
Priority-Based Distribution Trees
for Application-Level Multicast

Jürgen Vogel, Jörg Widmer, Dirk Farin, Martin Mauve, Wolfgang Effelsberg
Praktische Informatik IV, University of Mannheim, Germany� vogel, widmer, farin, mauve, effelsberg � @informatik.uni-mannheim.de

ABSTRACT
In this paper, we propose a novel multicast routing algorithm that
is based on application-level priorities and network characteristics:
The application may specify an individual priority for each packet-
receiver pair. The multicast distribution tree is then constructed
such that the higher the priority, the more direct the path from the
sender to the packet’s destination and the lower the resulting end-
to-end delay. This algorithm can be used to realize application-
level multicast for delay-sensitive applications such as networked
computer games. However, optimizing the multicast tree with re-
spect to the end-to-end delay comes at the cost of an increase in link
stress – the more direct a path, the less likely it is that it can be inte-
grated efficiently into an overlay distribution tree. Our algorithm
takes this tradeoff into account and constructs efficient priority-
based multicast trees. We demonstrate the performance and char-
acteristics of the algorithm through simulation.

Keywords
Application-Level Multicast, Multicast Routing, Distribution Tree.

1. INTRODUCTION
Group communication, or multicast, is needed by distributed in-

teractive applications to deliver data from one sender to multiple
receivers. Examples are video conferences, groupware systems,
and networked computer games. In many cases, realizing group
communication by setting up a direct connection from a sender to
each receiver is not a viable solution because of resource limita-
tions. In the Internet, IP multicast provides efficient group commu-
nication by duplicating packets within the network routers so that
data traverses physical links only once. But due to various techni-
cal and administrational reasons, IP multicast has not been widely
deployed. A promising alternative is application-level multicast
(ALM) [1-8]: The key idea is to use the end-systems as nodes in
a multicast distribution tree. The construction and maintenance of
the tree is done at the application level without any support from
the network. Routers within the network do not have to keep state
information about group membership. Furthermore, ALM can be
deployed immediately without any changes to the network. This
eliminates two key problems of IP multicast.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NetGames 2003 May 22-23, 2003, Redwood City, CA, USA
Copyright 2003 ACM 1-58113-734-6/03/05 ...$5.00.

Existing approaches for ALM focus on network characteristics
(e.g., latency) to construct the multicast distribution tree. As long
as those characteristics remain constant and no changes in the set
of session members occur, all packets from a sender will take the
same paths towards the destinations. This approach is well suited
when all packets should be delivered to all receivers with the same
priority (e.g., in a multi-destination file transfer).

However, a number of applications exist where the priority of
a packet may be different for the receivers. In a networked com-
puter game, for example, the actions of a player is very important
to competing players that are close by. These players should re-
ceive information about such actions with a very low delay. Other
players may be able to tolerate a higher delay, depending on their
location and orientation within the game. Furthermore, a packet’s
priority may change over time for some or all receivers. For exam-
ple, if sensor data is transmitted by a sender, this data may typically
have a low priority for all receivers, unless an extreme sensor read-
ing occurs which requires the transmission of a packet with very
low latency to some receivers. Traditional tree routing algorithms
are unable to handle these situations.

In this paper, we propose to use a combination of application-
level priorities and network characteristics in order to build and
maintain a multicast distribution tree. Since multicast routing is
handled at the application level, integrating application knowledge
into the routing decision comes natural and introduces little over-
head. The general idea of our approach is to allow the sending
application to assign a priority to each pair of packet and receiver.
The higher the priority, the more direct will be the path that the
packet takes towards its destination. The cost for reduced latency
is a possible increase in link stress (i.e., the number of copies of
a packet that traverse the same link). Thus, the key challenge is
to find an appropriate algorithm for the construction of a multicast
distribution tree which takes this tradeoff into account.

The remainder of this paper is structured as follows: in Sec-
tion 2 we briefly outline existing approaches for application-level
multicast. The algorithm for the construction of multicast distri-
bution trees which take application-level semantics into account is
described in Section 3. In Section 4 we discuss practical issues such
as the maintenance of a distribution tree that may change on a per-
packet basis and how to efficiently distribute topology information
to other nodes. Section 5 contains an evaluation of the presented
algorithm by means of simulation. We conclude the paper and give
an outlook on future work in Section 6.

2. RELATED WORK
Typically, application-level multicast algorithms construct their

distribution topologies based on path characteristics such as (end-
to-end) latency, available bandwidth and packet loss rates. Their

aim is to build distribution trees that minimize the additional rout-
ing overhead compared to native IP multicast.

Yoid [7] creates a single multicast tree for all end-systems that
participate in a session, independently of a specific sender. Each
node � selects another node as parent, preferably a node with a low
network delay to � . Receivers gather a list of possible parents on
basis of periodic control messages and explicit queries. An initial
list can be obtained from a so-called rendezvous host during the
bootstrap phase. Aside from the network delays, the maximum
number of children that can be attached to a potential parent (i.e.,
the fan-out) is considered in the choice of a parent node. Because
the list of possible parents is usually incomplete and the fan-out is
constrained, the resulting distribution tree may be suboptimal. As
a consequence, nodes periodically ping other session members in
order to find a better parent and optimize the tree structure. An
alternative method to select a parent node in Yoid is provided for
the transfer of large data files: nodes connect to the parent that
caches the largest amount of data.

