
Consistency Control for
Distributed Interactive Media

J�urgen Vogel, Martin Mauve

Praktische Informatik IV, University of Mannheim, Germany

fvogel,mauveg@informatik.uni-mannheim.de

Abstract| In this paper we present a generic consistency
control service for distributed interactive media, i.e. media
which allow a distributed group of users to interact with the
medium itself. Consistency control is vital to these media
since they typically require that a local copy of the medium's
state be maintained by each user's application. Our service
helps the applications to keep the local state copies consis-
tent. The main characteristics of this service are as follows:
a signi�cant number of inconsistencies are prevented by us-
ing a mechanism called local lag. Inconsistencies that cannot
be prevented are repaired by an improved timewarp algo-
rithm that can be executed locally without burdening the
network or the applications of other users. Exceptional sit-
uations and consistency during late-join situations are sup-
ported by a consistent state request mechanism. Moreover,
the service also supports the application in detecting in-
tention con
icts between the actions of distinct users. The
major part of this functionality is based on a media model
and the application level protocol for distributed interac-
tive media (RTP/I) and can thus be reused by arbitrary
RTP/I-based applications. In order to demonstrate the fea-
sibility of our approach and to evaluate its performance we
have integrated the generic consistency service into a shared
whiteboard system.

Index Terms|Consistency, Distributed Interactive Media,
RTP/I, Timewarp, Local Lag, Intention Con
ict, Late Join,
mlb.

I. Introduction

Distributed interactive media are media which allow a
set of spatially separated users to interact synchronously
with the medium itself. Typical examples of distributed
interactive media are shared whiteboards, which are used
to present and edit slides in a teleconferencing environment
[Tun98], [GE98], distributed virtual environments (DVEs)
[Hag96], shared text editors [HC97], and computer games
with network support [GD98].
In order to provide high responsiveness and to avoid the

drawbacks of centralized approaches, such as the presence
of a single-point-of-failure and lack of scalability, applica-
tions for distributed interactive media often employ a repli-
cated distribution architecture.

In this architecture each user runs an instance of the
application, which manages a local copy of the medium's
shared state. For example, the state of a shared whiteboard
presentation includes a number of presentation slides, each
containing graphical objects such as images and text. User
actions (e.g., moving an image or inserting new characters
into a text object) can change this state. Local user actions
therefore have to be transmitted to all remote instances of
the application so that these can modify their local copy of
the state accordingly.

Without taking special precautions, the consistency of
the shared state cannot be guaranteed, even if all user ac-
tions are successfully delivered to all instances of the ap-
plication. The main problem is that the transmission of an
action is subject to a certain network delay. While a user
action can be executed at once at the originating site, it
takes some time to transmit it over a network to the other
instances. Therefore, execution of the operation is delayed
at the remote instances. This can result in di�erent or-
derings of operations, thereby inducing an inconsistency.
Consider, for instance, two participants of a whiteboard
session each changing the color of a rectangle almost at the
same time. The �rst participant changes the color to red,
the second to blue. Given a signi�cant network delay, it
is likely that once both actions have been executed, the
rectangle shown by the application of the �rst participant
is blue, while the rectangle presented by the application of
the second participant is red.

Generally, existing mechanisms to prevent these prob-
lems can be classi�ed as pessimistic or optimistic ap-
proaches. Pessimistic mechanisms prevent inconsisten-
cies, typically by using locking algorithms or 
oor con-
trol to avoid simultaneous con
icting operations [MD96].
Even though this technique is very e�ective, pessimistic
approaches have one major drawback: real collaboration
between session participants is restricted. Optimistic ap-
proaches, on the other hand, allow inconsistencies to hap-
pen and seek to repair them afterwards in an eÆcient way
[EG89], [SJZ+98]. While these mechanisms support col-
laboration between users, existing approaches tend to be
very complex, and application-dependent, and to expose
the user to frequent short-term inconsistencies.

In this paper we present an optimistic consistency control
service that improves several important aspects of existing
approaches:



� It eliminates a signi�cant number of short-term inconsis-
tencies by using a method called local-lag.

