Late Join Algorithms for
Distributed Interactive Applications

Jiirgen Vogel, Martin Mauve, Volker Hilt, Wolfgang Effelsberg
Praktische Informatik IV, University of Mannheim, Germany
{vogel, mauve, hilt, effelsberg}@informatik.uni-mannheim.de

Abstract— Distributed interactive applications such as
shared whiteboards and multi-player games often support
dynamic groups where users may join and leave at any time.
A participant joining an ongoing session has missed the data
that has previously been exchanged by the other session
members. It is therefore necessary to initialize the applica-
tion instance of the late-comer with the current state. In
this paper, we propose a late join algorithm for distributed
interactive applications that provides such an initialization
of applications. The algorithm is scalable, robust and can
be easily adapted to the needs of different applications by
means of late join policies. The behavior of the late join
algorithm and the impact of design alternatives are investi-
gated in detail by means of an extensive simulation study.
This study also shows that an improper handling of the late
join problem can cause very high application and network
load.

Index Terms— Late Join, Distributed Interactive Applica-
tions, Consistency Control, RTP/I.

I. INTRODUCTION

A distributed interactive application allows a group of
users connected via a network to interact synchronously
with a shared application state. Typical examples of dis-
tributed interactive applications are shared whiteboards,
distributed virtual environments, and multiplayer com-
puter games with network support. In order to achieve high
responsiveness, scalability, and robustness, applications be-
longing to this class often rely on a replicated architecture
and group communication. With this approach, a separate
application instance is running on each participant’s com-
puter, and each instance maintains a local copy of (parts
of) the shared application state.

One fundamental problem that these applications need
to address is the support of participants who arrive late and
wish to join an ongoing session: a latecomer needs to be
initialized with an appropriate part of the current shared
state before the user is able to participate in the session.

The late join problem is challenging in particular if the
state of a distributed interactive application is large and
complex. Most existing distributed interactive applications
implement some form of support for latecomers without
further investigation of alternatives and consequences. As
we shall show, this may lead to high network and applica-
tion loads as well as to consistency problems that could be
prevented with an appropriate late join mechanism.

In this paper, we investigate the late join problem for
distributed interactive applications in detail. We propose
a generic solution that is scalable, robust, and flexible so
that it can be employed by arbitrary applications belong-

ing to this class. Scalability and robustness are reached by
the usage of a distributed algorithm in combination with
group communication. We show that the number of net-
work groups used for late join purposes can significantly
influence the scalability of the late join algorithm. In order
to be flexible, we propose the use of a policy model that
allows a late-joining application to structure and optimize
the initialization process according to its specific needs.

The remainder of this paper is structured as follows. In
Sect. 2, we examine the class of distributed interactive ap-
plications. In particular, a model is presented that allows
an application-independent discussion of the late join prob-
lem. In Sect. 3, we briefly outline existing work and de-
rive desirable characteristics of a late join mechanism. In
Sect. 4, we propose our own late join algorithm, which has
three different variants. All three variants are evaluated
and compared by means of simulation in Sect. 5. The pa-
per ends with a conclusion in Sect. 6.

II. DISTRIBUTED INTERACTIVE APPLICATIONS

In this section, we give a brief overview of the common
characteristics of distributed interactive applications. On
this basis, it is possible to discuss the late join problem
and its solution in an application-independent way. A more
detailed presentation can be found in [MHKEO1].

A. States and events

A distributed interactive application has a state. For ex-
ample, the state of a shared whiteboard is defined by the
content of all pages present in the whiteboard. Each ap-
plication instance maintains a local copy of at least parts
of this state. For all instances these local copies should
be reasonably similar. It is therefore necessary to synchro-
nize the local copies of the application’s state among all
participants, so that the overall state is kept consistent.

The state of a distributed interactive application can
change for two reasons — either by the passage of time or
by events. The state of an application between two suc-
cessive events is fully deterministic and depends only on
the passage of time. Generally, a state change caused by
the passage of time does not require the exchange of infor-
mation between the distributed application instances since
each user’s instance can independently calculate the re-
quired state updates. An example for such a state change
is an animated object moving across the screen.

Any state change that is not a fully deterministic func-
tion of time is caused by an event. Generally, events

are (user) interactions with the application, e.g., the user
makes an annotation on a shared whiteboard page. Typ-
ically, information about events needs to be exchanged
among all application instances in order to keep all state
copies consistent. This can be done either by distributing
the state of the application after executing the event or by
announcing the event itself.

B. Partitioning the state into subcomponents

In order to provide for a flexible and scalable handling
of state information, it is desirable to partition an applica-
tion’s state into several independent subcomponents. Ex-
amples of subcomponents are 3D objects (an avatar, a car)
in a distributed virtual environment or the objects dis-
played on the pages of a shared whiteboard presentation.
In addition to breaking down the complete state of an ap-
plication into more manageable parts, such partitioning al-
lows the participants of a session to track only the states
of those subcomponents in which they are actually inter-
ested. We call subcomponents that are currently needed
by an application instance to display the state to its local
user active, whereas passive subcomponents are currently
invisible, and their state cannot be changed by the user.