Other examples for tree building ALM protocols are HMTP [14],
BTP [8], and Overcast [9]. They all form self-organizing distribu-
tion trees where nodes select an appropriate parent, and they im-
plement mechanisms for integrating new members, detecting loops
and partitions, and for optimizing the tree by rearrangement. Un-
like the other protocols, Overcast builds sender-specific trees in-
stead of a single shared tree.

With TMesh [13], the authors propose to add additional links
to the multicast tree. While these shortcuts reduce the number of
hops on the way from a sender to the receivers, TMesh seeks to
optimize the average end-to-end delays for the whole group and
builds a rather stable ALM tree. Thus, TMesh seems not to be
flexible and fast enough to facilitate delay optimization for certain
receivers in an environment where priorities change dynamically.

Instead of constructing a tree directly, Narada [5] employs a two-
step process. First, a mesh is built among the participating end-
systems. For the actual data transport, Narada runs a distance vec-
tor protocol with latency and bandwidth [4] as the routing metrics
on top of the mesh. The resulting tree is a sender-specific shortest
path tree (SPT) based on the underlying mesh. The crucial factor
in this approach is the quality of the mesh that must balance the
number and the characteristics of the used unicast links. If there
are too many links in the mesh, the resulting distribution topology
will resemble a star of unicast connections from the sender to all
receivers. As in Yoid, joining end-systems obtain a list of current
session members by a bootstrap mechanism and connect to one or
more listed nodes. Then, members periodically add links that im-
prove the routing performance and remove links that are rarely uti-
lized by a distribution tree.

Like Narada, Gossamer [2] also employs the tree-over-mesh ap-
proach where the mesh is constructed in order to minimize laten-
cies of the distribution tree. The number of connections that a node
can maintain at a certain point in time is explicitly restricted with
Gossamer in order to take bandwidth limitations into account.

Approaches where application-level semantics are used for rout-
ing can be found in the area of content delivery networks. The
common idea of Bayeux [15], Chord [12], and Content Address-
able Networks [11] is to realize a scalable lookup service for ob-
jects (e.g., end-systems) where the responsibility for managing the
object space is shared equally among a network of peer nodes. The
multi-hop lookup path for a target object (e.g., the receiver of a
message) is determined on basis of certain properties of the (hash-
generated) destination address. For example, in Bayeux the current
node uses the i-th digit of an object’s address to resolve the next hop
towards the destination. In contrast to the previously discussed ap-

A

B

C

5

1

2

6

7

3

Figure 1: Joint path to distant receivers

plication level multicast protocols, these content delivery networks
base their routing decisions (almost) exclusively on application se-
mantics. Consequently, the resulting distribution tree may be very
inefficient with respect to end-to-end delay and link stress.

3. APPLICATION-LEVEL MULTICAST
ROUTING

An ALM routing algorithm builds a data distribution tree with
the end-systems as nodes connected by unicast links. The resulting
tree should use the resources of the underlying network efficiently.
Since on the application level there is no direct access to network
topology information, observable parameters (e.g., latency) may be
used to deduce a certain amount of knowledge about the actual
topology: When node

�
has a high delay to both nodes � and�

, and � has a low delay to
�

, then it is likely that the route
�

�
shares a significant portion of the physical link with route

� �
(see

Figure 1). In the following, we will concentrate on unicast latencies
as the network parameter that determines the ALM tree 1.

Two well-known types of trees are the minimum spanning tree
(MST) and the shortest path tree (SPT). The MST optimizes the
resource usage of the multicast tree but the path length is not con-
sidered and can cause very large end-to-end delays. Hence, using
an MST is only reasonable when end-to-end delays are not an is-
sue (e.g., for non-interactive data dissemination). When building
an SPT from the unicast delays, the distribution tree will consist
of separate unicast connections from the sender to each receiver
(commonly, this would be regarded as ‘normal’ unicast rather than
application-level multicast). With respect to end-to-end delay the
SPT is optimal but it causes a very high consumption of network
resources. Furthermore, building a SPT is not possible when the
sender’s bandwidth is not sufficient to serve all receivers simulta-
neously.

Our aim is to construct application-aware distribution trees that
balance the characteristics of MST and SPT: For each packet-
receiver pair the application may provide a priority. Depending on
this priority, the path along which the packet is forwarded should
gradually change from the MST path to the SPT path. In order to
find an algorithm with this property, we first investigate well-known
metrics for the assessment of distribution trees. The optimization of
resource usage leads to an MST, while the optimization of the cu-
mulative end-to-end delay leads to an SPT. We combine those two
metrics by using one common application priority for the whole
distribution tree. The optimization of the combined metric allows
the gradual transition from MST paths to SPT paths as the appli-
cation priority increases. In a second step, we generalize the met-

1We will ignore that unicast routing protocols may give suboptimal
routes and assume that the underlying unicast routing algorithm
causes direct paths to a node to be shorter than any indirect path
over intermediate nodes.

ric such that one priority may be given for each destination. Its
optimization leads to a tree where each path from the sender to a
destination changes from the MST path to the SPT path. Finally,
we present an efficient algorithm which provides a very good ap-
proximation for the optimal distribution tree with respect to the last
metric.

