
REIHE INFORMATIK
2/2001

A Survey on TCP-Friendly Congestion Control
(extended version)

Jörg Widmer, Robert Denda, and Martin Mauve
Universität Mannheim

Praktische Informatik IV
L15, 16

D-68131 Mannheim





A Survey on TCP-Friendly Congestion Control (extended version)

Jörg Widmer1, Robert Denda12, and Martin Mauve1

1 Praktische Informatik IV, University of Mannheim, Germany,
fwidmer,denda,mauveg@pi4.informatik.uni-mannheim.de,

2 ENDITEL Endesa Ingenierı́a de Telecomunicaciones,
Departamento de I+D, Sevilla, Spain,

rdenda@enditel.es,

Abstract— New trends in communication, in particular the de-
ployment of multicast and real-time audio/video streaming appli-
cations, are likely to increase the percentage of non-TCP traffic in
the Internet. These applications rarely perform congestion control
in a TCP-friendly manner, i.e., they do not share the available band-
width fairly with applications built on TCP, such as web browsers,
FTP- or email-clients. The Internet community strongly fears that
the current evolution could lead to a congestion collapse and star-
vation of TCP traffic. For this reason, TCP-friendly protocols are
being developed that behave fairly with respect to co-existent TCP
flows. In this article, we present a survey of current approaches to
TCP-friendliness and discuss their characteristics. Both unicast and
multicast congestion control protocols are examined, and an evalua-
tion of the different approaches is presented.

Keywords: congestion control, TCP-friendliness, TCP,
multicast, fairness

1 Motivation and Outline

In the Internet, packet loss can occur as a result of trans-
mission errors, but also, and most commonly, as a result of
congestion. TCP’s end-to-end congestion control mecha-
nism reacts to packet loss by reducing the number of out-
standing unacknowledged data segments allowed in the
network. TCP flows with similar round-trip times (RTTs)
that share a common bottleneck reduce their rates so that
the available bandwidth will be, in the ideal case, dis-
tributed equally among them.

Not all Internet applications use TCP and therefore do
not follow the same concept of fairly sharing the avail-
able bandwidth. Thus far, the undesired effect of the un-
fairness of these non-TCP applications has not had a
heavy impact since most of the traffic in the Internet
uses TCP-based protocols such as HTTP, SMTP or FTP.
However, the number of audio/video streaming applica-
tions such as Internet audio players, IP-telephony, video
conferencing and similar types of real-time applications
is constantly growing and it is feared that one conse-
quence will be an increase in the percentage of non-
TCP traffic. Since these applications commonly do not in-
tegrate TCP-compatible congestion control mechanisms,
they treat competing TCP-flows in an unfair manner: upon
encountering congestion, all contending TCP-flows re-
duce their data rates in an attempt to dissolve the conges-
tion, while the non-TCP flows continue to send at their

original rate. This highly unfair situation can lead to star-
vation of TCP-traffic, or even to a congestion collapse [1],
[2], which describes the undesirable situation where the
available bandwidth in a network is almost exclusively oc-
cupied by packets that are discarded because of congestion
before they reach their destination.

For this reason, it is desirable to define appropriate
rate-adaptation rules and mechanisms for non-TCP traffic
that are compatible with the rate-adaptation mechanism of
TCP. These rate-adaptation rules should make non-TCP
applications TCP-friendly, and lead to a fair distribution
of bandwidth.

In this paper, we present a survey on TCP-friendly
congestion control schemes to summarize the state-of-
the-art in this field of research and motivate further re-
search on TCP-friendliness. In Section 2, we define TCP-
friendliness and in Section 3, we outline the design space
for TCP-friendly congestion control. Existing single-rate
protocols are discussed in Section 4, and a detailed sur-
vey of multi-rate protocols is given in Section 5. Section 6
contains an evaluation of the strengths and weaknesses of
the mechanisms presented. In Section 7 we point to open
problems and issues for future research and in Section 8,
we give some concluding remarks.

2 TCP and TCP-Friendliness

TCP is a connection-oriented unicast protocol that offers
reliable data transfer as well as flow and congestion con-
trol. TCP maintains a congestion window that controls
the number of outstanding unacknowledged data packets
in the network. Sending data consumes slots in the win-
dow of the sender and the sender can send packets only as
long as free slots are available. When an acknowledgment
(ACK) for outstanding packets is received, the window is
shifted so that the acknowledged packets leave the window
and the same number of free slots becomes available.

On start-up, TCP performs slowstart, during which the
rate roughly doubles each round-trip time to quickly gain
its fair share of bandwidth. In steady state, TCP uses
an additive increase, multiplicative decrease mechanism
(AIMD) to detect additional bandwidth and to react to
congestion. When there is no indication of loss, TCP in-



2

creases the congestion window by one slot per round-trip
time. In case of packet loss indicated by a timeout, the
congestion window is reduced to one slot and TCP reen-
ters the slowstart phase. Packet loss indicated by three du-
plicate ACKs results in a window reduction to half of its
previous size.

2.1 Modeling TCP Throughput

The throughput of TCP depends mainly on the parame-
ters round-trip time tRTT , retransmission timeout value
tRTO , segment size s, and the packet loss rate p. Using
these parameters, an estimate of TCP’s throughput can be
derived. A basic model that approximates TCP’s steady-
state throughput T is given by Equation 1 [1]. This model
is a simplification in that it does not take into account TCP
timeouts.

Equation 2, presented in [3], gives an example of a more
complex model of TCP throughput; b is the number of
packets acknowledged by each ACK and Wm is the max-
imum size of the congestion window. Unlike the model
presented by Equation 1, the complex model takes into ac-
count rate reductions due to TCP timeouts. Thus, it mod-
els TCP more accurately in an environment with high loss
rates.

Note that both models assume that the round-trip time
and the loss rate are independent of the estimated rate (i.e.,
they do not take into account that changing the rate can af-
fect the round-trip time and the loss rate). They work well
in environments with a high level of statistical multiplex-
ing such as the Internet, but care has to be taken when they
are used as part of a protocol’s control loop when only
few flows share a bottleneck link. In that case, changes to
the sending rate alter the conditions at the bottleneck link,
which in turn determine the sending rate through the equa-
tion. Such a feedback loop can render the results of both
equations invalid.

2.2 TCP-Friendliness

In [1], non-TCP flows are defined as TCP-friendly when
“their long-term throughput does not exceed the through-
put of a conformant TCP connection under the same con-
ditions”. We prefer to use a slightly more restrictive def-
inition of the term TCP-friendliness. The definition used
throughout this paper focuses on the effect that a non-
TCP flow has on competing TCP flows rather than on the
throughput of the non-TCP flow:

TCP-friendliness for Unicast: A unicast-flow is consid-
ered TCP-friendly when it does not reduce the long-term
throughput of any co-existent TCP flow more than another
TCP flow on the same path would do under the same net-
work conditions.

TCP-friendliness for Multicast: A multicast-flow is de-
fined as TCP-friendly when for each sender-receiver pair,
the multicast-flow has the property of being unicast TCP-
friendly.

It should be noted that there is an ongoing debate on the
correct definition of the term TCP-friendliness for multi-
cast. An alternative to the definition given above is to al-
low multicast flows to use a greater amount of bandwidth
than unicast flows, since they serve multiple receivers. In
[4], the term bounded fairness is introduced to define a
situation where the following equation holds true:

a � rTCP � r � b � rTCP (3)

where r is the rate of the multicast flow on the bottle-
neck link, rTCP is the rate a TCP flow would have under
the same conditions, and a as well as b are functions of the
number of receivers of the flow. For b = 1 the two defini-
tions are equivalent. While the latter approach is perfectly
valid, we prefer the definition that is more rigid in the pro-
tection of competing TCP flows.

With the above definition, TCP-friendliness ensures that
co-existing TCP flows are not treated unfairly by non-TCP
flows. Note, however, that this does not necessarily mean
that all TCP and TCP-friendly flows on a bottleneck link
receive the same throughput. Even competing flows that
use only TCP for congestion control will often not re-
ceive the same amount of bandwidth. For example, TCP-
flows with different round-trip times, or a different number
of bottlenecks nodes will transmit at different rates (see,
e.g., [5]).

3 Classification of Congestion Control
Schemes

Congestion control schemes can be classified with respect
to a multitude of characteristics. In the following, we will
briefly discuss various possible classification schemes for
TCP-friendly approaches.

3.1 Window-Based versus Rate-Based

One possible classification criterion for TCP-friendly
schemes is whether they adapt their offered network load
based on a congestion window or on their transmission
rate.