C. Consistency control

A replicated distribution architecture requires mecha-
nisms that ensure the consistency of the shared applica-
tion state. We expect that a distributed interactive ap-
plication employs an appropriate mechanism such as op-
erational transformation [SJZ198], dead reckoning [SZ99],
or timewarp [Mau00]. However, in order to support these
mechanisms, it is important that the state of a subcompo-
nent delivered by a late join algorithm be consistent (i.e.,
not missing event information), so that it can be used as a
starting point for the consistency mechanism. A late join
algorithm therefore needs to guarantee that a latecomer is
supplied with a consistent initial state. Thereafter the con-
sistency mechanism of the distributed application will take
over.

D. RTP/I

In order to be able to specify and implement functional-
ity that can be reused for all distributed interactive applica-
tions, it is useful to employ a standardized application-level
protocol. RTP/I [MHKEO1] is a protocol framework devel-
oped specifically for this purpose. It captures the common
aspects of distributed interactive applications as described
above. RTP/I consists of two parts: a data protocol for
the transmission of states and events and a control proto-
col for the exchange of metadata about the participants of
a session and about the subcomponents present in a ses-
sion. The protocol elements encode sufficient semantics
to develop generic services such as recording [HMKE99],
consistency control [VMO01], or the late join algorithm de-
scribed here. All applications that base their communi-
cation model on RTP/I can integrate our late join ser-
vice with minimal effort. Applications that do not rely
on RTP/I can still use the algorithm described here by

adapting its implementation to their specific communica-
tion model.

III. EXISTING APPROACHES

Existing late join algorithms can be separated into
approaches that are handled by the transport proto-
col and those that are realized at the application level.
Application-level late join algorithms can be subdivided
further into centralized algorithms and distributed algo-
rithms.

Representatives of the first category are reliable trans-
port services that offer late join functionality. An
example is the Scalable Reliable Multicast Protocol
(SRM) [FJL197]. A reliable transport protocol can offer
the late join service by using its loss recovery mechanism
to supply the late-joining application instance with all data
packets missed since the beginning of a session. The appli-
cation then reconstructs the current state from these pack-
ets. An example of an application using this mechanism is
the shared whiteboard MediaBoard [Tun98].

A main advantage of this approach is its robustness: as
long as there is one application instance present with the
required information, a latecomer will be able to join the
session. Furthermore, the approach is application indepen-
dent, and an existing implementation can therefore easily
be used in different applications.

However, the usage of transport protocol functionality to
solve the late join problem has several major drawbacks:

« It is ineflicient since a large part of the transmitted infor-
mation may no longer be relevant for the current state.
For example, an image on a shared whiteboard page that
has been deleted later in the session is not relevant any-
more. In general, it is more efficient to transfer state
information than to transmit all transport packets that
have led to that state. When editing a text, for exam-
ple, it makes sense to transmit the state of the text of the
latecomer rather than all the packets that contain the de-
scription of characters that have been typed or deleted.
This becomes even more important when the overhead
for packet headers is taken into account.

Either the application has to be able to reconstruct every
packet that has ever been transmitted since the beginning
of the session or the transport service needs to buffer
the transmitted packets indefinitely. This is clearly not
acceptable for a large number of applications.

o The state of certain applications may not be recon-
structible from a simple replay of packets. The problem
here is that for a given application (such as an networked
action game) an event is only valid at a certain point in
time. Thus in order to reconstruct the state of such an
application from outdated packets, the application would
have to jump back in time to the execution point of each
packet before processing it. It is by no means guaranteed
that an application would be able to perform this task.

Because of these problems we generally view the replay
of packets as inappropriate for late join support. Instead,
the current shared state should be explicitly queried by the
latecomer. This leads us to existing late join approaches
at the application level.

The distinct advantage of application-level approaches
is the usage of application knowledge to optimize the late
join process. Centralized late join approaches require that
a single application instance exists that is able to act as
the late join server for the entire shared state. A late-
joining instance may contact the state server, which will
in turn deliver the relevant state information. Examples
of where a centralized state server is used for late join
purposes are the Notification Service Transport Protocol
(NSTP) [PDK96] and the Java-Enabled Telecollaboration
System JETS [SdOG98].

The main advantage of a centralized solution at the ap-
plication level is its simplicity with respect to the handling
of consistency-related issues. At the same time, a single
state server results in the typical disadvantages of all cen-
tralized solutions. Main problems are the existence of a
single point of failure (lack of robustness) and the high ap-
plication load for the server, which might become a bottle-
neck. In particular for distributed interactive applications
that employ a replicated architecture, it seems to be inap-
propriate to introduce a centralized server just for late join
purposes.

An alternative is to assign the role of a late join server
for different subsets of subcomponents to different appli-
cation instances. This is done by the collaborative virtual
environment MASSIVE-3 [GPS00], where application in-
stances are dynamically determined to be responsible for
supplying latecomers with the states of a certain subset of
subcomponents. This reduces the danger that a single late
join server becomes a bottleneck. However, it does not in-
crease robustness since a late join server may still fail or
become overloaded if multiple late-joining participants are
interested in the same subcomponents at the same time.
For these reasons, we believe that a solution to the late
join problem should not rely on dedicated late join servers
at all.

Distributed late join approaches seek to avoid the prob-
lems of a centralized approach by involving multiple ap-
plication instances in the late join process. Usually, many
instances are able to take the role of a late join server for
a given piece of the shared state. The failure of any single
instance can be tolerated in these cases without preventing
a latecomer from joining the session. One application that
uses a distributed late join approach is the network text ed-
itor (NTE) [HC97]. If a text line is changed in NTE (e.g.,
a character is inserted), the complete state of the line is
transmitted to all participants. Thus, latecomers are sup-
plied with the active text areas very fast. The existence of
all other lines is announced via periodic session messages.
A latecomer may then request the missing lines. The re-
quest is served by the application instance responsible for
the last state modification (or, should this fail, by any other
instance that has the required information).