3.1 Distribution Tree Metrics
Let ���������
	�� be a fully connected, directed graph, where�
� �

��� � denotes the set of nodes and 	�� ��� � � � the set of
edges, where

� � � connects the nodes � and � . We define the node
������� as source and the remaining nodes ������� �

��� � as
receivers. Edge weights � � � � � � are assigned according to the delay
of the corresponding link. For each distribution tree !#"�	 , we
can define two cost functions

�%$
and

�'&
:

(Resource usage, defined as the product of link stress and
link delay, summed over all physical links of the underlying
network. This sum is equivalent to the sum of all edge delays
in the overlay distribution tree2:

� $ �*)+-,/.10�2 � �
� � � �43

(Cumulative end-to-end delay, measuring the total delay for
the distribution of a packet from the source to all receivers.
Let 5�67�98 � �:�<;�=>313>3>= � �-?@6BA denote the route from the source
� � to the receiver � 6 on the current distribution tree. Then�'&

is given by:

�'& ��)C<DE0 $)+E0GF-D � �
� �43

When optimizing
� $

, the minimum cost tree is equal to the
MST, when optimizing

�'&
, it is equal to the SPT.

3.2 Introducing Application-Level Semantics
For many applications, selecting either of these two metrics as

the optimization criterion does not give the desired result. While
minimizing the total resource usage is desirable, overly large end-
to-end delays reduce the utility of the application. Hence, some
tradeoff between resource usage and end-to-end delay is required.
Let H��JI KL�1MON be the application’s priority with which it wants
to deliver data, where M means that the end-to-end delay for the
receivers should be as low as possible, while K denotes no special
delay requirements. A balancing cost function

�
can be defined as

follows:
� �P�-M'QRHS�T)+-,U.�0�2 � �

� � � �WVXHY)C<D<0 $)+40�F D � �
� �43 (1)

Figure 2 visualizes the effect of H when building the optimum
distribution tree (according to

�
) for a sample ALM session. The

participants of the session are numbered from M to Z , while interme-
diate routers of the underlying network appear as unmarked nodes.
The corresponding table contains the pairwise end-to-end delays.
Let node [be the sender. The resulting distribution trees that are
optimal with respect to

�
are depicted in Figure 3. When H is

increased, nodes farther away move up in the tree, reducing the
end-to-end delays to the sender, until for H\�#M�3 K a star-like SPT

2Given the distribution tree
���^]`_ = ��_ba � in Figure 1, the resource

usage in the underlying network is MbcedeVf[gcgM`V\Mhch[i�kj , which
is equal to the sum of edge weights in the overlay tree ZlVnm . The
link stress is implicitly contained in the end-to-end delays.

is reached. As can be seen from the graphs, the number of possible
trees for a small overlay network with only 6 nodes is very limited.

Following, we generalize the cost function
�

for the case of in-
dividual per-receiver priorities, where information may be of high
importance to some receivers (and should therefore be delivered
on a direct path) and of lower importance to other receivers. LetHpo@�rq�I K@�1MON be the per-node priorities for a sender ��� . They can
easily be integrated into

� &
, defining the cost function

�ts& :
� s& ��)C<D<0 $ Hu� � 6 �e)+E0GF D � �

� �43
Integrating the per-node priorities into

�%$
is more difficult since

the costs are calculated over the edges of the tree and not per re-
ceiver. However, in an MST, the relevant cost for a receiver is the
weight of the edge over which it is connected to the rest of the tree.
Consequently, the priority of a node can be assigned to this edge.
This leads to the following cost function

� s$:
�ts$ �*)+-,/.10�2 �-M'QRHu� � � �
�B� � � � � �43

The total costs
�

are defined as

� � � s$ V � s& 3 (2)

Note that
�

specializes to
� &

if v �wHu� �L�Y�xM , and to
� $

ifv �yHu� �L�z�{K . This means that the node priorities determine the
structure of the minimum cost tree with the extremes SPT and MST.

Direct optimization of this cost function is computationally com-
plex. Thus, we approximate the cost term in a way that allows us to
directly modify edge weights and compute an MST based on these
modified weights. In order to calculate the modified weights, the
cost function needs to be based solely on the weights of the edges
of the tree, and not on complete paths to individual receivers.

The general idea is to split the complete path 5�6 to a receiver
into the last edge of the path

� �|6 and the path of all previous edges8 � �:�<;�= � �<;}�-~�=>3>3>3>= � �-?@��A . We can approximate the cost of the path
from � � to � � with the cost of the direct edge

� �-� , where � � � �-� � is
a lower bound for the actual path costs. This leads to a simplified
approximate formulation for the global costs

�
:

� �*)+-,U.�0�2 �-M'QRHu� � � �
�B� � � � � �WV�)C<DE0 $ Hu� � 6 �e)+40GF D ���
� �

�)+-,U.�0�2 �-M'QRHu� �>���
�B� � � � ����V
)C<DE0 $u� C , 0G�e� + , D 0G2 Hu� ��6B����� � � �-���`V\� � � �/6-�-�

�)+-,U.�0�2 ���
� � � ��VpHb� � � �B��� � �-� �43

The last equality follows from the property that a spanning tree of a
graph has the same number of edges as there are target nodes in the
graph. Consequently, both sums are calculated over the same set of
edges. In order to minimize

