Network Magazine ”Control of Best Effort Traffic”,
15(3):28–37, May/June 2001.