Algorithms that belong to the window-based category
use a congestion window at the sender or at the receiver(s)
to ensure TCP-friendliness. Similar to TCP, each packet
transmitted consumes one slot in the congestion window,
while each packet received or the acknowledgment of a
packet received frees one slot. The sender is allowed to
transmit packets only when a free slot is available. The
size of the congestion window is increased in the absence



3

T (tRTT ; s; p) =
c � s

tRTT �
p
p

, where c is a constant value commonly approximated as 1:5
p
2=3 (1)

T (tRTT ; tRTO ; s; p) = min

0
BB@Wm � s

tRTT
;

s

tRTT

q
2bp

3
+ tRTO min

�
1; 3

q
3bp

8

�
p(1 + 32p2)

1
CCA (2)

of congestion indications and decreased when congestion
occurs.

Rate-based congestion control achieves TCP-friendli-
ness by dynamically adapting the transmission rate ac-
cording to some network feedback mechanism that indi-
cates congestion. It can be subdivided into simple AIMD
schemes and model-based congestion control. Simple
AIMD schemes mimic the behavior of TCP congestion
control. This results in a rate that displays the typical short
term sawtooth like behavior of TCP. This makes simple
AIMD schemes unsuitable for continuous media streams.
Model-based congestion control uses a TCP model such
as the one presented in [3] instead of a TCP-like AIMD
mechanism. By adapting the sending rate to the aver-
age long-term throughput of TCP, model-based congestion
control can produce much smoother rate changes that are
better suited for the aforementioned type of traffic. Such
schemes do not mimic TCP’s short-term sending rate but
are still TCP-friendly over longer time scales. However,
the congestion control mechanism may not resemble TCP
congestion control and great attention has to be paid to
the rate adjustment mechanism to ensure fair competition
with TCP or other flows.

3.2 Unicast versus Multicast

TCP-friendliness is desirable for both unicast and multi-
cast traffic. However, the design of good multicast con-
gestion control protocols is by far more difficult than the
design of unicast protocols. Multicast congestion control
schemes ideally should scale to large receiver sets and be
able to cope with heterogeneous network conditions at the
receivers. For example, if for all receivers the sender trans-
mits packets at the same rate, care has to be taken as to how
the sending rate is decreased in case of network conges-
tion. This is non-trivial, since in large multicast sessions
receivers may experience uncorrelated loss. It is therefore
likely that most of the transmitted packets are lost to at
least one receiver. If the sender responded to each of these
losses by decreasing the congestion window, the transmis-
sion would likely stall after a certain length of time. This
problem is known as the loss path multiplicity problem [6].
Whenever rate adjustment decisions are based not on con-
gestion information from a specific receiver but on the
overall congestion information present in the whole distri-

bution tree, protocol performance can suffer considerably
if the protocol has not been designed correctly.

Golestani and Sabnani discuss several important aspects
of congestion control for multicast in a general fashion [7].
They investigate the different properties of rate-based and
window-based approaches. In particular they show that
window-based congestion control can be TCP-friendly
without knowing the round-trip time, whereas rate-based
congestion control does need this information in order to
be TCP-friendly. This is an important insight, since round
trip times are difficult to obtain in a scalable fashion for
multicast communication without support from the net-
work.

3.3 Single-rate versus Multi-rate

A common criterion for classifying TCP-friendly multi-
cast congestion control protocols is whether they oper-
ate at a single rate or use a multi-rate approach. Obvi-
ously, unicast transport protocols are confined to single-
rate schemes. In single-rate schemes, data is sent to all
receivers at the same rate. This limits the scalability of the
mechanism, since all receivers are restricted to the rate that
is TCP-friendly for the bottleneck receiver.

Multi-rate congestion control protocols allow for a
more flexible allocation of bandwidth along the different
network paths. Such schemes scale better to large receiver
sets where increased heterogeneity among receivers is to
be expected. A typical approach to multi-rate congestion
control is to use layered multicast: a sender divides the
data into several layers and transmits them to different
multicast groups. Each receiver can individually select to
join as many groups as permitted by the bandwidth bot-
tleneck between that receiver and the sender. The more
groups a receiver joins, the better is the quality of its re-
ception. For a video transmission an increased number of
received layers may improve the video quality while for
reliable bulk data transfer additional layers may decrease
the transfer time.

With layered multicast, congestion control is performed
indirectly by the group management and routing mecha-
nisms of the underlying multicast protocol. In order for
this mechanism to be effective, it is crucial to coordinate
join and leave decisions of receivers behind a common
bottleneck: if only some receivers leave a layer while oth-



4

ers stay subscribed, no pruning is possible and congestion
cannot be reduced. In addition, receivers do not make ef-
ficient use of the multicast layers when they are not sub-
scribed to a layer that is already present in their sub-part
of the routing tree. They could receive data at a higher rate
at no additional cost. Therefore receivers that share a bot-
tleneck link should synchronize their decisions to join and
leave layers. The leave latency is another issue of concern:
pruning of the multicast tree upon receipt of leave mes-
sages for a layer can take considerable time on the order
of several seconds.

3.4 End-to-end versus Router-supported

Many of the TCP-friendly schemes proposed are designed
for best-effort IP networks that do not provide any addi-
tional router mechanisms to support the protocols. Thus,
they can readily be deployed in today’s Internet. These
schemes are called end-to-end congestion control. They
can be further separated into sender-based and receiver-
based approaches.

In sender-based approaches the sender uses information
about the network congestion and adjusts the rate or win-
dow size to achieve TCP-friendliness. The receivers pro-
vide only feedback while the responsibility of adjusting
the rate lies solely with the sender.

Receiver-driven congestion control is usually used to-
gether with layered congestion control approaches. Here,
the receivers decide whether to subscribe or to unsubscribe
from additional layers, based on the congestion situation
of the network.

The design of congestion control protocols and partic-
ularly the fair sharing of resources can be considerably
facilitated by placing intelligence in the network (e.g., in
routers or separate agents). Congestion control schemes
that rely on additional functionality in the network are
called router supported. Particularly multicast protocols
can benefit from additional network functionality such as
feedback aggregation, hierarchical round-trip time mea-
surements, management of (sub-)groups of receivers, or
modification of the routers’ queuing strategies. Generic
Router Assist (GRA) [8], for instance, is a recent initia-
tive that proposes general mechanisms located at routers
to assist transport control protocols, which would greatly
ease the design and implementation of effective conges-
tion control protocols.

Furthermore, end-to-end congestion control has the dis-
advantage that it relies on the collaboration of the end-
systems. Experience in the current Internet has shown that
this cannot always be assumed: greedy users or applica-
tions may use non-TCP-friendly mechanisms to gain more
bandwidth. As discussed by Floyd and Fall in [1], some
form of congestion control should be enforced by routers
in order to prevent a congestion collapse. The authors

present router mechanisms to identify flows that should be
regulated: for instance, when a router discovers a flow that
does not exhibit TCP-friendly behavior, the router might
drop the packets of that flow with a higher probability
than it drops the packets of TCP-friendly flows. While ul-
timately a fair sharing of resources in the presence of unre-
sponsive or non-TCP-friendly flows can only be achieved
with router support, this mechanism is difficult to deploy,
as changes to the Internet infrastructure take time and are
costly in terms of money and effort.

3.5 Classification Scheme

In the following sections, we use the scheme shown in Fig-
ure 1 to classify the different approaches. This classifica-
tion distinguishes between single-rate and between multi-
rate congestion control at the top-level and rate-based ver-
sus window-based congestion control at the second level.

Single-rate
(section 4)

Multi-rate
(section 5)

Rate-based
(section 4.1) (section 5.1)

Rate-basedWindow-based
(section 4.2) (section 5.2)

Window-based

multicastunicast

TCP-Friendly
Congestion Control

MTCP
NCA
pgmcc

RainbowRAP
LDA+
TFRCP
TFRC
LTRC
TRAM
TEAR

LTS

FLID-DL
RLC

TopoSense
LVMR

TFRP
MLDA
PLM

Fig. 1. Classification Scheme for TCP-friendly Protocols.

4 Single-Rate Congestion Control Protocols

In this section, a selection of recent single-rate congestion
control protocols is presented.

4.1 Rate-Based Approaches

Many rate-based congestion control protocols mimic
TCP’s additive increase-multiplicative decrease behavior
to achieve TCP-fairness, while others implicitly or explic-
itly adjust their rate according to a model of TCP traffic.
A very obvious approach to TCP-friendly congestion con-
trol is to directly apply TCP’s congestion control mech-
anism, but without the associated reliability mechanism.
Early work in this area was presented in [9], where this ap-
proach is used to adjust the rate of a unicast video stream
in order to adequately react to congestion.