�
, we can apply an MST algorithm on

the graph with modified weights. The new weights are set to

�7��� � � ������� � � � ���`VpHu� �O���B� � � �-��� (3)

With increasing Hu� �O��� , indirect links to the target node �>� will be-
come more expensive and eventually such links will be removed
from the distribution tree. Note that a directed MST algorithm has
to be applied to obtain correct results as it is not a priori known in
which direction data is distributed over the edge and the costs for

1
24

20

2

3

5

421

26

20

24

13

5

8

17
6 30

11
12

15

24

22

27

22

24

14 12

22

1 2 3 4 5 6

1 0 128 126 115 114 158
2 128 0 5 21 122 166
3 126 5 0 20 120 164
4 115 21 20 0 109 153
5 114 122 120 109 0 47
6 158 166 164 153 47 0

End-to-end delays

Figure 2: Example graph

2

3

5

4

20

5

109

1

114

6

47

(a) H � I K@3 K�KyQ KL3 K@M^�

2

3

5

4

20

1

115

5

109

6

47

(b) H � I KL3 K@MLQiKL3 [�K��

2

3

5

4

21

1

115

5

109

6

47

(c) H � I K@3 [�KWQ K@3 ZG[��

2

1

128

3

5

4

21

5

122

6

47

(d) H � I KL3 Z�[WQ KL3 j � �
2

1

128

3

5

4

21

5

122

6

166

(e) H �fI K@3 j � Q M�3 K�KG�
Figure 3: Optimal distribution trees

opposing directions may differ. We call the combination of mod-
ified edge weights and directed MST computation priority-based
directed minimum spanning tree (PST) algorithm.

Algorithms to construct MSTs in directed graphs have been de-
scribed in [3, 6]. Pseudo code for the implementation that was used
for the simulations can be found in Appendix A.

4. DESIGN CONSIDERATIONS
The presented PST algorithm improves the application’s influ-

ence on the data distribution process through the inclusion of appli-
cation semantics in the construction of the distribution tree. How-
ever, it is very costly to recalculate the distribution tree for each
packet. Moreover, nodes in a specific distribution tree need to know
which other node or nodes to forward a packet to and thus require
some information about the tree topology whenever the topology
changes. This information has to be distributed to the nodes in an
efficient way.

In this section, we will discuss how the PST algorithm can be
integrated into applications while avoiding excessive calculations
in the end-systems and message overhead through the distribution
of topology information.

4.1 Maintenance of the Distribution Tree
Instead of rebuilding the distribution tree whenever topology in-

formation or application priorities change, an improved update
mechanism can significantly reduce the number of necessary tree
recomputations 3. The tree will not change under the following
conditions:

(the cost (delay) of a link that is not in the directed MST in-
creases,(the cost of a link within the directed MST decreases,(the priority for a receiver which is connected directly to the
sender increases, and(the priority for a receiver which is connected indirectly via
another receiver decreases.

In these cases, it is only necessary to update the link weights.
Furthermore, a change in receiver priorities or link delays may be
too small to cause a tree change.

An increase in link delay on a direct link between sender and re-
ceiver may cause the receiver to be connected through an indirect
link (corresponding to a priority decrease). An increase in the de-
lay of an indirect link may cause a node to be connected directly
(corresponding to a priority increase). Similar considerations hold
for a delay decrease on direct or indirect links. When computing a
directed MST, it is possible to record for each step of the algorithm
by how much the cost of a link has to increase before it is excluded
from the distribution tree, or by how much the cost of a link has to
decrease before it will be included in the tree. With these consider-
ations, rebuilding the tree can be limited to the cases where the tree
structure will change.

If changes to the tree structure are necessary, it is desirable to
keep the number of updates small. When a number of link delays
or priorities change simultaneously, recomputing the whole tree is
reasonable. For minor changes, adjusting the existing tree can be
much less costly.

3Note that some of the improvements in the update mechanism are
only possible because the overlay graph is fully connected and be-
cause the relative weight increase on the last hop of an indirect path
is based on the weight of the link from the sender to the start of the
last hop link and not on the complete path to the receiver.

Let us assume that the cost of a single link increases sufficiently
to cause a change in the distribution tree. We have to distinguish
two cases:

(��� � � � � increases for � � �p� ,(��� � �:� � increases for sender � � .
In the first case, � � � � � ��� is updated and �>� is connected to the rest
of the tree via a less expensive link. However, the link costs for
all nodes in the tree below �>� as well as the tree structure remain
unchanged. Because of the asymmetric links, it may be possible
that it is now less expensive to connect � � via

� �E� , and so on. Hence,
we have to reverse the direction of links on the path from �1� to ���
as long as the costs � � in the direction towards the sender are less
expensive than the link costs in the opposite direction.

In the second case when the cost of a link
� �:� from the sender

increases, the change will also increase the costs of � � � � ��� � v � � ��T� �
� � � . For all � � with

� ��� � ! , it is necessary to check whether
the node can be connected to the rest of the tree via a less costly
link (i.e., the rest of the tree may grow “into” the region with the
increased link costs). The tree parts below the � � will not be af-
fected. Thus, in both cases only very limited parts of the tree will
change.