The main benefits of distributed late join approaches at
the application level are robustness and scalability as well
as the usage of application-level knowledge to avoid the
drawbacks of the transport-level approaches. One prob-
lem, though, is the lack of reusability. For example, it
would be quite difficult to tailor the late join functionality
implemented for NTE to use with a virtual 3D world. In
this paper, we propose a generic and reusable solution that
supports distributed late join functionality at the applica-
tion level. It thus combines the advantages of a generic
solution such as proposed for late join algorithms at the
transport layer with the benefits of using application-level
semantics.

IV. LATE JOIN ALGORITHM

The analysis of existing work leads to some interesting
insights: to be efficient, a late join algorithm must make
use of application-level knowledge. A replay of all trans-
mitted packets is generally not an acceptable solution. In
order to be robust and scalable, the late join algorithm
should not contain any centralized elements. In particular,
this holds true for distributed interactive applications that
already employ a replicated architecture. Finally, the im-
plementation of a late join algorithm should be flexible so
that it can easily be used with different applications.

In the following, we denote a late-coming application in-
stance as late join client and an instance that provides
state information to a client as late join server. The roles
of client and server are dynamic, and an application in-
stance might be both late join client and server.

A distributed late join algorithm is usually composed of
the following three steps:

o The first task for a late join client is to determine the
point in time at which the state of a given subcomponent
should be requested. If certain subcomponents are more
important than others, the client should be able to prior-
itize the important ones. For example, consider a shared
whiteboard where usually exactly one page is visible at a
given point in time. The state of this page should be re-
quested first by the late join client. Since such a decision
is application-dependent, we use a policy-based approach
that allows the application to control the late join service
in this respect.

In the second step, a late join server needs to be selected
for the required state information. Since we do not rely
on any centralized elements, a late join server must be
determined from the group of all application instances
each time a late join client requests the state of a sub-
component.

« Finally, the state information must be transmitted from
the selected late join server to the clients needing the
information.

For the realization of this distributed late join algorithm,
the following four key problems have to be solved: selection

of application instances, use of late join policies, distribu-
tion of late join data, and, finally, consistency preservation.

A. Selection of application instances

One requirement for a late join algorithm is to operate
in a fully distributed fashion without relying on dedicated
late join servers. The state of a subcomponent can thus be
delivered to a late join client by any session member that
holds a (consistent) copy of that state. Since it is likely
that more than one session member qualifies for being a
late join server, there must be rules for the selection of
which application instance should reply to a given request
for state information. Similarly, at any given time multi-
ple latecomers may wish to request the same state at the
same time. This too should be coordinated so that request
implosions are prevented.

Scalable selection of at least one session member from a
potentially large group is a common problem in group com-
munication and is known as scalable feedback [NB99]. A
feedback algorithm must guarantee that at least one par-
ticipant is selected. The number of participants selected
should be low — ideally exactly one. Finally, the algorithm
should be scalable in terms of group size and introduce only
a marginal delay.

We propose using the exponential feedback raise algo-
rithm [FWO1] for the selection of application instances in
late join situations: each session member that would like
to send a state request or state information picks a random
number z € [0;1). If z < &, where N is the group size,
the application instance is selected and acts immediately.
If z > %, an exponentially distributed back-off timer is
set with running time ¢ = T'(1 + logy), where T is the
maximum desired latency until at least one member must
have been selected. If the back-off timer of a session mem-
ber expires, the member has been selected and transmits
the state or state request to the group. All application in-
stances receiving this information cancel their own timers.
As the analysis in [FW01] shows, the exponential feedback
raise algorithm has a good behavior with respect to the
expected number of selections and the expected selection
latency. This is also verified in our own simulations (see
Sect. 5).

B. Late join policies

Usually it is not necessary for an application instance to
be initialized with the entire shared state at the time of the
late join. A prerequisite for such a partial initialization is
that the application’s state be partitioned into subcompo-
nents. For each subcomponent, a late join client can decide
when the state for that subcomponent should be requested
using its application-specific knowledge. The use of such
policies ensures that the mechanisms a generic late join
service implements can be easily adapted to the needs of
individual applications. Existing late join approaches lack
this ability.

In a shared whiteboard session, for example, a late-
coming application instance typically needs all active sub-
components (i.e., subcomponents belonging to the cur-

rently displayed page) immediately in order to enable the
participation of the local user in the ongoing session. In
contrast, the state of all passive subcomponents (i.e., sub-
components belonging to currently invisible pages) are usu-
ally needed only when they become active again. Having
this knowledge, an application could decide to request the
state of active subcomponents only and postpone the re-
questing of passive pages to a later point in time. One
major advantage of this approach is that only those parts
of the state are transmitted at the time of joining that
are actually required to participate in the current session.
Thus, the amount of data transmitted is typically very
small, which also minimizes the delay encountered by the
late joiner before being able to actively participate in the
session. Furthermore, a state initialization can be spread
over a longer period of time, which also spreads network
and application load.