5

4.1.1 RAP

The Rate Adaption Protocol (RAP) presented in [10] is a
simple AIMD scheme for unicast flows. Each data packet
is acknowledged by the receiver. The ACKs are used to
detect packet loss and infer the round-trip time. When the
protocol experiences congestion it halves the sending rate.
In periods without congestion, the sending rate increases
by one packet per round-trip time, thus mimicking the
AIMD behavior of TCP. The decisions on rate increase
or decrease are made once per round-trip time. To provide
additional fine-grained delay-based congestion avoidance,
the ratio of a short-term round-trip time average and a
long-term round-trip time average is used to modify the
inter-packet gap between consecutive data packets. These
fine-grained rate adjustments result in a smoother sending
rate.

RAP achieves rates similar to TCP in an environment
where TCP experiences no or few timeouts since RAP’s
rate reductions resemble TCP’s reaction to triple duplicate
ACKs. However, RAP does not take timeouts into account
and is therefore more aggressive when TCP’s throughput
is dominated by timeout events.

4.1.2 LDA+

Unlike many of the other schemes, the Loss-Delay Based
Adaption Algorithm LDA+ [11] does not devise its own
feedback mechanism to control the sending rate but relies
solely on the RTCP feedback messages provided by the
Real Time Transport Protocol (RTP) [12]. While LDA+
is essentially an AIMD congestion control scheme, it uses
some interesting additional elements. The increase and de-
crease factors for AIMD are dynamically adjusted to the
network conditions. An estimate of the bottleneck band-
width is obtained using packet pairs.1 The amount of ad-
ditive increase is then determined as the minimum of three
independent increase factors to ensure that (1) flows with
a low bandwidth can increase their rate faster than flows
with a higher bandwidth, (2) flows do not exceed the esti-
mated bottleneck bandwidth, and (3) flows do not increase
their bandwidth faster than a TCP connection. If receivers
report loss, the sending rate is decreased by multiplying
by the factor 1�

p
l, where l is the loss rate. Additionally,

the rate is reduced at most to the rate given by the TCP
model as described in Equation 2. Using the maximum
of the AIMD rate and the equation rate may result in a
long-term average that exceeds the average rate of the two
separate schemes and can be more aggressive than TCP.
While LDA+ is designed only for unicast communication,
a protocol variant called MLDA can be used for multicast
environments. MLDA is discussed in Section 5.1.6.

1With packet pairs, the time interval between the receipt of two packets
that were sent back-to-back is used as a hint of the current maximum rate
for a flow.

Simulations and network experiments the authors con-
ducted show that LDA+ competes fairly with TCP in the
investigated environments. The authors claim that the slow
rate increase of LDA+ compensates for the fact that the
rate is at most decreased to the throughput estimate of the
complex TCP model. Using an existing report mechanism
facilitates the deployment of LDA+. Furthermore, LDA+
adapts its rate increase to prevent overshooting the bot-
tleneck bandwidth. However, RTCP reports are generated
infrequently (usually within several seconds). This makes
LDA+ slow to react to changes in the network conditions.
Furthermore, the smallest loss rate that standard RTCP can
report is limited. In environments with a lower (but pos-
itive) loss rate, RTCP reports zero loss and LDA+ may
claim more than its fair share of bandwidth.

4.1.3 TFRCP

The Model Based TCP-Friendly Rate Control Protocol
(TFRCP), described in [13], uses the complex model for
TCP (2) to adjust its sending rate in a TCP-friendly man-
ner. Time is divided into rounds with a fixed duration
and the model parameters are recomputed for each round.
When no packets are lost during a round, the sending rate
is doubled in the next round. Otherwise, the sending rate
is set to the rate given by the TCP model. In this protocol,
each data packet must be acknowledged by the receiver.
The protocol relies strongly on the duration of the recom-
putation interval. Since this parameter is static, the pro-
tocol does not adapt well to heterogeneous network con-
ditions. Doubling the sending rate in an interval without
losses increases the rate more aggressively than TCP does.
This can not only lead to unfairness against TCP but also
to rate oscillations where the doubling causes loss, the rate
is reduced to the equation rate (below the bottleneck band-
width), which results in few or zero losses causing a dou-
bling of the rate, and so on.

4.1.4 TFRC

The TCP-Friendly Rate Control Protocol (TFRC) [14]
evolved from the TFRCP protocol. It is specified for uni-
cast communication although with some modifications it
can be adapted to multicast. Similar to TFRCP it adjusts its
sending rate based on the complex TCP equation but uses
more sophisticated methods to gather the necessary pa-
rameters. Several requirements for a loss rate estimator are
formulated and the authors settle on the Average Loss In-
terval method which best fulfills these requirements. The
loss rate is measured in terms of loss intervals, spanning
the number of packets between consecutive loss events.
A certain number of loss intervals is averaged, using de-
caying weights so that old loss intervals contribute less
to the average. The loss rate is calculated as the inverse
of the average loss interval size. The authors provide ad-



6

ditional mechanisms to prevent the loss rate from reacting
too strongly to single loss events and to ensure that the loss
rate adapts quickly to long intervals without any losses.
The round-trip time is measured by the standard method
of feeding back timestamps to the sender.

Immediately after start-up, the sender goes into a slow-
start phase similar to TCP slowstart to quickly increase
the rate to a fair share of the bandwidth. TFRC slowstart
is terminated with the first loss event. Once per round-trip
time the TFRC receiver updates its parameters and sends a
state report to the sender. The sender then computes a new
fair rate from these parameters and adjusts the sending rate
accordingly. To improve protocol performance in environ-
ments that do not fulfill the assumptions of the complex
TCP equation, TFRC supports additional delay-based con-
gestion avoidance by adjusting the inter-packet gap (i.e.,
the time interval between consecutive data packets).

A major advantage of TFRC is that is has a relatively
stable sending rate while still providing sufficient respon-
siveness to competing traffic.

4.1.5 LTRC

The Loss Tolerant Rate Controller for Reliable Multicast
(LTRC) [15] uses an AIMD scheme, but does not directly
copy TCP congestion control. Loss threshold values are
used to determine whether the sender is allowed to in-
crease its rate, or should maintain or decrease the rate.
Rate modifications are performed periodically based on
a timer value that corresponds to the time it takes to de-
tect a loss. To avoid the difficult task of determining the
round-trip time to the receivers, the authors propose to use
a pre-configured value. In addition, the maximum sending
rate is limited to the rate given by the simple TCP model
(see Equation 1) for the worst receiver. Since a large num-
ber of parameters have to be preset and are not automat-
ically adjusted during the multicast session, this protocol
is not well suited for dynamic environments with chang-
ing network conditions. Receivers report the current loss
rate along with NACKs without a suppression mechanism
which can result in a NACK implosion at the sender. Fur-
thermore, the protocol suffers from the loss path multiplic-
ity problem [6].

4.1.6 TRAM

The Tree-based Reliable Multicast protocol (TRAM) [16]
forms a dynamic tree structure as a basis for reliable one-
to-many multicast transmissions. TRAM performs rate-
based traffic shaping to allow for smooth changes of the
sending rate between a preconfigured minimum and max-
imum rate. Congestion reports to the sender are generated
either by so-called repair heads, the inner nodes of the tree,
when their data cache occupancy exceeds a certain limit
or by receivers when they experience packet loss while

receiving a certain number of packets (a so-called ACK
window). Congestion reports for the same ACK window
are aggregated on the way to the sender at the repair heads.
Upon receiving a congestion report, the sender reduces the
current rate by half. In the absence of congestion reports,
the sending rate is increased by a fraction of the difference
of the current rate and the highest rate previously reached.

The fairness of the congestion control mechanism
clearly depends on parameters such as minimum and max-
imum rate and the size of the ACK window. Using preset
values may be inappropriate for some network conditions.
The authors give no clear evidence as to why their increase
mechanism based an a previously achieved rate is safe
to deploy. Like the previous congestion control scheme
TRAM suffers from the loss path multiplicity problem.