The same calculations can be applied when link costs decrease.
Moreover, priority changes affect the costs of all incoming links
of a node but since only one of these links can be in the current
distribution tree, the above statements are even valid for priority
changes.

Lastly, even though a distribution tree may no longer be optimal
given the current edge weights, it may be sufficient for data distri-
bution as long as the changes are small (i.e., use a “fuzzy” update
strategy where updates are triggered by significant weight changes
only).

4.2 Efficient Topology Distribution
For the forwarding process, a specific tree topology needs to be

known by all nodes of the tree. Either, nodes may distribute their
priority tables so that all other nodes can locally recalculate all dis-
tribution trees, or nodes may distribute the tree they already calcu-
lated. The second alternative seems much better suited for the task
since the communication overhead is similar but much less calcu-
lations at the receivers are required. Furthermore, for the second
alternative inconsistent delay information at the receivers will not
result in routing loops.

In fact, nodes do not require the complete distribution trees, but
only need to know which node or nodes to forward the packets to.
This information is updated by a sender whenever its distribution
tree changes. It is either possible to include the information in the
data packet headers, or to send extra tree maintenance packets. The
second alternative is preferable if a significant number of packets
are sent along the same distribution tree.

If delays between nodes remain relatively constant and only some
application priority patterns are valid, the number of different dis-
tribution trees is fairly limited. In this case it may be more effi-
cient to precompute all possible trees (or a limited subset of suit-
able trees), distribute this information to all the other nodes, and
then only include an identifier for a specific distribution tree in the
header of a data packet.

5. SIMULATIONS
We implemented a simple network simulator in order to evaluate

the performance of our PST algorithm compared to the delay-based
MST and SPT approaches. The simulator is event-based and allows

Table 1:
Routers Links End- Avg. # Avg. # of

Systems of Trees Edge Changes
42 80 18 16 1.7
52 134 18 22 1.8
70 123 30 24 2.5
85 173 35 35 2.4

100 195 40 39 2.8
120 187 30 27 2.8
125 264 50 51 2.8
130 244 30 45 4.3
140 276 40 38 2.4
195 271 50 46 3.1

packet-level data distribution on arbitrary network topologies. A
network topology is characterized by a set of nodes connected via
edges with a certain delay. We do not consider other factors such
as bandwidth, router load, and packet loss.

All network topologies were generated with the Georgia Tech In-
ternetwork Topology Models (GT-ITM) [1] toolkit. The topologies
use the transit-stub method without extra transit-stub or stub-stub
edges. Edges between nodes are placed using the random model.
End-systems were located on the network’s edges.

First, we evaluate the properties of PSTs for different network
topologies when all receivers are assigned the same application-
level priority. Following, we give simulation results for realistic
priorities based on a multi-player game.

5.1 Simulations for PSTs with a single priority
In this section, we analyze how many distinct distribution trees

are built by the PST algorithm and to what extent these trees differ.
We define the application-level priority H to be equal for all re-
ceivers (according to Equation (1)) and calculate the set of trees ! �
(i.e., vGHf� I K@�1MON) for different network topologies. The results are
listed in Table 1. The first three columns describe the topology used
in terms of the number of routers, the number of physical links, and
the number of end-systems participating in the ALM session. The
average number of different distribution trees is given in column
four. As can be derived from the table, this figure is correlated with
the number of end-systems.

Next, we are interested in the topological difference between two
successive distribution trees ! � and ! ����� , where ! ����� is the tree
with the smallest priority H ������� H � with at least one changed
edge compared to !�� . The average number of edge changes from
one tree to the next is relatively small (see column five). Thus, the
optimization of tree maintenance as described in Section 4 is able
to achieve a significant reduction in tree calculation costs.

5.2 Simulations for a sample application
In the following, we compare the characteristics of our PST al-

gorithm to the delay-based MST and SPT approaches on basis of a
realistic application scenario.

5.2.1 Simulation Setup
Event patterns to determine application priorities for the simula-

tions were generated by tracing a simple multi-player game [10].
In this game, each player controls a spaceship which can acceler-
ate, decelerate, turn, and shoot at one another with a laser beam of
a certain range. The rectangular game field allows players who ap-
proach one edge of the field to reappear at the opposite side. Each
spaceship has a predefined amount of hit points: each time it is
hit by a laser beam, one of the hit points is subtracted. If no hit

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ra
tio

priority class

Figure 4: Distribution of application priorities

points remain, the spaceship is removed from the game. User ac-
tions together with timestamps and information about the current
game state were recorded for games with six and eighteen players.
In our network simulation, each recorded user action led to one
packet exchanged among end-systems.

The application priorities Hu� � � �i�kI KL�1MON used for the tree build-
ing algorithm are based on the relative positions between the space-
ships and their orientations. If the spaceship � of a player is within
shooting range of another player’s ship � , the end-system �G� of �
sets Hu� � � � �JM . We define that � is within shooting range of � if
the distance between � and � is less than the maximum range of
the laser beam and � is oriented in such a way that it can hit � af-
ter conducting at most one turn operation. For players � outside
the shooting range of � , H is calculated depending on their distance	 �
��=���� to the sender: Hu� � � � �rM'Q �
� � � ���������� , where

	������
is the max-

imum possible distance.
A typical distribution of priorities for a game session with six

players is depicted in Figure 4. Priorities close to M are common be-
cause the objective of the game is to score points by shooting other
players and hence players will cluster together instead of spreading
out evenly on the game field.