� It employs an improved timewarp algorithm to repair in-
consistencies. This algorithm can be performed locally
without additional burden on the network, while mini-
mizing the local computational e�ort for executing the
repair of inconsistencies.

� It takes into account participants that join an ongoing
session, i.e. it supports late joiners.

� It provides mechanisms to detect con
icts of intention
between user actions.

� It has been designed and implemented as a generic ser-
vice reusable for arbitrary distributed interactive media
which employ the Real-Time Protocol for Distributed In-
teractive Media (RTP/I) [MHKE01].

To demonstrate the feasibility of our ideas and to eval-
uate the performance of the consistency service, we have
integrated it into a shared whiteboard, the multimedia lec-
ture board (mlb) [Vog01a].

The remainder of this paper is structured as follows. In
Section Two we introduce a model for distributed inter-
active media which allows an application-independent dis-
cussion of common problems and solutions. Furthermore,
we give a brief overview of the RTP/I protocol. In Section
Three consistency criteria for distributed interactive media
are de�ned. The subsequent Sections present the concepts
of local lag, timewarp, and state request, and show how
we combine these mechanisms to form a generic consis-
tency control service. For each element we explain how the
service cooperates with the mlb. In Section Seven we in-
vestigate how the service is able to detect con
icting user
intentions. In Section Eight we present a performance eval-
uation of the consistency service and its application to the
mlb. Related work is examined in Section Nine. The paper
concludes with a summary and an outlook on future work.

II. Media Model and RTP/I

In order to provide a generic service that is reusable for
a whole class of media, we give a brief overview of the
characteristics of the distributed interactive media class.
A more detailed discussion can be found in [MHKE01].

A. States and Events

A distributed interactive medium has a state. For ex-
ample, the state of a shared whiteboard is de�ned by the
content of all pages present in the whiteboard. In order to
perceive the state of a distributed interactive medium, a
user needs an application, e.g., a shared whiteboard appli-
cation is necessary to see the pages of a shared whiteboard
presentation. This application generally maintains a local
copy of (parts of) the medium's state. Applications for
distributed interactive media are therefore said to have a
replicated distribution architecture. For all application in-
stances the local state of the medium should be at least
reasonably similar. It is therefore necessary to synchronize

the local copies of the medium's state among all partici-
pants, so that the overall state is kept consistent.
The state of a distributed interactive medium can change

for two reasons, either by passage of time or by events.
The state of the medium between two successive events
is fully deterministic and depends only on the passage of
time. Generally, a state change caused by the passage of
time does not require the exchange of information between
application instances, since each user's instance can inde-
pendently calculate the required state updates. An exam-
ple of a state change caused by the passage of time is the
animation of an object moving across the screen.
Any state change that is not a fully deterministic func-

tion of time is caused by an event. Generally, events are
(user) interactions with the medium, e.g., the user makes
an annotation on a shared whiteboard page. Typically,
information about events needs to be transmitted to all
remote instances of an application in order to keep all
state copies up to date. In the following, we use the term
operation to identify states or events that are transmit-
ted to inform remote instances of the application about
the actions of a local user. Applications that allow their
state to change only because of events are called discrete
(e.g., shared whiteboards), while applications supporting
changes by both events and the passage of time are called
continuous (e.g., distributed virtual environments).

B. Partitioning the Medium - Sub-Components

In order to provide for a 
exible and scalable handling
of state information, it is desirable to partition an interac-
tive medium into several sub-components. In addition to
breaking down the complete state of an interactive medium
into more manageable parts, such partitioning allows the
participants of a session to track only the states of those
sub-components in which they are actually interested. Ex-
amples of sub-components are 3D objects (an avatar, a
car) in a distributed virtual environment, or the pages of
a shared whiteboard presentation. Events a�ect only the
state of their target sub-component(s).