4.1.7 TEAR

TCP Emulation At Receivers (TEAR) [17] is a hybrid pro-
tocol that combines aspects of window-based and rate-
based congestion control. TEAR receivers calculate a fair
receive rate which is sent back to the sender, who then ad-
justs the sending rate. To this end, the receivers maintain
a congestion window that is modified similarly to TCP’s
congestion window. Since TCP’s congestion window is lo-
cated at the sender, a TEAR receiver has to try to deter-
mine from the arriving packets when TCP would increase
or decrease the congestion window size. Additive increase
and window reductions caused by triple duplicate ACKs
are easy to emulate. However, due to the lack of acknowl-
edgements, timeout events can be estimated only roughly.

In contrast to TCP, the TEAR protocol does not directly
use the congestion window to determine the amount of
data to send but calculates the corresponding TCP send-
ing rate. This rate is roughly a congestion window worth
of data per round trip time. To avoid TCP’s sawtooth-like
rate shape, TEAR averages the rate over an epoch, which
is defined as the time between consecutive rate reduc-
tion events. To prevent further unnecessary rate changes
caused by noise in the loss patterns, a smooth rate is deter-
mined by using a weighted average over a certain number
of epochs for the final rate. This value is then reported
to the sender, which adjusts the sending rate accordingly.
Since the rate is determined at the receivers and TEAR
refrains from acknowledging packets, it can be used for
multicast as well as for unicast communication, provided
a scalable scheme to determine the round-trip time and to
report the rates used in the multicast case. For multicast
congestion control, the TEAR sender has to adapt the rate
to the minimum of the rates reported by the receivers.

Due to the close modeling of TCP’s short-term behav-
ior, TEAR shows TCP-friendly behavior while avoiding
TCP’s frequent rate changes.



7

4.2 Window-Based Approaches

The domain of window-based unicast congestion control
is well covered by TCP. There are two main problems that
have to be solved in order to use window-based conges-
tion control for multicast. First, protocols should prevent
drop-to-zero of the rate due to the aforementioned loss
path multiplicity problem. The second problem is how to
free slots in the congestion window. Clearly it is not pos-
sible for the sender to receive acknowledgments for each
packet from each receiver, as this would cause an acknow-
ledgment implosion.

In the following we will present several window-based
congestion control approaches for multicast transmission.
In particular we will focus on how the two main problems
are solved for each.

4.2.1 Framework for Window-Based Congestion
Control

Golestani and Sabnani propose to use a window-based ap-
proach where each receiver keeps a separate congestion
window adjusted similarly to the congestion window of
TCP [7]. From the size of the window and the number
of outstanding packets each receiver calculates the highest
sequence number that it is able to receive without claiming
an unfair amount of bandwidth.

This information needs to be communicated to the
sender without causing a feedback implosion. As an ex-
ample of how this can be done, the authors show that a
tree structure formed by the receivers or other intermedi-
ate systems can be used to aggregate the information: each
node takes the minimum sequence number contained in all
incoming messages and forwards this sequence number to
its parent. When the aggregated information reaches the
sender, it is allowed to send packets up to the minimum
sequence number it has received. Each receiver maintains
its own congestion window, which circumvents the loss
path multiplicity problem.

The observations made by Golestani and Sabnani form
a theoretical background for window-based multicast con-
gestion control. They need to be concretized by actual al-
gorithms such as those that follow.

4.2.2 RLA and LPR

The Random Listening Algorithm (RLA) proposed by
Wang and Schwartz [4] extends TCP SACK by introduc-
ing some enhancements for multicast. For each receiver,
the multicast sender stores the smoothed round-trip time
and the measured congestion probability. A loss is de-
tected by the sender via identification of discontinuous ac-
knowledgements or via timeout. Based on these loss indi-
cations, the number of receivers n with a high congestion
probability is tracked. If congestion is detected, the win-
dow is halved in the following two cases: (1) if the previ-

ous window cut was made too long ago (the authors pro-
pose an interval of twice the moving average of the win-
dow size times the smoothed round-trip time of the corre-
sponding receiver) or (2) if a generated uniform random
number � is less than or equal to 1=n. When a packet has
been acknowledged by all receivers, the congestion win-
dow cwnd is incremented by 1=cwnd, identical to TCP.
A TCP-like retransmission scheme with fast-recovery is
also included in RLA. With the above mechanisms, RLA
avoids the loss path multiplicity problem, while achieving
statistical long-term fairness. In [4] it is demonstrated that
RLA is fair to TCP according to the definition of bounded
fairness (see Section 2.2).

Linear Proportional Response (LPR), proposed by
Bhattacharyya, Towsley and Kurose [18], is a probabilis-
tic loss indication filtering scheme that is an improvement
over the corresponding RLA mechanism. The probability
with which a multicast source reduces its congestion win-
dow size is proportional to the loss probability at the re-
ceiver; i.e., the window size is halved when � is greater
than Xi=

Pn

j=1Xj where Xi is the number of losses at re-
ceiver i. The LPR scheme achieves better fairness of mul-
ticast sessions towards competing unicast sessions than
does the window adjustment indication scheme of RLA.
Even though we are not aware of any extensive measure-
ments in real scenarios, the mathematical proofs and the
simulations in [18] give high evidence that when com-
bined with the window adjustment mechanism of RLA,
LPR achieves good TCP-friendliness.

4.2.3 MTCP

Multicast TCP (MTCP) [19] is a reliable multicast proto-
col that uses window-based congestion control to achieve
TCP-friendliness. MTCP groups the session participants
into a logical tree structure where the root of the tree is the
sender of the data. A parent in the logical tree structure
stores a received packet until receipt is acknowledged by
all of its children. Upon receiving a packet, a child (which
may be a parent for other participants) transmits an ac-
knowledgment to its parent using unicast.

To control congestion, MTCP requires that each parent
maintain two values: a congestion window and a transit
window. The size of the congestion window is managed
similarly to that of TCP, including slow-start and conges-
tion avoidance. The main differences to TCP are (1) that
the congestion window is only incremented when ACKs
from all children have been received and (2) that a packet
is immediately (re)transmitted to a child if it indicates via
a NACK that it has not yet received the packet. The size
of the congestion window is halved when any child reports
three consecutive NACKs or set to one when a timeout oc-
curs because a child has not acknowledged a packet at all.



8

The transit window keeps track of the amount of data that
the children of a parent node have not yet acknowledged.

With each ACK, a parent node transmits a congestion
summary to its own parent. This congestion summary con-
tains the minimum of its own congestion window size and
those reported by its children, as well as the maximum
of its own transit window size and those reported by its
children. The sender is then allowed to transmit the differ-
ence between the minimum congestion window size and
the maximum transit window size.

In MTCP, the loss path multiplicity problem is avoided
by means of the aggregation at the intermediate nodes.
Each node forwards the information about the bottleneck
link of its children to its parent. Therefore the sender
will receive information about the overall bottleneck link
rather than about uncorrelated packet loss. The main draw-
back to MTCP is its complexity and required setup of a
tree structure where each node has to perform package
storage, repair, and congestion monitoring functionality.

4.2.4 NCA and pgmcc

Nominee-based Congestion Avoidance (NCA) presented
in [20] and pragmatic general multicast congestion con-
trol (pgmcc) [21] are two approaches to congestion con-
trol that share the same fundamental idea: they select as
a group representative the bottleneck receiver with the
worst network connection. This receiver acknowledges ev-
ery packet received and thereby allows the sender to use a
TCP-style congestion control algorithm. It is important to
note that in this approach congestion control and packet
repair are treated independently of each other. Thus, the
approach can be used in combination with a large num-
ber of mechanisms that establish reliability, as well as for
unreliable data transmission.

The most challenging aspect of NCA and pgmcc is
how to select the group representative. In both approaches,
each receiver calculates the data rate at which it is able to
receive by using a simple TCP rate formula. This formula
takes into account the round-trip time and the loss rate ex-
perienced by the receiver. The information about the ac-
ceptable rate is conveyed back to the sender either piggy-
backed on NACKs (pgmcc) or accumulated in a tree struc-
ture of routers that always forward the report of the partic-
ipant with the lowest acceptable data rate (NCA). From
those reports the sender selects as the representative the
participant with the lowest acceptable rate and uses a TCP-
like congestion control mechanism to this participant.

This approach seems very promising, since it closely
mimics the behavior of unicast TCP and therefore should
lead to fairness with regard to TCP flows if the proper rep-
resentative is chosen. The main problem is that the selec-
tion process is based on a rough estimate of the acceptable
data rate. Further insight is needed whether network con-

ditions exist where the wrong representative is selected.
This could lead to unfair behavior against other flows. The
author of pgmcc indicates that this may occur when a set
of receivers has lossy links with a low round-trip time and
congested links with a high round-trip time.