5.2.2 Simulation Results for 6 End-Systems
To evaluate the characteristics of our priority-based tree-building

algorithm (PST), we compare it to the MST and the SPT, respec-
tively. For the simulations, we use two network topologies of dif-
ferent sizes.

The first simulation scenario is based on a game session with six
players. The session lasted for 140 seconds and during that time
span a total of 2630 events were issued. The priority distribution
that resulted from the spaceships’ positions is depicted in Figure 4.
Figure 2 shows the underlying network topology with end-to-end
delays between 5 and 166 ms and an average value of 100 ms.

The delay properties of a specific distribution tree can be mea-
sured using the costs

� s& (see Section 3). Figure 5(a) depicts the
distribution of

� s& for the SPT, the MST, and the PST, respectively.
By definition, the SPT routing algorithm results in the best distri-
bution of

�ts& , with 90% of all trees having a
�7s& of less than 440

ms. However, the difference between SPT and PST is compara-
tively small (12 ms at 90%), meaning that the end-to-end delays
in the distribution trees constructed with the PST algorithm are on
average only marginally higher than the delay on the direct paths.
In comparison, distribution trees created with the MST algorithm
result in a significantly higher difference for

� s& (75 ms at 90%).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 300 400 500 600 700 800

C
D

F

cumulative weighted end-to-end delays [ms]

SPT
MST

priority-based MST

(a) Distribution of
� s&

1

1.05

1.1

1.15

1.2

1.25

[0.0;0.1) [0.1;0.5) [0.5;0.9) [0.9;1.0]

re
la

tiv
e

de
la

y
pe

na
lty

priority classes

SPT
MST
PST

(b) Average RDP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

250 300 350 400 450 500 550 600 650 700

C
D

F

resource usage [ms]

SPT
MST
PST

(c) Distribution of
�'$

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

C
D

F

link stress

SPT
MST
PST

(d) Link stress distribution

Figure 5: Simulation results for 6 End-Systems

The receiver-specific end-to-end delays, defined as � +40�F-D � � � � ,
resulted in the following 99% confidence intervals for this simu-
lation scenario: SPT I j � 3 � �^M>KLM�3 [1N , MST I M�M � 3UM���M^[@M�3 m�N , and PSTI M>K�mL3 j@��M>K�ZL3 ��N .

The relative delay penalty (�����) is a measure for the optimality
of the end-to-end delay:

����� ���<�e� � +E0GF-D ��� � ���� � �-6B� 3
The ����� compares the end-to-end delay of a receiver � 6 to the
smallest possible delay (i.e., the unicast delay from �G� to ��6). By
definition, for the SPT distribution trees ����� ���<�l�#Mzv � 6 ��� .
Figure 5(b) shows the average ����� values for different priority
classes. In the case of the PST algorithm, the ����� decreases con-
tinuously with increasing application-level priorities from 1.16 for
receivers � 6 with Hu� � 6 ���XI KL3 KL�4K@3/M1� to 1.002 for � 6 with Hu� � 6 �z�I K@3 j@�^M�3 K�N . For application instances with a high priority, a delay
close to the unicast latency can be achieved. The maximum range
of the average ����� is relatively small (0.16) since only six end-
systems participate in this simulation scenario and the distribution
trees have paths with at most four hops.

The load on the network caused by a certain distribution tree
can be measured using the resource usage metric

� $
as defined

in Section 3.
�'$

takes into account that more than one identical

copy of a packet may be sent over the same physical link. The
distribution of

� $
is depicted in Figure 5(c). The MST algorithm

always selects the same set of edges
� � � for its trees, independently

of the source node. Thus, the MST’s
�'$

has a constant value of
286 ms which is at the same time the lower bound for the resource
usage of the other algorithms. 70% of all distribution trees built by
the PST algorithm have a

� $
between 286 ms and 307 ms which is

close to the optimum and far better than the values obtained by SPT.
Hence, the optimization of end-to-end delays for certain application
instances by the PST causes only a slight increase in resource usage
when compared to the MST.

Link stress is another indicator for the network overhead caused
by an ALM tree. MSTs result in the lowest link stress with 77% of
all distribution trees having a link stress of 1 and a maximum link
stress of 2, as shown in Figure 5(d). Distribution trees constructed
by the PST algorithm come close to these values with the only dif-
ference being that 1.7% of the trees have a link stress of 3. The link
stress for the star-shaped SPT topologies lies between 1 and 5 and
only 60% of the trees have a link stress of 1.