In order to select different policies for individual subcom-
ponents, an application must be able to learn about the
namespace of subcomponents when joining a session. Be-
sides information about which subcomponents exist, it also
needs some application-level knowledge about each sub-
component, i.e., if a subcomponent is active or passive and
which part of the application’s state it represents. On the
basis of this metadata, a late join client can decide about
an appropriate policy. The control protocol of RTP/I pro-
vides such information by means of periodic subcomponent
reports [MHKEQ1]. Once the presence of a subcomponent
has been detected, the application can assign a late join
policy to it.

For our late join service, we have defined a number of
policies (also see [VMG™00]) for requesting subcomponents
such as: no late join, immediate late join, event-triggered
late join, and network-capacity-oriented late join. An ap-
plication may change the late join policy for a given sub-
component at any time to account for changes in the im-
portance of subcomponents or network load.

1. Late join policy: No late join

This (trivial) policy is chosen by the application instance to
indicate that it is not interested in a certain subcomponent.
In a distributed virtual environment, this policy could be
used for subcomponents that the user will never be able to
see. By choosing the no late join policy, the overall amount
of state information that is required for the initialization
of the late join client is reduced.

2. Late join policy: Immediate late join

An application instance may choose the immediate late join
policy for those subcomponents that are currently needed
to participate in the session. States of these subcompo-
nents are then immediately requested. The likelihood that
multiple latecomers will profit from a single transmission
of the subcomponent’s state is rather low with this policy.

3. Late join policy: Event-triggered late join

For a number of applications it might be reasonable to
request subcomponents only if they are the target of an
event. As illustrated above, a shared whiteboard might
request pages with the immediate late join policy only if

they are currently active. Other subcomponents could be
requested at the time they become the target of an “ac-
tivate page” event. This request strategy is implemented
in the event-triggered late join policy. Besides deferring
the request of state information until it is actually needed,
this policy also significantly increases the likelihood that
multiple latecomers will benefit from a single state trans-
mission (if multicast is used for data distribution) since all
application instances will encounter the triggering event at
the same time. Thus, all latecomers who join an ongoing
session between two successive events for a subcomponent
will benefit from a single state transmission.

4. Late join policy: Network-capacity-oriented late join

For subcomponents where the state is not immediately re-
quired, an application instance may choose the network-
capacity-oriented late join policy. With this policy, the
late join service monitors the incoming and outgoing net-
work traffic of the instance. Only if the traffic falls below
a threshold set by the application is the state of the sub-
component actually requested. This policy tries to defer
the request for a state until the load of the network is low.

Other policies are conceivable and can be integrated eas-
ily into our late join service. Naturally, all late join poli-
cies that delay the transmission of state information in-
crease the probability that the last participant that pos-
sesses those data leaves the session.

Most existing distributed interactive applications apply
the immediate late join policy. MediaBoard, for example,
additionally orders all requests according to their priority
for the user [Tun98|.

C. Distribution of late join data

After a late join request has been issued and an ap-
propriate server selected, the initializing state needs to be
transmitted to the late join client(s). It is desirable to dis-
tribute these data by means of group communication (i.e.,
application-level or IP multicast). Point-to-point connec-
tions are likely to introduce a bottleneck if a small number
of potential late join servers serve a large number of late
join clients. Also, depending on the late join policy, a single
state transmission may initialize multiple late join clients
(e.g., when employing the event-triggered late join policy).
Thus, application and network resources are used more ef-
ficiently with group communication.

Variant 1: One network group

The easiest solution is to transmit late join data to the same
group (the so-called base group) as the regular session data.
All applications presented in Sect. 3 choose this approach.
Its main benefit is its low complexity. But at the same time,
all session members, including those that are not late join
clients, will receive late join data. This may result in large
amounts of data being delivered to application instances
that do not need it. This is the case in particular if the
ratio of late join clients to other session members is rather
small.

Variant 2: Two network groups
Alternatively, a separate late join network group for the

transmission of state information can be established. We
call this the client group. All late join clients participate in
the client group. State requests still have to be distributed
via the base group in order to find a late join server. But
in response, the selected servers send the requested state
to the client group. Once a client does not expect to re-
ceive further late join information, it should leave the client
group.

Preliminary simulations have shown that, depending on
the distributed interactive application, the chosen late join
policy model, and the user behavior, it is very unlikely that
a late join client will ever complete the late join process
for all subcomponents. For example, consider a shared
whiteboard session where a set of slides is presented. Even
if the lecturer jumps backward to an older slide every once
in a while, it is unlikely that all slides will be presented
more than once in a session. Therefore, a client should
leave the client group when it has not requested or received
any useful state information for a certain period of time.
Should the client discover at a later point in time that it
needs the state of a subcomponent (e.g., an older slide has
been reactivated), it simply joins the client group again.

Restricting the receivers of late join information to appli-
cation instances that probably need the data is expected
to reduce both network and application load for the en-
tire group. However, it introduces additional costs for the
management of the client group.

Variant 3: Three network groups
Distributing late join state requests over the base group
as described above has two drawbacks. First, requests are
received and processed by each session member. This bur-
dens both the network and the application instances. Sec-
ond, if a large number of session members receive state
requests, there is a higher probability that the selection
process will pick more than one application instance as a
late join server, even with the exponential feedback raise
algorithm described above. Because a state transmission
is costly for the application (since it must extract the cur-
rent state of a subcomponent) and the network, a major
goal for a late join algorithm is to minimize the number of
duplicate server selections.