C. RTP/I

The Real Time Protocol for Distributed Interactive Me-
dia (RTP/I) [MHKE01] is based on the media model de-
scribed above. While our implementation of the generic
consistency service makes use of RTP/I, the concepts pre-
sented here may also be used by applications which use
other application-level protocols.
RTP/I is a protocol framework for distributed interactive

media. It consists of two parts: a data transfer protocol
for the transport of events, states, and requests for state
information in the form of so-called application data units
(ADUs), and a control protocol for meta-information about
the medium and the participants of a session.
The data transfer protocol (RTP/I) provides a standard-

ized framing for ADUs. This framing contains information
that is common to the distributed interactive media class.
It can be used by a generic service to interpret the se-
mantics of an ADU without needing to know its medium-



speci�c encoding. Typical examples of the information con-
tained in the RTP/I data framing are a timestamp that
indicates at what time an event happened or a state was
calculated, an identi�er for the a�ected sub-component, the
type of the data (e.g., event or state), and the unique ID of
the ADU's sender. RTP/I is also used to request the state
of a sub-component in a standardized way.

The RTP/I control protocol (RTCP/I) conveys informa-
tion about the participants of a session, e.g., the partici-
pants' names and email addresses. This information can be
used to establish a light-weight session control. Moreover,
RTCP/I provides information about the sub-components
that are present in a session. Information about each sub-
component is announced regularly.

RTP/I is not a complete protocol. It needs to be adapted
to the requirements of a speci�c medium by means of a pay-
load type de�nition. Essentially a payload type de�nition
describes how the medium speci�c data are encoded. A
payload type de�nition for shared whiteboards as it is used
by the multimedia lecture board can be found in [Vog01b].
RTP/I is closely related to the Real Time Transport Pro-

tocol (RTP) [SCFJ99], which is mainly used for the trans-
mission of audio and video. However, while RTP/I reuses
many aspects of RTP, it has been thoroughly adapted to
meet the needs of distributed interactive media.

D. RTP/I and Reliability

RTP/I itself does not specify any reliable transport
mechanisms, even though such mechanisms are required
by many distributed interactive media [MH00]. Instead
reliability is orthogonal to RTP/I, enabling the use of
application-level reliability or transparent reliability as pre-
ferred by the application. The multimedia lecture board
relies on the latter approach by using the scalable multi-
cast protocol (smp) [GE98], which provides both reliability
and source ordering. In the following, we expect that oper-
ations are eventually delivered to each application instance
through whatever method is preferred by the application.

III. Consistency in Distributed Interactive
Media

Consistency in distributed interactive media is about
�nding an order in the sequence of operations and ensuring
that the state of the medium in all application instances
looks as if all operations had been executed in that order.
Furthermore, if the medium is continuous, it is also impor-
tant to take into account the point in time at which an
operation should be executed.
In order to give a consistency criterion we de�ne a to-

tal ordering relation based on physical clocks. We assume
that the physical clocks of all application instances are rea-
sonably synchronized 1 (using e.g., NTP [Mil92] or GPS
clocks).

1A complete synchronization of all physical clocks is not necessary
since di�ering clocks do not endanger the consistency criterion de-
�ned below. However, unsynchronized clocks increase the probability
of short-term inconsistencies and reduce the fairness among partici-
pants.

De�nition 1 (Partial physical-time-ordering relation <)
Given two operations Oa and Ob with timestamps Ta and
Tb, then Oa is said to happen before Ob, expressed as
Oa < Ob, i� Ta < Tb.
De�nition 2 (Simultaneous operations

:
=) Any two op-

erations Oa and Ob with timestamps Ta and Tb are said
to be simultaneous, expressed as Oa

:
= Ob, i� Ta = Tb.