5.2.3 Simulation Results for 18 End-Systems
For the second simulation scenario, we created a more complex

network topology with 42 routers, 80 links, and 18 end-systems
participating in a virtual game session. The delays among end-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

C
D

F

cumulative weighted end-to-end delay [s]

SPT
MST
PST

(a) Distribution of
� s&

1

1.2

1.4

1.6

1.8

2

[0.0;0.1) [0.1;0.5) [0.5;0.9) [0.9;1.0]

re
la

tiv
e

de
la

y
pe

na
lty

priority classes

SPT
MST
PST

(b) Average RDP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 1500 2000 2500 3000 3500 4000

C
D

F

resource usage [ms]

SPT
MST
PST

(c) Distribution of
�'$

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18

C
D

F

link stress

SPT
MST
PST

(d) Link stress distribution

Figure 6: Simulation results for 18 End-Systems

systems lie between 16 ms and 268 ms with an average value of
145.5 ms. During the session’s duration of 104 seconds, a total of
6564 events were issued by all players. The resulting application
priorities are similar to the distribution shown in Figure 4.

The distributions for the cumulative weighted end-to-end delay� s& are depicted in Figure 6(a). Because of the increased complex-
ity of the ALM trees (with up to 11 hops on paths of the PST),
the difference in

� s& between SPT and PST is larger (1721 ms to
1906 ms at 90%). However, the PST does achieve a good opti-
mization of the latency from the source node to receivers with a
high priority when compared to the values of

� s& for the MST al-
gorithm (3496 ms at 90%).

The receiver-specific end-to-end delays resulted in the following
99% confidence intervals: SPT I M � � 3 �L��M �GjL3 [1N , MST I [� M�3 d��O[� m@3 � N ,
and PST I M � d�3 [@��M � Z@3 d^N .

The optimization of end-to-end delays becomes also visible in
the average ����� values for application instances within different
priority classes (see Figure 6(b)). For the PST algorithm, the �����
decreases from 1.35 to 1.002 for receivers with Hu� � 6 �W�kI K@3 j@�1M�3 K�N
which is close to the optimum ����� value. This is a significant
improvement over multicast trees constructed using the MST, even
for the receivers within the lowest priority class.

At the same time, priority-based minimum spanning trees cause
a higher network load as can be seen from Figure 6(c). It shows the

resource usage distributions for the three tree building algorithms:
90% of all PSTs have a resource usage that is up to 50% higher
than

� $
of the MST. Shortest path trees have a resource usage that

is by far larger.
As in the first simulation scenario, the MST algorithm generates

the lowest link stress with 90% of all distribution trees having a link
stress of at most 2 and a maximum stress of 4 (see Figure 6(d)). The
values for the PST algorithm are only slightly larger with 90% of
all multicast trees having a link stress of at most 3 and a maximum
link stress of 12. In comparison, the link stress of the SPT trees has
a value of 9 at 90% and maximum link stress is 17.

5.2.4 Introducing Uncertainty
All simulation results discussed above were calculated under the

condition that the application always had full knowledge about the
actual end-to-end delays. In a real network, delays fluctuate (de-
pending on router load) and measurements give approximations
only. Thus, we also conducted simulations for the PST algorithm
when measured delays differ from the real values up to a certain
percentage

�
. For

� �P[�K�� ,
�ts& degrades only by 128 ms at 90%

when compared to the value given in Figure 6(a), and by 637 ms
for
� � d�K�� . In the highest priority class, ����� increases only

slightly to 1.04 for
� ��[�K�� , and to 1.23 for

� ��d�K�� . The
ressource usage distribution for

� � [�K�� is almost identical to the

one depicted in Figure 6(c). For
� � d�K�� , 95% of all trees have

a
�'$

between 1120 ms and 1882 ms. These results indicate that
the PST algorithm is fairly robust against inaccurate knowledge of
delays.

Summing up, the simulation results show that the PST algorithm
optimizes the end-to-end delay for receivers for which the sender
has a high application priority. Even delays for end-systems with
a lower priority are in most cases better than those that can be
achieved with multicast trees built by the MST algorithm. At the
same time, the increase in network load is kept at a tolerable level.

6. CONCLUSIONS AND OUTLOOK
We have presented a novel priority-based routing algorithm for

application-level multicast. It allows an application to influence the
path that a packet takes from the sender to a receiver by specifying
a priority for each packet-receiver pair. As the priority is increased
from K to M , the path changes gradually from MST to SPT. Thus,
our PST can be considered as a generalization of the MST and the
SPT. We have described an efficient algorithm for the construction
of the distribution tree and discussed how tree maintenance oper-
ations can be minimized. Our simulation results indicate that the
PST algorithm builds multicast trees with end-to-end delays that
are close to the optimum for receivers with a high priority while
the total network load increases only slightly.

In the future, we plan to investigate how to best select priorities
on the basis of application-layer semantics for performance-critical
multicast applications. Another important issue is to further reduce
the computational complexity and to improve scalability. One so-
lution might be to cluster adjacent (in respect to latencies and pri-
orities) end-systems and to construct local PSTs. Also, we want to
take capacity constraints on the links into account, and we intend to
perform simulations for more complex topologies. Our final goal is
to integrate the PST algorithm into a real-world multicast applica-
tion, such as an Internet game, and to perform measurements over
the Internet.

7. REFERENCES
[1] K. Calvert, M. Doar, and E. Zegura. Modeling Internet

Topology. IEEE Communications Magazine, 35(6):160–163,
1997.