Distribution of state requests can be restricted by using
a third network group: if a limited number of potential
late join servers form an additional multicast group, state
requests can be transmitted directly to these servers via
this server group. Provided that the participants of the
server group are chosen well, they can provide all latecom-
ers with the desired data, while the majority of application
instances are not involved in the server selection process.
Because fewer application instances receive a state request,
it is to be expected that network and application load due
to state requests and duplicate states can be reduced.

This approach raises two questions. First, who should
be a member of the server group? Second, what happens
if a state request fails because no potential server for a re-
quested subcomponent is present in the server group? The
latter problem can be solved by a second request round: if
no server can be found for a subcomponent in the server

group, the request is sent to the base group. While this
introduces an extra initialization delay, it guarantees that
state requests are eventually answered.

The first question is more complex, and there are a num-
ber of criteria that need to be considered for an algorithm
that decides upon the membership in the late join server
group: for each subcomponent there should be a server
present in the late join server group to reduce the initial-
ization delay, the server group should be as small as possi-
ble to minimize network traffic, the server group should be
stable without many join and leave operations, and the al-
gorithm should be fair in that the task of initializing clients
is shared among all application instances.

We propose the use of the following adaptive mechanism
for the selection of members in the server group: an appli-
cation instance joins the server group when it is selected
by a request in the base group as described above (i.e., be-
cause there was no appropriate late join server in the server
group). An application instance leaves the server group if
it has not answered any state requests for a certain amount
of time ;1. t; is an adaptive timeout value and is calculated
as follows:

t1=Th (V% +(1 —7)%)

T is the average group membership time. This value is
provided by the application. Sj, is the number of subcom-
ponents an application instance can provide as a late join
server. .S, is set in relation to the total number of subcom-
ponents S present in the session. The intention of this is
that application instances that can serve a large percent-
age of the subcomponents should stay longer in the late
join group. R, is the number of late join state requests
that have actually been answered by a late join server.
This number is set in relation to the number of requests
R that could have been answered by this application. The
lower this percentage, the less important is the presence of
the application instance in the late join group. Finally, ~
(v € (0;1)) is a weight that trades the importance of the
number of present subcomponents against the number of
answered requests.

In order to increase the stability of the late join group
and to reduce the initialization delay, the application can
also define a minimum group size for the late join server
group. Servers are allowed to leave only as long as the
current, group size is higher than that minimum. Summa-
rizing, this approach seeks to build a late join server group
with a small number of “powerful” servers.

D. Consistency preservation

A late join is a special situation with regard to consis-
tency maintenance. The key problem is that a latecomer
may receive an initial state that is inconsistent because
information about one or more events is missing. For ex-
ample, this can happen if an event is still en route to the

INote that an application instance also leaves the server group when
the user leaves the session.

late join server. If the late join server transmits the initial
state before the event arrives, its effect would not be in-
cluded in the state. Once the event arrives at the late join
server, the consistency mechanism of the application will
make sure that the state at the late join server is corrected.
However, the late join client receiving such an inconsistent
initial state may have missed the event and has no means of
detecting that the state is actually inconsistent. A late join
algorithm therefore must provide a mechanism to discover
this problem and guarantee a consistent initial state. After
such a state has been delivered to the application, the reg-
ular consistency mechanism will take over, using this state
as its starting point.

In order to solve this problem, we propose to include
information about the most recent events in each initial
state transmitted by a late join server. This information is
a standard part of the RTP/I protocol. Furthermore, pe-
riodic session messages are distributed to the base group.
These contain information about the events included in the
current state of each subcomponent. Each latecomer checks
the state it has received against these session messages. If
the check indicates that the latecomer has received an in-
consistent state, then that state is discarded and requested
again. If necessary, this will be repeated until the check
is successful. A more detailed discussion of this iterative
state request mechanism can be found in [VMO1].

V. SIMULATION ANALYSIS

We have implemented a fully operational generic late
join service that is now part of the RTP/I code library.
The implementation contains all three late join variants
discussed in Sect. IV that use either one, two, or three
network groups for the communication between late join
client and server. Furthermore, it integrates the flexible
late join policy model.

Based on this implementation we have developed a sim-
ulation toolkit that was used to generate the results dis-
cussed in this section. This simulation toolkit enables us
to analyze late join algorithms with respect to different de-
sign criteria (initialization delay, network and application
load, etc.). The simulation emulates typical sessions of dif-
ferent kinds of applications. In the following, we present
the results of simulating a shared whiteboard scenario and
an online game scenario. The simulation results were deter-
mined by running the simulation 20 times for each scenario
and discarding the three highest and lowest values before
calculating the average.

A. Shared whiteboard scenario

For our simulation, we set up a typical shared whiteboard
session where a presentation is given to a medium-sized
group with a maximum of 100 participants. Periodically,
each application instance generates an action from the set
{join session, leave session, create new subcomponent, send
event, activate or deactivate a subcomponent, do nothing}
with predefined probabilities. The timespan between two
actions of the same application instance is randomized be-
tween 0.8 and 1 s. The network delay among end systems is

varied between 20 and 150 ms, and a loss-free transmission
of data is assumed?.

Typically, a shared whiteboard group is relatively stable
during the presentation, with only a few members joining
or leaving. Therefore, the session starts with 80 members,
which is also the minimum group size throughout the ses-
sion (i.e., an instance is allowed to leave only if there are
more than 80 session members remaining). After initiation,
there is a dynamic phase while additional participants join
with a high probability; toward the end members leave
more frequently. This behavior was reflected by exponen-
tially decreasing the join probability (starting with 0.02)
and by exponentially increasing the leave probability (end-
ing with 0.1).