5 Multi-rate Congestion Control Protocols

In the following, we present a several promising multi-rate
congestion control protocols.

5.1 Rate-Based Approaches

One of the first working examples of layered multicast
transmission in the Internet was Receiver-driven Layered
Multicast (RLM) for the transmission of video, developed
by McCanne, Jacobson and Vetterli [22]. Their work did
not focus on TCP-friendliness but on how to provide each
receiver with the best possible video quality in dependence
upon the bandwidth available between the sender and that
receiver. In RLM, the sender splits the video into several
layers. A receiver starts receiving by subscribing to the
first layer. When the receiver does not experience conges-
tion in the form of packet loss for a certain period of time,
it subscribes to the next layer. This is called a join exper-
iment. When a receiver experiences packet loss, it unsub-
scribes from the highest layer it is currently receiving.

The use of RLM to control congestion is problematic
since RLM’s mechanism of adding or dropping a sin-
gle layer based on the detection of packet loss is not
TCP-friendly and can result in an unfair distribution of
bandwidth among concurrent RLM sessions. Furthermore,
leaving a multicast group may take a significant amount of
time, usually on the order of several seconds. Failed join
experiments (i.e., a receiver joining a layer immediately
has to leave again because the necessary bandwidth is not
available) are therefore very costly in terms of the addi-
tional congestion they may cause. As mentioned in Sec-
tion 3, in order for layered schemes to be efficient, it is
imperative that receivers behind the same bottleneck syn-
chronize their join and leave decisions. Several protocols
have been developed that improve the original concept of
RLM.

5.1.1 RLC

Vicisano, Crowcroft and Rizzo address most of these prob-
lems in their work on Receiver-driven Layered Congestion
Control (RLC) [23]. They propose to dimension the lay-
ers so that the bandwidth consumed by each new layer in-
creases exponentially. Layer 1, for example, carries twice
as much data in the same amount of time as layer 0. The
time that a receiver has to wait before being allowed to
join a new layer also increases exponentially with each
additional layer. On the other hand, a layer is dropped



9

=synchronization point

time

L4

L3

L2

L1

L0

Fig. 2. Synchronization Points in RLC

immediately when congestion becomes apparent in form
of packet loss. This emulates the behavior of TCP since
the increase in bandwidth is proportional to the amount
of time required to pass without packet loss before being
allowed to join the layer. At the same time the reaction
to congestion is a multiplicative decrease, since dropping
one layer results in halving the overall receive rate.

To improve synchronization between receivers, re-
ceivers may join a layer only at so-called synchronization
points (SP). SPs in higher layers are exponentially less fre-
quent than in lower layers. Thus, a receiver that has only
subscribed to a small number of layers is likely to catch up
with receivers with a higher subscription level. After some
time, receivers that share the same bottleneck should be
joining and leaving layers synchronously. In order to de-
crease the likelihood that a join experiment will fail, the
RLC sender creates a short burst period before a SP. Dur-
ing this burst period the data rate is doubled in each layer.
Only if a receiver does not experience any signs of conges-
tion during the burst it is allowed to join the next higher
layer.

Despite the improvements in the congestion control
mechanism over RLM, RLC still has some drawbacks.
The granularity at which the rate can be adapted to the
network conditions is very coarse and may cause unfair
behavior. The exponential distribution of the layers only
allows to double or halve the receive rate. The second
problem is that the transmitted data must support layering.
While this is true for video and bulk-data transmission,
streams that are more interactive like those produced by
shared whiteboards, cannot easily be separated into mul-
tiple layers. RLC does not take the round-trip time into
account when determining the sending rate. This can lead
to unfairness towards TCP since TCP is biased against
connections with a high round-trip time. Furthermore, it
is not guaranteed that the artificial bursts of packets intro-
duced by RLC be acceptable for a broad range of appli-
cations that support layered transmission. A general point

of controversy that applies to all layered congestion con-
trol schemes is whether it is acceptable to “abuse” net-
work mechanisms like multicast routing to achieve trans-
port layer functionality like congestion control.

5.1.2 FLID-DL

To address some of the deficiencies of RLC, Byers et.
al. propose Fair Layered Increase/Decrease with Dynamic
Layering (FLID-DL) [24]. The protocol uses a Digital
Fountain [25] at the source. With Digital Fountain encod-
ing, the sender encodes the original data and redundancy
information such that receivers can decode the original
data once they have received a fixed number of arbitrary
but distinct packets. Since it is not necessary to ensure
delivery of specific packets, the layering scheme is much
more flexible.

FLID-DL introduces the concept of Dynamic Layer-
ing to reduce the join and leave latencies associated with
adding or dropping a layer. With Dynamic Layering, the
bandwidth consumed by a layer decreases over time. Thus,
a receiver has to periodically join additional layers to
maintain its receive rate. The receive rate is reduced sim-
ply by not joining additional layers, whereas rate increase
requires joining multiple layers. To reduce the total num-
ber of layers required by the mechanism, layers are reused
after a quiet period where no data has been transmitted
over the layers for a certain amount of time. This scheme
provides an elegant solution to avoiding the effect of long
leave latencies, provided that the quiet period is sufficient
for normal leave operations to take effect.

Dynamic Layering is complemented by a Fair Layered
Increase/Decrease scheme that results in a receive rate that
is fair to a TCP flow with a fixed round-trip time experi-
encing the same loss rate. FLID retains RLC’s concepts of
sender-initiated synchronization points to coordinate re-
ceivers but refrains from packet bursts to probe for avail-
able bandwidth. FLID uses probabilistic increase signals
such that receivers subscribe to additional layers only with
a certain probability. These probabilities are chosen so as
to achieve a rate compatible with TCP.

The FLID-DL protocol is a considerable improvement
over RLC and can be considered to be state-of-the-art for
layered congestion control. It does not suffer from long
leave latencies and is more flexible with regard to the
bandwidth distribution on the layers. However, like RLC
FLID-DL does not take into account the round-trip time
and thus exhibits unfair behavior towards TCP under cer-
tain network conditions. It also results in major overhead
for the underlying multicast routing protocol as join and
leave decisions occur much more frequently.



10

5.1.3 TopoSense

The authors of [26] achieve the coordination of receivers
located behind the same bottleneck by using a centralized
controller agent. The agent has to know the entire multi-
cast tree topology and uses this information to communi-
cate the optimal subscription level to each receiver. Join
and leave decisions will always affect all receivers behind
a shared bottleneck. Nodes in the topology are labeled
congested or not-congested for a certain time interval if
the loss rate at that node exceeds a threshold. For conges-
tion control, the protocol uses a simple AIMD scheme by
reducing the number of subscribed layers so that the band-
width demand is halved in case there is congestion for suc-
cessive intervals. In intervals without congestion receivers
can increase their subscription level by one layer.

The tree information is gathered by using already exist-
ing multicast tree inference tools. The authors are aware
that the controller agent is a single point of failure and of
the scalability limitations of this approach. Also the topol-
ogy inference tools may not scale to more complex topolo-
gies. The main interest of the authors is to investigate
the impact of topology information on congestion control.
With network simulations they show that their protocol is
robust and quickly converges to an optimal subscription
level. However, only very simple scenarios are discussed
and the authors offer no insight into the fairness towards
TCP and the dynamic behavior of their protocol.

5.1.4 LVMR

Instead of using a single controller agent, Li et.al. [27] dis-
tribute agents in the network that are organized in a hier-
archy. These agents coordinate join and leave decisions
of the receivers. Agents exchange subscription informa-
tion using TCP connections. The original LVMR protocol
bases its join and leave decisions on static loss threshold
values and is thus not TCP-friendly. In an additional pa-
per [28], the authors present changes to their protocol to
achieve TCP-friendliness by to adjusting the subscription
level to adhere to the rate given by the simple TCP equa-
tion. However, the authors provide no details as to how
loss rate and round-trip times are determined.

5.1.5 LTS and TFRP

Two similar congestion control protocols for the transmis-
sion of video streams are presented by Turletti et. al. and
Tan and Zakhor. The Layered Transmission Scheme (LTS)
[29] and the TCP-Friendly Transport Protocol TFRP [30]
both refrain from join experiments to probe for available
bandwidth, using instead the simple TCP equation 1 to
adjust the rate. Receivers simply adjust their subscription
level to the rate given by the equation. The necessary pa-
rameters of loss rate and round-trip time are measured at

the receivers in a straightforward fashion. While these pro-
tocols are easy to implement, they suffer from a multitude
of drawbacks. Tan and Zakhor do not address the problem
of how to measure the round-trip times to the receivers in
a scalable way. In LTS, the round-trip times are measured
simply by having the receivers send round-trip time re-
quest messages to the sender, which then multicasts the
timestamps contained in those messages back to all re-
ceivers. This can pose a problem for very large receiver
sets. The simple TCP equation gives only a reasonable es-
timate of TCP throughput under low loss rates. To prevent
rate oscillations, it is necessary to accurately measure and
smoothe loss and round-trip time values through filtering.