[2] Y. Chawathe. Scattercast: An Architecture for Internet
Broadcast Distribution as an Infrastructure Service. PhD
thesis, University of California, Berkeley, USA, Dec. 2000.

[3] Y. Chu and T. Liu. On the Shortest Arborescence of a
Directed Graph. Science Sinica, 14:1396–1400, 1965.

[4] Y. Chu, S. Rao, S. Seshan, and H. Zhang. Enabling
Conferencing Applications on the Internet using an Overlay
Multicast Architecture. In Proc. ACM SIGCOMM, San
Diego, CA, USA, Aug. 2001.

[5] Y. Chu, S. Rao, and H. Zhang. A Case For End-System
Multicast. In Proc. ACM SIGMETRICS, Santa Clara, CA,
USA, June 2000.

[6] J. Edmonds. Optimum Branchings. J. Research of the
National Bureau of Standards, 71B:233–240, 1967.

[7] P. Francis. Yoid: Extending the Internet Multicast
Architecture. unrefereed report, available at
http://www.icir.org/yoid/docs/yoidArch.ps.gz, Apr. 2000.

[8] D. Helder and S. Jamin. End-host Multicast Communication
Using Switch-tree Protocols. In Proc. GP2PC, Berlin,
Germany, May 2002.

[9] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and
J. J.W. O’Toole. Overcast: Reliable Multicasting with an

Overlay Network. In 4th Symposium on Operating Systems
Design and Implementation (OSDI), San Diego, CA, USA,
Oct. 2000.

[10] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg. Local-lag
and Timewarp: Providing Consistency for Replicated
Continuous Applications. To appear in: IEEE Transactions
on Multimedia.

[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable and Content-Adressable Network. In
Proc. ACM SIGCOMM, San Diego, CA, USA, Aug. 2001.

[12] I. Stoica, R. Morris, D. Karger, M. Kasshoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications. In Proc. ACM SIGCOMM,
San Diego, CA, USA, Aug. 2001.

[13] W. Wang, D. Helder, S. Jamin, and L. Zhang. Overlay
Optimizations for End-host Multicast. In Proc. NGC,
Boston, MA, USA, Oct. 2002.

[14] B. Zhang, S. Jamin, and L. Zhang. Host Multicast: A
Framework for Delivering Multicast to End Users. In Proc.
IEEE INFOCOM, New York, NJ, USA, June 2002.

[15] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz.
Bayeux: An Architecture for Scalable and Fault-tolerant
Wide-area Data Dissemination. In 11th International
Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV), Port Jefferson, NY,
USA, June 2001.

APPENDIX

A. PSEUDO CODE
Figure 7 gives the pseudo code to compute the PST on a graph� � ���z�<	 � for a sender ��� with priority function H . First, the

weights � � � � � � � of the directed graph are calculated as described
in Section 3. Second, the directed minimum spanning tree is deter-
mined according to the algorithm published by Edmonds [6]. This
algorithm is designed to construct a branching 4 ! with maximum
total costs

� � � +-,/.10�2 ��� � � � � on basis of � . Thus, to build a

minimum spanning tree, we define all weights � � to be negative
and ensure that the branching contains � ����QnM edges (maximizing�

with negative weights is equal to minimizing
�

with positive
weights).

The basic idea of Edmond’s algorithm is to calculate an initial
graph ! by selecting for each node (except � �) the incoming edge
with maximum costs. While ! contains any cycles, these are bro-
ken up by exchanging appropriate edges.

4A branching is a directed graph without cycle where each node
has at most one incoming edge, i.e., a branching is not necessarily
connected.

(1) Compute weights � � � � � � � for all edges in E:

(v �
=���=<����n� o�� � � � � � �e� Qy�:��� � � � ��VpHu�/���B��� � �-� �
�
(2) Compute the directed minimum spanning tree with source �G� on � :

(Discard all edges
� �|�7� 	 entering the source node ��� .(v nodes � � �n��= � � �� � � : select the edge

� �4� �Y	 with maximum weight � � � � �4� � . Let 	 � be the set of selected
edges.(While ! o �P��� �E	 � � contains a cycle

� o �r�������y�4=�� "��e=��P" 	 � do

– Find the edge
�
��� �	� with minimum weight � � � � �
� � .

– Modify the weight � � of each edge
� � � � ��� � � � � � �T����� = � � ��� � :� � � � � � �Ro �9� � � � � � �gVk� � � � �
� �'Q�� � � ��
 � ��� � � , with �b�/���R��� being the predecessor node with edge�
 � ��� � ��� .

– Select the edge
� ��� � �^� � � � � � � �J��� = � � ��� � with maximum weight � � � � ��� � , and set	 � o � 	 ��� ��� ��� �'� �^�
 � � � � � .

– Build a new graph ! by contracting all nodes � � � � into a pseudo-node � :�*o � ����� � � � � . Modify 	 and 	 � by replacing all edges
� � � with tail node � � ��� or head

node � � �	� by
��� � or

� � � , and delete edges
�^� � � � � � = � � �	� � . Create new weights � � accordingly.

(Replace all pseudo-nodes � �p� and the corresponding edges in 	 � by the original nodes and edges. ! represents
the directed MST with root � � .

Figure 7: Pseudo code for the computation of the optimum distribution tree