In our model of a shared whiteboard, the application’s
state is structured hierarchically, with each slide containing
a set of graphical objects. Each object is represented by a
subcomponent of its own. At a certain point in time the
same slide is visible to all users. Thus, only a small subset
of subcomponents is active at any given time. This model
is based on long-term practical experience gained with the
mlb, the multimedia lecture board developed by our group
at the University of Mannheim [Vog01].

A good strategy for a late join client in a shared white-
board session is to request the state of the current slide
(i-e., all active subcomponents) by using the immediate late
join policy. No other subcomponents are requested unless
they become active (event-triggered late join). Notification
about the subcomponent space and the presence of other
participants is performed by the periodic session messages
of RTP/I.

When giving a presentation with slides prepared in ad-
vance, user activity changing the application’s state is rel-
atively low. We chose the probability of creating a new
subcomponent (e.g., to add a new annotation) as 0.01, the
probability of generating an event (e.g., extending or mov-
ing an existing annotation) as 0.15, and the probability of
moving to another active page as 0.05. During the sim-
ulated time of 10 min, an average of 550 subcomponents
were created and 8,200 events were issued. This scenario
leads to an average of 3,900 late join requests.

Fig. 1 shows the distribution of the average initialization
delay generated by the three variants of our algorithm. The
initialization delay for a late join client is measured as the
time span between sending the first request and receiving
the requested state (the time needed to extract a subcom-
ponent’s state and to transmit the data are equal for all
variants and were not considered).

Even though the second variant employs an additional
group for the transmission of states, its request-response
mechanism is basically the same as in the variant with only
a single group. Thus, it was expected that both variants
would have similar distributions of the initialization delay
with an average value of 386 ms for variant 1 and 371ms
for variant 2. The third variant with three groups causes a

2If an application does not use a reliable transport protocol, the late
join algorithm can repair packet loss by repeating the server selection
process. This will increase the initialization delay.

1200

1000 q

o]
[=]
o
T
L

N

[=3

o
T

average initialization delay[ms]
(2]
o
o
T
.

N ﬁ |
one mc group —s—

two mc groups —=—
three mc groups —=+—

0 I I I
0 100 200 300 400 500 600

simulation time [s]

Fig. 1. Initialization delay

higher initialization delay, with an average of 432ms, be-
cause it is possible that no appropriate server can be found
in the server group and an additional request is necessary.
After the (initially empty) server group had been formed,
only in less than 20% of all state requests was a second
request round necessary. The initialization delay is accept-
able for all variants, even if the times for state extraction
and transmission are not included in these figures.

The composition of the groups for late join clients and
servers is depicted in Fig. 2. It can be seen that late join
activity in the shared whiteboard scenario is high at the be-
ginning of a session. At first, many participants join within
a short period of time, and late join requests cause members
to join the server group as well. Since in this early phase of
the session there are only a few subcomponents and all of
them are active, the first wave of clients soon has received
the complete application’s state and leaves the client group.
Later on, sporadic late joins occur so that the size of the
client group increases slowly. Late joins and switching of
active subcomponents (which may trigger applications to
join the client group in this scenario) on the one hand and
client timeouts as well as clients leaving the session on the
other hand balance one another, so that the client group
is relatively stable. The size of the server group fluctuates
around the predefined minimum of ten members, which in-
dicates that most requests can be answered by the current
group members and additional servers are not necessary.

The network load caused by a late join algorithm can
be measured by the cumulated numbers of states and state
requests received by all application instances due to late
joins. Since states might be large and their handling costly
in terms of processing power, special care must be taken to
minimize the number of transmitted and received states.
Fig. 3 shows the simulation results for the cumulated num-
ber of states received by all application instances. When
comparing the graphs of variants two and three on the one
hand (7,800 and 7,700 states) with the graph of the first
variant on the other (326,000 states), the dramatic effect
of transmitting states over an extra late join client group
becomes visible: a reduction by factor of 40.

920

client group (algérithms 2 and 3) ——
s0 | server group (algorithm 3) —=— |

70 H q
60 H q

50 H b

40 H E

members

0 100 200 300 400 500 600
simulation time [s]

Fig. 2. Composition of late join client and late join server group

350000

T T
one mc group —s—
two mc groups —=—

300000 - three mc groups —=—

250000
200000

150000

cumulated states received

100000

50000

o L& ; B o ¥ ¥
0 100 200 300 400 500 600
simulation time [s]

Fig. 3. Distribution of received states

The second part of the network load is caused by the
state requests exchanged (Fig. 4). Since both variants 1
and 2 transfer state requests via the application network
group, similar graphs were expected. Distribution of state
requests via the server group by the third variant results
in a significantly lower number: in total all application
instances received roughly 230,000 requests less than with
variants 1 or 2. Even though requests are typically rather
small (e.g., 24 bytes for RTP/I), their high number justifies
setting up a server group.