The partial physical-time-ordering relation can be ex-
tended to become a total ordering relation by using a
tie-breaker for simultaneous operations. Examples of tie-
breakers are IP addresses for simultaneous operations from
di�erent participants, and a counter for operations origi-
nating from the same participant.
De�nition 3 (Total physical-time-ordering relation�)

Given two operations Oa and Ob with timestamps Ta and
Tb and tie-breakers Ba and Bb, then Oa � Ob, i� (1)
Ta < Tb or (2) Ta = Tb and Ba < Bb.
Based on the total physical-time-ordering relation the

consistency criterion for distributed interactive media can
be de�ned as follows:
Consistency Criterion A distributed interactivemedium

is consistent, if after all operations have been executed at
all sites, the state of the medium at all sites is identical
to the state which would have been reached by executing
all operations in the order given by the complete physical-
time-ordering at the physical time denoted by the times-
tamps of the operations.
For continuous interactive media it is crucial to consider

the physical time of an operation, since state changes can
happen because of the passage of time. Therefore, an event
may have distinct e�ects depending on the point in time
at which it is executed. However, it is important to note
that the consistency criterion does not necessarily require
operations to be actually executed at the correct point in
time. It is perfectly legal to use a repair mechanism which
calculates the correct state as if the operations had been
executed at the correct physical time. Furthermore, it can
be easily seen that in the discrete domain the consistency
criterion is reduced in order to specify an ordering of oper-
ations.
If a mechanism is used which ensures the consistency cri-

terion for distributed interactive media, the consistency of
a medium is guaranteed. However, the resulting state of
the mediummay violate the original intention of the partic-
ipants. For example, consider two participants of a white-
board session each changing the color of an object almost
simultaneously. After execution of both events, the object
will be in a consistent state, meaning that each participant
will see the same color. This is true since we assume that
there exists a mechanism which ensures the consistency cri-
terion. Nevertheless, the intention of one participant will
be violated. The consistency service presented in this pa-
per detects intention con
icts and allows the application to
inform the users about their occurrence.
A more detailed discussion of consistency criteria can be

found in [Mau00], [SJZ+98] and [EG89].
In the following sections we describe our generic consis-

tency service, which uses a combination of algorithms to



ensure the consistency criterion. First, local lag is used to
reduce the number of inconsistencies. Second, timewarp
repairs inconsistencies exceeding the time-span covered by
local lag. Third, state request repairs inconsistencies ex-
ceeding the time-span covered by timewarp.

IV. Local Lag

Inconsistencies in distributed interactive media are
caused by the varying period of time, called operation de-
lay, between the time an operation is issued by the user
and the time that operation is executed (see Figure 1 (a)).
While at the originating application instance there is vir-
tually no operation delay, the remote instances will expe-
rience an operation delay caused by the time it takes for
the operation to reach the remote instance over the net-
work. This time may be signi�cantly extended if the net-
work drops packets and these need to be retransmitted. If
the distributed instances of an application experience dif-
ferent amounts of operation delay, the shared state is in
danger of becoming inconsistent. Even if we assume that
these inconsistencies will eventually be repaired by mecha-
nisms ensuring the consistency criterion they have a nega-
tive impact: First, the user perceives an inconsistent state.
Second, the application has to calculate the correct state,
which might consume signi�cant computational resources.
Finally, when the application displays the corrected state
it might be considerably di�erent from the (wrong) state
visible before, causing artifacts such as jumping objects.

delay

delay

delay

operation is executed in time 
operation is late = short term inconsistency
operation is created

delay

Oa
operation

Oa
network

time

time

(a)

(b)

operation

Site 0 Site 1 Site 2

operation

Fig. 1. Regular and equalized operation delay

Therefore it is desirable to prevent such short-term in-
consistencies from happening. One possible way to do this
is to equalize the operation delay for all instances of the
application. The equalization is done by shifting the exe-
cution timestamp Ta of an event Oa into the future, i.e., by
introducing an arti�cial delay. The delay period is used to
distribute the operation to all application instances. In the
optimal case, distribution will have been completed before
Ta is reached, allowing all instances to execute Oa at the
correct time (see Figure 1 (b)). Because of the arti�cial de-

lay introduced by the originating site, we call this approach
local lag [Mau00], it is related to the bucket synchroniza-
tion mechanism employed by MiMaze [GD98].
Choosing the right value for the local lag is not an easy