5.1.6 MLDA

The Multicast Loss-Delay Based Adaption Algorithm
(MLDA) [31] is a congestion control protocol that uses
layered multicast. It builds upon the previously discussed
LDA+ protocol, also using RTCP reports for the signaling
between the sender and the receivers. MLDA retains the
increase and decrease behavior of LDA+ but performs the
rate calculation at the receivers. The receivers report the
rate to the sender avoiding feedback implosion by using
exponentially distributed timers. The sender continuously
adjusts the bandwidth distribution of the layers to support
the reported rates. Independently, the receivers adjust their
subscription level to the appropriate receive rate. Thus,
MLDA combines the two concepts of sender and receiver-
based congestion control. To calculate the rate, the round-
trip time has to be measured at the receivers. The authors
present a complex mechanism to obtain sufficiently accu-
rate round-trip time estimates in the face of very infrequent
RTCP reports. At certain points in time, a receiver mea-
sures the round-trip time using the the well-known scheme
of having the sender feed back a timestamp value. This ac-
curate measurement is then continuously modified using
the one-way delay between the sender and the receiver.
The authors take a possible offset between the clocks at
sender and receiver into account and filter out irregulari-
ties in the one-way delay estimates.

The authors demonstrate the TCP-friendly behavior of
MLDA through extensive simulations and compare the
performance of their protocol to that of other layered con-
gestion control schemes. By reducing the rate on a layer
that causes congestion rather than waiting for all receivers
behind a bottleneck to leave the corresponding multicast
group, MLDA can react to congestion faster than other
layered schemes. A major disadvantage of MLDA is the
complexity of the protocol and the added complexity of
the application that has to distribute the data onto the dy-
namic layers.



11

5.1.7 PLM

All of the above schemes have in common that they in-
duce loss in order to determine the available bandwidth. A
different approach is possible in case the network is a Fair
Scheduler network with longest queue drop buffer man-
agement. In such an environment, the bandwidth available
to a flow can be determined using the packet pair method.
The time interval between the reception of two packets
that were sent back-to-back indicates the current maxi-
mum rate for a flow. The Packet-Pair Receiver-Driven Cu-
mulative Layered Multicast Protocol (PLM) [32] makes
use of these characteristics by modifying the subscription
level so as to track the rate obtained by the packet pair
measurements. A rate decrease is always carried out im-
mediately by unsubscribing the appropriate number of lay-
ers. A rate increase is only possible once per time inter-
val and only to the minimum bandwidth estimate obtained
during that interval. In this scheme, receivers unsubscribe
layers (almost) simultaneously, since all receivers behind
a bottleneck will experience the same increase in the
time interval between packet pairs. Whenever a layer is
dropped, the timers for the increase interval are reset in
order to also synchronize layer subscription among re-
ceivers.

PLM does not require a specific bandwidth distribu-
tion among the layers. Fair scheduler networks have many
characteristics that immensely facilitate the design of con-
gestion control protocols and also improve the perfor-
mance of existing protocols such as TCP. The main task
of the congestion control protocol is not to ensure fair
sharing of resources but to adjust the sending rate to the
receive rate (i.e. the minimum bandwidth share along the
path from sender to receiver). While the authors of PLM
argue that deployment of fair scheduling is feasible if done
on a per ISP basis, it is still unlikely that the Internet in
general will be based on fair scheduling routers anywhere
soon.

5.2 Window-Based Approaches

5.2.1 Rainbow

Rainbow [33] is a window-based congestion control
scheme for the reliable transfer of bulk data. Like FLID-
DL, the data is encoded using Digital Fountain. Thus, it
is not important what specific packets a receiver gets, but
only how many distinct packets it receives.

The key idea of Rainbow is that receivers individually
request the transmission of each data packet. Each receiver
keeps a congestion window and each request is marked
with a label that essentially indicates the position of the re-
quest in the congestion window. If multiple requests with
the same label arrive from distinct receivers, these requests
are accumulated by intermediate routers. In addition, the

router state

requests

towards the sender

receiver’s congestion windows

receiver 1 receiver 21

1

1

1

1

1

1 2

2

2

2

Fig. 3. Rainbow

routers store information about the requests they have re-
ceived. This process is shown in Figure 3. The router that
is closest to the sender delivers the requests to the sender,
which in turn sends a packet in response to each request.
The packets are forwarded by the routers in the reverse di-
rection of the requests. The routers delete the information
about requests as the packet is forwarded towards the re-
ceivers. Thus, this congestion control scheme relies heav-
ily on additional intelligence in the routers.

The congestion window in the receivers imitates the be-
havior of the TCP congestion window. When a data packet
arrives with a label that falls in the current congestion win-
dow, a new request is immediately transmitted. The con-
gestion window size is either increased by one for each
data packet received (during slow start) or by one when
a full congestion window has been received (during con-
gestion avoidance). When a packet loss is detected, the
window size is halved.

Rainbow is currently the only window-based conges-
tion control approach that allows participants to receive
data at different rates. This behavior is made possible by
the special encoding of the data and the individual requests
for data transmitted by each participant. There are two
main limitations of Rainbow: (1) it must be possible to use
Digital Fountain encoding for the data and (2) the routers
have to support the accumulation and storage of requests.

6 Protocol Evaluation

Which congestion control mechanism is suitable for a
given task depends mostly on the network characteristics
and the traffic requirements of the sending application.



12

unicast / cong. contr. network protocol smoothness bias against TCP-
multicast mechanism support complexity of the rate high RTTs friendliness

single rate
RAP u-cast rate end-to-end low saw-tooth yes limited
LDA(+) u-cast rate end-to-end high saw-tooth yes acceptable
TFRCP u-cast rate end-to-end medium smooth yes acceptable
TFRC u-cast rate end-to-end medium smooth yes good
LTRC m-cast rate end-to-end medium saw-tooth no limited
TRAM m-cast rate optional low saw-tooth yes limited
TEAR m-cast rate end-to-end low smooth yes good
RLA & LPR m-cast window end-to-end low saw-tooth yes good
MTCP m-cast window required low saw-tooth yes good
NCA m-cast window required medium saw-tooth yes good
PGMCC m-cast window optional medium saw-tooth yes good

multi rate
RLC m-cast rate end-to-end medium layer-dependent no acceptable
FLID-DL m-cast rate end-to-end high layer-dependent no acceptable
TopoSense m-cast rate required high layer-dependent no limited
LVMR m-cast rate required high layer-dependent no limited
LTS m-cast rate end-to-end medium layer-dependent yes acceptable
TFRP m-cast rate end-to-end medium layer-dependent yes acceptable
PLM m-cast rate required low layer-dependent no good
MDLA m-cast rate end-to-end high layer-dependent yes acceptable
Rainbow m-cast window required low saw-tooth yes good

TABLE 1

CHARACTERISTICS OF THE PRESENTED CONGESTION CONTROL PROTOCOLS

In a controlled environment such as a company’s in-
tranet it is possible to implement solutions that require
changes to the network infrastructure. However, deploy-
ment of these mechanisms in the global Internet is a much
more difficult task that consumes time and is very costly.
Thus, such solutions are likely to be used only if they offer
a vastly improved performance over solutions that can be
used with today’s Internet infrastructure. Among protocols
that fall into the former category are tree-based protocols
such as MTCP, protocols using a multicast service other
than standard Multicast IP such as Rainbow, and protocols
requiring a different queuing strategy like PLM.

The same considerations hold true for protocol com-
plexity. The higher the complexity, the better should be
the performance and fairness to justify the additional over-
head. Simple rate-based AIMD schemes such as RAP re-
quire the least complexity but have the same large varia-
tions in the data rate as TCP. Furthermore, if they rely only
on AIMD but do not take TCP timeouts into account, their
TCP-friendliness is very limited. Because of the similar-
ity of the congestion control mechanism, window-based
congestion control schemes generally show good TCP-
friendliness. Their complexity, with regard to the con-
gestion control mechanism, is comparable to rate-based
AIMD schemes.