The application load induced by a late join algorithm
is mostly caused by four tasks. (1) Process received state
requests (i.e., execute the selection of an application in-
stance): As already discussed, the third variant results in
by far the smallest number of received state requests and
therefore in the smallest application load due to request
processing. (2) Extract and send the state of a subcom-
ponent if selected as late join server: Fig. 5 depicts the
cumulated number of states sent for each variant. Since
the third variant transmits state requests over the server
group that is much smaller than the application group, the
probability of selecting multiple servers is lower. Thus, the
total number of 3,760 states sent in reply is 1,660 states
lower than with variants 1 and 2. (3) Discard unneeded

300000

T T
one mc group —s—
two mc groups —=—
three mc groups —=—

250000

200000

150000 -

100000

cumulated state requests received

50000

0 100 200 300 400 500 600
simulation time [s]

Fig. 4. Distribution of received state requests

6000
5000
S 4000 |-
12
1]
Q
s
12
& 3000 [
Q
8
>
§ 2000
o
1000 -
one mc group —&—
2 two mc groups —=—
e three mc groups —=—
o L | | |
0 100 200 300 400 500 600

simulation time [s]

Fig. 5. Distribution of sent states

packets: As shown above, with variants 2 and 3 318,000
less states are received than with variant 1. (4) Manage
additional multicast groups: The application load caused
by the management of multicast groups can be approxi-
mated by the total number of join and leave operations.
The application group has to be managed by all variants
and is disregarded. During the simulation time, there were
a total of 770 joins and 740 leaves for the client group and
1,000 joins and 990 leaves for the server group. The overall
application load depends considerably on a specific appli-
cation. But when considering the significant reduction of
received late join traffic, it can be expected that the ad-
ditional cost for group management will be negligible and
that the third variant will result in the smallest load.

To summarize, using separate multicast groups for the
transmission of late join requests and the distribution of
late join states results in a significant reduction of total
network load. Depending on the processing costs for the
handling of state requests and states, these groups also pro-
duce a smaller total application load despite the overhead
for group management. At the same time, however, there
is a slight increase in the initialization delay for late join
clients when a separate server group is used.

B. Online gaming scenario

In the second scenario, a multiplayer game with a max-
imum of 150 participants was simulated. The main char-
acteristic here is that the composition of a session is much
more dynamic than in the shared whiteboard scenario, with
a continuous late join activity and a large variance in the
number of session members. We had a minimum of 75
participants while the join probability of 0.2 and the leave
probability of 0.01 remained constant throughout the sim-
ulation. The delay for the transport of data among appli-
cation instances was chosen between 50 and 150 ms.

In this model of an online game, each participant has an
individual view of the application’s state with a set of active
subcomponents that may be different from the set of active
subcomponents of other participants. Thus, an application
instance can also receive events for passive subcomponents.
A late join client requests all subcomponents that are active
for himself by the immediate late join policy and all other
subcomponents by the event-triggered policy.

The probabilities for creating a new subcomponent and
for generating events were set to 0.01 and 0.3, respectively.
During the simulated time of 200s, a total of 320 subcom-
ponents and 9,300 events were issued, and approximately
23,000 requests for initialization with a certain subcompo-
nent’s state were sent.

As in the first scenario, the average initialization delay
for the late join client was similar for the first and the
second variants: 283 ms and 267 ms, respectively. For ap-
proximately 50% of all state requests, the third variant did
not find an appropriate server in the server group, mak-
ing a second request round necessary. As a consequence,
the average initialization delay for the third variant was
420ms. The rate of successful requests within the server
group was lower than in the first scenario because each
participant was interested in an individual set of subcom-
ponents, and because there was a high rate of joining and
leaving application instances.

The latter can also be seen in Fig. 6, which shows the
composition of the client and the server group. In contrast
to the whiteboard scenario, a high percentage of applica-
tion instances are members of the client group, and the
server group is rather unstable, with many servers provid-
ing only a few subcomponents.

The total network load due to late join activity was mea-
sured by the cumulated numbers of received states and
requests. Since the first variant distributes all late join
data via the application group, it produced a high network
load with 741,000 received states and 1,343,000 received
state requests. Variants 2 and 3 transmit states over a
client group; they reduced the number of received states to
162,000 and 148,000, respectively. These savings are less
than in the shared whiteboard scenario because of the large
number of members in the client group. The server group of
the third variant reduced the number of received requests
to 600,000. This reduction is also lower when compared
to the first scenario since the size of the server group was
larger and more requests failed in the first round.

140

client group (algorithms‘z and 3) —=—
server group (algorithm 3) —=—

120 -

100

o 8ot
[}
Qo
€
[
E 60
40 |
20 | 1
o ‘ ‘ ‘
0 50 100 150 200
simulation time [s]
Fig. 6. Composition of late join client and late join server group

Concerning the application load, variants 1 and 2 both
lead to a total number of 13,400 state transmissions,
whereas 8,950 states were transmitted with the third vari-
ant. The management of the client group had to handle
1,690 join and 1,570 leave operations in variants 2 and 3.
The dynamics of the server group was evident with 8,450
join and 8,430 leave operations. We conclude that depend-
ing on the application type, it can be expected that the
third variant produces the lowest overall load, even though
the proportion of the group management costs is higher
than in the whiteboard scenario.

To sum up, introducing additional network groups for
late join clients and servers saves a significant amount of
application and network load. These savings are lower
for applications with higher join and leave rates of session
members as in the gaming scenario. The higher initializa-
tion delay for late join clients might be crucial for real-time
applications. Variant 2, with a separate client group but
without an additional server group, could therefore be a
good fit for those applications.