Model-based congestion control schemes require a
moderately higher amount of complexity. In addition to

the computation of the model, the measurement of the
necessary parameters in a fashion that avoids unwanted
behavior (e.g., rate oscillations) adds to the complexity,
even more so in multicast environments. Schemes based
on the simple TCP equation will estimate a sending rate
that is too high in very lossy environments and thus will
be more aggressive than TCP. Model-based schemes may
fail to produce a fair sending rate when the network con-
ditions do not comply with the assumptions made for the
network model on which the equation is based.

Receiver and sender complexity can be reduced by
moving intelligence into the network. However, as men-
tioned before, increased complexity in the network is even
less desirable than increased complexity at the receivers
and the sender. Usually, such router support is used for
feedback suppression and for scalable aggregation of pro-
tocol information.

The layering of data further increases the level of com-
plexity since the sender has to split up the original data and
the receivers again have to merge the layers they receive.
While the overall throughput of a layered congestion con-
trol scheme is higher than that of a scheme that adapts to
the worst receiver, it pays the price of reduced responsive-
ness. The mechanism of joining and leaving layers was
not intended for congestion control. The long leave laten-
cies of IP multicast prevent quick reaction to congestion
unless an additional mechanism like Dynamic Layering



13

is used. Furthermore, the granularity of the rate modifi-
cation of layered schemes is very low compared to that
of single-rate schemes. However, for very large heteroge-
neous receiver sets only multi-rate protocols provide a vi-
able mechanism of rate control. Single-rate protocols suf-
fer too much from their adaptation to the worst receiver in
such environments.

The efficiency of layered schemes also depends on
the type of underlying multicast routing protocol. While
they work well with dense-mode multicast routing, sparse-
mode routing protocols such as PIM-SM [34] can be prob-
lematic. In PIM-SM, the distribution tree for a group can
change from a core-based tree (or rendez-vous point tree)
to a shortest-path tree during the course of the session.
This, combined with frequent joining and leaving of layers
for congestion control, may result in unstable behavior.

The requirements of delay- and bandwidth-sensitive
data streams make rate-based approaches more suitable
than window-based approaches for applications that trans-
mit audio or video. However, use of a rate-based conges-
tion control scheme does not guarantee a smooth sending
rate. For example, the sending rate of AIMD schemes re-
sembles that of TCP and is thus not very suitable for ap-
plications requiring a stable sending rate.

Table 1 shows the main characteristics of the presented
protocols. It classifies the protocols according to whether
they support multicast and with regard to the type of their
congestion control mechanism. Protocols that work end-
to-end can be completely implemented in the end nodes
and do not need additional support from the network. The
complexity rating in the table takes into account only the
complexity of the congestion control mechanism. Note
that the overall complexity of the protocols also includes
additional complexity required by the network or for lay-
ering of the data. The next column indicates whether the
protocol can be used for applications that rely on a rel-
atively stable sending rate. The rating refers to protocol
behavior in steady-state, given a static environment with
periodic loss. Smoothness of the rate in real network envi-
ronments depends largely on responsiveness and the spe-
cific parameters that are used for the increase and decrease
mechanism; it is therefore difficult to predict. Generally,
protocols with a “sawtooth like” sending rate will show
more rate oscillations. Smoothness for layered protocols
depends on the number of layers used and the bandwidth
distribution among the layers. Most layered protocols use
a relatively small number of layers, which results in wide
variations in the sending rate. TCP throughput degrades
with higher round-trip times. For that reason, a protocol
that wants to comply with TCP throughput has to be bi-
ased against high round-trip time connections. LTRC (in
case a preconfigured RTT value is used) and some of the
layered multicast protocols do not exhibit this bias and can

thus be unfair, as explained in the detailed sections about
the protocols.2 The TCP-friendliness rating is based on the
evaluation by the authors of the protocol and on theoreti-
cal considerations such as whether the protocol takes TCP
timeouts into account or has a rate increase that is more
aggressive than that of TCP. Unfortunately there exists
no direct comparison of TCP-friendly congestion control
schemes in the form of standardized simulations. There-
fore this rating is – to a certain degree – subjective. Pro-
tocols rated “good” are expected to show no signs of un-
fair behavior towards TCP. Protocols rated “acceptable”
are likely to show good TCP-friendliness in general, but
may be problematic in special cases. The “limited TCP-
friendliness” rating was given to protocols where there are
clear signs of unfair behavior towards TCP also under not
so unusual network conditions (e.g., high loss rates).

7 Areas of Future Research

As is always the case with an evolving research area, sev-
eral unresolved issues remain. One particular problem is
the lack of standard methods to compare congestion con-
trol protocols. Thus, an evaluation as in the previous chap-
ter is often based on hints given in the corresponding pa-
pers and quite a bit of guesswork. A test environment (the
ns network simulator comes to mind) with a standardized
suite of test scenarios that investigate different important
aspects such as fairness and scalability, combined with
measures to directly compare the protocol performance
would be very handy. While such a testbed is not suffi-
cient to explore all details of a specific protocol, it would
provide a reasonable basis for more objective comparisons
of the protocols.

In many cases the simulation scenarios presented by the
developers of a protocol concentrate on a few general sce-
narios and are often too simple to capture protocol be-
havior in non-standard situations. Claims about a proto-
col that are based purely on simulation results should be
taken with a grain of salt. Traffic conditions in the Internet
are too complex to be modeled in all aspects in a network
simulator, making it important to evaluate protocols also
under real-world conditions.

We already discussed the characteristics of single-rate
and layered congestion control. It may well be possible
that different forms of congestion control are viable –
maybe with router support – that do not exhibit the disad-
vantages of these approaches (e.g., the possibility of dif-
ferent rates to the receivers without the coarseness of lay-
ering, long leave latencies, etc.).

While TCP-friendliness is a useful fairness criterion in
today’s Internet, it is well possible that future network ar-

2Some research is concerned with removing TCP’s bias against high
round-trip times. If those efforts turn out to improve TCP’s behavior, the
aforementioned protocols would be fair to TCP.



14

chitectures (in which TCP is no longer the predominant
transport protocol) will allow or require different defini-
tions of fairness. Also, fairness definitions for multicast
are still subject to research. We presented one possible def-
inition and also briefly addressed a different form where
multicast flows are allowed to consume a higher percent-
age of bandwidth than are unicast flows, but these are by
no means the only possible fairness definitions.

A further area of research is the improvement of the
models for TCP traffic that are used for some of the rate-
based congestion control mechanisms. Current TCP for-
mulae are based on several assumptions that are often not
met in real-world environments.

One aspect of congestion control that is not directly rel-
evant to the traffic discussed in this paper (i.e., streaming
media traffic) but highly relevant to congestion control in
general is how to treat short-lived flows that consist only
of a few data packets. TCP congestion control, as well as
the congestion control schemes presented in this paper, re-
quire that flows persist for a certain amount of time, oth-
erwise those forms of congestion control are meaningless.

Many current congestion control protocols are still in
the developmental phase and little attention is paid to the
fact that not all receivers share the same goal as the sender.
It has been shown that conformant TCP senders can eas-
ily be tricked into sending at a higher rate by modifying
the TCP receiver [35]. The same holds true for most of the
protocols presented here. Only single-rate multicast pro-
tocols with large receiver sets are usually immune since a
single receiver that claims to be able to receive at a higher
rate than it actually is will simply not contribute to the
congestion control process. Before the large-scale deploy-
ment of new protocols it is necessary to also investigate
the aspect of malicious receivers.

The form of congestion control that will eventually be
used, be it end-to-end, router supported, or a hybrid of
both, depends largely on if or when that support will be
made available by router manufacturers. First efforts in
the direction of router support are evidenced by the experi-
ments of a major router manufacturer with the Pragmantic
General Multicast protocol (PGM).

8 Conclusions

With this work, we presented a survey on recent advances
in the area of TCP-friendly congestion control. We dis-
cussed the need for TCP-friendly congestion control for
both non-TCP based unicast traffic and multicast commu-
nication and gave an overview of the design space for such
congestion control mechanisms.

Throughout the paper we analyzed various approaches
that provide TCP-friendliness, either by restricting all re-
ceivers in such a way that TCP-friendliness is achieved
for the worst receiver (single-rate) or by adapting the rate

of each receiver individually in a TCP-friendly manner
(multi-rate). Furthermore, we classified the protocols ac-
cording to the type of their congestion control mechanism
and their need for network support.

We believe that given the queueing and forwarding
mechanisms of the current Internet, TCP-friendliness is
essential for end-to-end transport protocols. Eventually,
router mechanisms that enforce TCP-friendly behavior
and punish non-conformant streams will be necessary as
an incentive for end-to-end congestion control. Appro-
priate enforcement mechanisms at routers need to be in-
vestigated, and although initial theoretical approaches to
implement scalable and efficient algorithms exist, a great
deal work is necessary before they can be deployed. Until
then, the efficiency of the Internet depends on the collab-
oration of applications by using TCP-friendly congestion
control protocols.

Acknowledgements

We would like to thank Mark Handley and Wilbert de
Graaf for their very helpful comments on the paper.

References
[1] Sally Floyd and Kevin Fall, “Promoting the use of end-to-end con-

gestion control in the Internet,” IEEE/ACM Transactions on Net-
working, vol. 7, no. 4, pp. 458–472, Aug. 1999.

[2] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Es-
trin, S. Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson,
K. Ramakrishnan, S. Shenker, J. Wroclawski, and L. Zhang, “RFC
2309: Recommendations on queue management and congestion
avoidance in the Internet,” Apr. 1998, Status: INFORMATIONAL.

[3] Jitendra Padhye, Victor Firoiu, Donald F. Towsley, and James F.
Kurose, “Modeling TCP Reno performance: a simple model and
its empirical validation,” IEEE/ACM Transactions on Networking,
vol. 8, no. 2, pp. 133–145, April 2000.

[4] H.A. Wang and M. Schwartz, “Achieving bounded fairness for
multicast and tcp traffic in the internet,” Proceedings of ACM SIG-
COMM, 1998.

[5] M. Vojnovic, J. Y. Le Boudec, and C. Boutremans, “Global
fairness of additive-increase and multiplicative-decrease with het-
erogeneous round-trip times,” in Proceedings of IEEE INFO-
COM‘2000, Tel Aviv, Israel, March 2000.

[6] Supratnik Bhattacharyya, Don Towsley, and Jim Kurose, “The loss
path multiplicity problem in multicast congestion control,” in Proc.
of IEEE Infocom, New York, USA, March 1999, vol. 2, pp. 856 –
863.

[7] S. Jamaloddin Golestani and Krishan K. Sabnani, “Fundamental
observations on multicast congestion control in the internet,” in
Proc. of INFOCOM’99. March 1999, vol. 2, pp. 990–1000, IEEE.

[8] B. Cain, T. Speakman, and D. Towsley, “Generic Router Assist
GRA Building Block Motivation and Architecture,” Mar. 2000, IN-
TERNET DRAFT draft-ietf-rmt-gra-arch-01.txt, Work in Progress.

[9] S. Jacobs and A. Eleftheriadis, “Providing video services over net-
works without quality of service guarantees,” World Wide Web
Consortium Workshop on Real-Time Multimedia and the Web, Oct.
1996.

[10] R. Rejaie, M. Handley, and D. Estrin, “Rap: An end-to-end rate-
based congestion control mechanism for realtime streams in the
internet,” Proc. IEEE Infocom, Mar. 1999.

[11] D. Sisalem and A. Wolisz, “LDA+ TCP-friendly adaptation: A
measurement and comparison study,” Proc. International Work-



15

shop on Network and Operating Systems Support for Digital Audio
and Video (NOSSDAV), June 2000.

[12] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “Rtp: A
transport protocol for real-time applications,” RFC 1889, January
1996.

[13] J. Padhye, D. Kurose, and R. Towsley, “A model based TCP-
friendly rate control protocol,” Proc. International Workshop on
Network and Operating Systems Support for Digital Audio and
Video (NOSSDAV), June 1999.

[14] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based
congestion control for unicast applications,” in Proc. ACM SIG-
COMM, Stockholm, Sweden, Aug. 2000, pp. 43 – 56.

[15] T. Montgomery, “A loss tolerant rate controller for reliable mul-
ticast,” Tech. Rep. NASA-IVV-97-011, West Virginia University,
Aug. 1997.

[16] M. Kadansky, D. Chiu, J. Wesley, and J. Provino, “Tree-based Re-
liable Multicast (TRAM),” Jan. 2000, INTERNET DRAFT draft-
kadansky-tram-02.txt, Work in Progress.

[17] Injong Rhee, Volkan Ozdemir, and Yung Yi, “TEAR: TCP emu-
lation at receivers - flow control for multimedia streaming,” Tech.
Rep., Department of Computer Science, NCSU, Apr. 2000.

[18] S. Bhattacharyya, D. Towsley, and J. Kurose, “A novel loss indica-
tion filtering approach for multicast congestion control,” Journal
of Computer Communications, Special Issue on Multicast, 2000.

[19] Injong Rhee, Nallathambi Balaguru, and George Rouskas, “MTCP:
scalable TCP-like congestion control for reliable multicast,” in
Proc. of IEEE INFOCOM, march 1999, vol. 3, pp. 1265 – 1273.

[20] Sneha Kasera, Supratnik Bhattacharyya, Mark Keaton, Diane Ki-
wior, Jim Kurose, Don Towsley, and Steven Zabele, “Scalable fair
reliable mulitcast using active services,” IEEE Network Maga-
zine (Special Issue on Multicast), vol. 14, no. 1, pp. 48 – 57, Jan-
uary/February 2000.

[21] Luigi Rizzo, “pgmcc: A TCP-friendly single-rate multicast con-
gestion control scheme,” in Proc. ACM SIGCOMM, Stockholm,
Sweden, August 2000, pp. 17 – 28.

[22] Steven McCanne, Van Jacobson, and Martin Vetterli, “Receiver-
driven layered multicast,” in Proc. of ACM SIGCOMM, Palo Alto,
CA, USA, Aug. 1996, pp. 117 – 130.

[23] Lorenzo Vicisano, Jon Crowcroft, and Luigi Rizzo, “TCP-like con-
gestion control for layered multicast data transfer,” in Proc. of IEEE
INFOCOM, March 1998, vol. 3, pp. 996 – 1003.

[24] John Byers, Michael Frumin, Gavin Horn, Michael Luby, Michael
Mitzenmacher, Alex Roetter, and William Shaver, “FLID-DL:
Congestion control for layered multicast,” in Proc. Second Int’l
Workshop on Networked Group Communication (NGC 2000), Palo
Alto, CA, USA, Nov. 2000.

[25] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital foun-
tain approach to reliable distribution of bulk data,” Proceedings of
ACM Sigcomm ’98, Sept. 1998.

[26] S. Jagannathana, K. Almeroth, and A. Acharya, “Topology sensi-
tive congestion control for real-time multicast,” Proc. International
Workshop on Network and Operating Systems Support for Digital
Audio and Video (NOSSDAV), June 2000.

[27] X. Li, M. Ammar, and S. Paul, “Layered video multicast with
retransmission (LVMR): Evaluation of hierarchical rate control,”
Proc. IEEE Infocom, Mar. 1998.

[28] X. Li, S. Paul, and M. Ammar, “Multi-session rate control for lay-
ered video multicast,” Proceedings of Symposium on Multimedia
Computing and Networking, Jan. 1999.

[29] T. Turletti, S. Parisis, and J. Bolot, “Experiments with a layered
transmission scheme over the Internet,” Tech. Rep. RR-3296, IN-
RIA, France, Nov. 1997.

[30] W. Tan and A. Zakhor, “Error control for video multicast using
hierarchical FEC,” Proc. International Conference on Image Pro-
cessing, Oct. 1999.

[31] D. Sisalem and A. Wolisz, “MLDA: A TCP-friendly conges-
tion control framework for heterogenous multicast environments,”
Eighth International Workshop on Quality of Service (IWQoS),
June 2000.

[32] A. Legout and E. W. Biersack, “PLM: Fast convergence for cu-
mulative layered multicast transmission schemes,” Proceedings of
ACM Sigmetrics, June 2000.

[33] Koichi Yano and Steven McCanne, “A window-based congestion
control for reliable multicast based on TCP dynamics,” in Proc. of
ACM Multimedia, Los Angeles, October 2000, ACM.

[34] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Han-
dley, V. Jacobson, C. Liu, P. Sharma, and L. Wei, “Protocol inde-
pendent multicast sparse-mode (pim-sm): Protocol specification,”
Internet Engineering Task Force (IETF), RFC 2362, June 1998.

[35] Stefan Savage, Neal Cardwell, David Wetherall, and Tom Ander-
son, “TCP congestion control with a misbehaving receiver,” ACM
Computer Communications Review, vol. 29, no. 5, pp. 71–78, Oct.
1999.