VI. CONCLUSION

In this paper, we presented an algorithm for the initial-
ization of latecomers in distributed interactive applications.
A fully replicated approach and group communication were
used in order to reach scalability and robustness. The al-
gorithm was realized as a reusable service by employing
a generic model for distributed interactive applications in
combination with flexible late join policies. However, the
basic concepts presented here can also be used as a basis
for application-specific solutions to the late join problem.

By simulating two different scenarios for distributed in-
teractive applications, we have shown that a carefully de-
signed late join algorithm significantly reduces application
and network load. Furthermore, the simulation provided
insights into how to best distribute late join data to clients.
We demonstrated that applications with a stable group
membership such as shared whiteboards will benefit con-
siderably from two additional network groups: one for the
transmission of state information to late join clients and
one for the transmission of state requests to the potential

servers. In contrast, very dynamic and time-critical appli-
cations (i.e., networked computer games) are likely to be
best served by using only one additional network group for
the transmission of states to the clients.

We have integrated our late join algorithm into two exist-
ing applications. TeCo3D [Mau99] is a 3D telecollaboration
tool that allows a group of users to share VRML anima-
tions. For TeCo3D, we chose to use only one additional
network group in order to minimize the initialization de-
lay. The second application is the shared whiteboard mlb
(multimedia lecture board [Vog01]). Here we opted for the
variant of our algorithm that uses a client and a server
group. Both applications use the policy model to request
active subcomponents at once and all other subcomponents
when receiving events.

ACKNOWLEDGMENTS

The authors would like to thank Marcel Busse for imple-
menting the late join simulation.

REFERENCES

S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang.
A Reliable Multicast Framework for Leight-Weight Ses-
sions and Application Level Framing. IEEE/ACM Trans-
actions on Networking, 5(6):784 — 803, 1997.

[FIL*97]

[FWO01] T. Fuhrmann and J. Widmer. On the Scaling of Feed-
back Algorithms for Very Large Multicast Groups. Spe-
cial Issue of Computer Communications on Integrating

Multicast into the Internet, 24(5-6):539-547, 2001.

C. Greenhalgh, J. Purbrick, and D. Snowdon. Inside
MASSIVE-3: Flexible Support for Data Consistency and
World Structuring. In Proc. of ACM CVE 2000, San
Francisco, USA, pages 119-127, 2000.

[GPS00]

[HCIT] M. Handley and J. Crowcroft. Network Text Editor
(NTE) — A scalable shared text editor for the MBone. In
Proc. of ACM SIGCOMM, Cannes, France, pages 197—

208, 1997.

[HMKE99] V. Hilt, M. Mauve, C. Kuhmuench, and W. Effelsbeg.
A Generic Scheme for the Recording of Interactive Media
Streams. In Proc. of IDMS, Toulouse, France, pages 291—
304, 1999.

[Mau99] M. Mauve. TeCo3D: a 3D telecooperation based on
VRML and Java. In Proc. of SPIE Multimedia Com-
puting and Networking (MMCN) 1999, pages 240-251,

1999.

[Mau00] M. Mauve. How to Keep a Dead Man from Shooting. In
Proc. of the 7th International Workshop on Interactive
Distributed Multimedia Systems and Telecommunication

Services (IDMS), pages 199-204, 2000.

[MHKEO1] M. Mauve, V. Hilt, C. Kuhmuench, and W. Effelsberg.
RTP/I - Toward a Common Application-Level Protocol
for Distributed Interactive Media. IEEE Transactions on
Multimedia, 3(1):152-161, 2001.

J. Nonnenmacher and E. W. Biersack. Scalable Feedback
for Large Groups. IEEE/ACM Transactions on Network-
ing, 7(3):375 — 386, June 1999.

J.F. Patterson, M. Day, and J. Kucan. Notification
Servers for Synchronous Groupware. In Proc. of ACM
CSCW, Cambridge MA, USA, pages 122-129, 1996.

S. Shirmohammadi, J.C. de Oliveira, and N.D. Geor-
ganas. Applet-Based Multimedia Telecollaboration: A
Network-Centric Approach. IEEE Multimedia Magazine,
5(2):64-73, 1998.

[NB99)

[PDKO96]

[Sd0G98]

[SJZt98] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen.
Achieving Convergence, Causality Preservation and In-
tention Preservation in Real-Time Cooperative Editing
Systems. ACM Transactions on Computer-Human In-

teraction, 5(1):63-108, 1998.

S. Singhal and M. Zyda. Networked Virtual Environments
Design and Implementation. ACM press, 1999.

T.L. Tung. MediaBoard. Master’s thesis, University of
California, Berkeley, California, USA, 1998.

J. Vogel and M. Mauve. Consistency Control for Dis-
tributed Interactive Media. In Proc. of ACM Multimedia
2001, Ottawa, Canada, pages 221-230, 2001.

[VMG100] J. Vogel, M. Mauve, W. Geyer, V. Hilt, and C. Kuh-
muench. A Generic Late Join Service for Distributed In-
teractive Media. In Proc. of ACM Multimedia 2000, Los
Angeles, USA, pages 259-268, 2000.

J. Vogel. multimedia lecture board (mlb) homepage.
URL: http://www.www.informatik.uni-mannheim.de/in-
formatik/pi4/projects/ ANETTE/anetteProject2.html,
2001.

[SZ99]
[Tun98|

[VMO1]

[Vog01]