task. Enlarging its value will increase the probability that
short-term inconsistencies can be repaired (because of the
longer reordering time-span), but will decrease the respon-
siveness of the medium, since users have to wait longer un-
til they see the e�ect of their actions. A compromise in this
trade-o� situation has to take into account the expected av-
erage network delay and the maximum tolerable response
time for user actions. Depending on the operation, the
latter seems to lie between 50 ms and 300 ms [Mau00],
[VGB99], which is suÆcient for continental or even world-
wide sessions, with expected network delays of 40 ms and
100 ms respectively.
Implementation of the local lag concept as a generic ser-

vice is straightforward. The application hands over all lo-
cal and remote operations in the form of RTP/I application
data units (ADUs) to the generic service, where they are
inserted into a local lag queue. Since the ADUs contain all
the necessary information, the queue can be sorted by the
total physical-time-ordering relation as de�ned in Section
3. If the execution timestamp Ta of an operation Oa is
reached, the generic service tells the application to execute
Oa.
It is interesting to note that the use of the local lag con-

cept leads to a new programming paradigm. Traditionally,
the functionality triggered by a local event is as follows:
execute the event and display the new state, then create
and distribute the corresponding ADU. With local lag this
changes to: create and distribute the ADU, insert the ADU
together with received ADUs into the local lag queue, wait
until execution time is reached, then calculate and display
the new state. Therefore, with local lag, remote and local
operations need no longer be distinguished once the ADU
has been created and enqueued.
Even though local lag can reduce the number of short-

term inconsistencies signi�cantly, inconsistencies can still
occur. Indicative of a possible inconsistency is the receipt
of an operation Oa with Ta > TC where TC is the current
time. In the next section we present timewarp as an eÆ-
cient repair mechanism for those inconsistencies that can-
not be not prevented by local lag.

V. Timewarp

With timewarp [Edw97], [Mau00] an application in-
stance can repair inconsistencies on the basis of information
stored locally. The main bene�t of this approach then is
that it neither increases the total network load nor burdens
the other session members.

A. Basic Timewarp

The basic idea of timewarp is that each application in-
stance save the state of the distributed interactive medium
periodically. Moreover, all operations (local and remote)
up to a certain point in time are stored as well, thus build-
ing a history. If an inconsistency occurs, the medium is



rolled back to the last state saved before the operation
should have been executed. Then the operation which
caused the inconsistency is inserted into the history. After
that the medium is played in fast-forward mode, executing
the operations from the history at appropriate times until
TC is reached and operation is resumed at normal pace.
To avoid confusion, only the repaired state of the medium
should be visible to the user.

The main drawback to this approach is that it requires a
signi�cant amount of computational complexity to perform
the fast-forward calculation of the repaired state. Further-
more, saving the state of a medium at regular intervals
might consume a more than negligible amount of memory.
Finally, the application has to support the timewarp, which
might increase its complexity. In the following we present
an improved timewarp algorithm which:

� minimizes the number of timewarps in order to reduce
the computational burden,

� reduces the amount of memory required by switching to
a di�erent repair strategy if the o�ending operation is
received exceedingly late, and

� supports the application by providing a large part of the
required functionality as part of the generic consistency
service.

B. Improved Timewarp

Since a timewarp can be costly in terms of application
performance, it is desirable to improve the basic algorithm,
so that a timewarp is executed only when absolutely neces-
sary. This can be done by making use of both RTP/I-level
and application-level knowledge.

The partitioning of the medium can be utilized to limit
the range of a timewarp. Instead of recalculating the com-
plete state, only the sub-component a�ected by the late-
arriving operation has to be time-warped. For example, the
manipulation of a graphical object on a whiteboard page
concerns only that object and, at most, all other objects
on that page (and the page itself), but leaves the rest of
the whiteboard's state untouched. Taking the partitioning
of the medium into account improves the timewarp in two
respects. First, it limits the amount of state information
that has to be recalculated during a timewarp. Second,
as we shall see later on, it reduces the operations to be
taken into account to decide whether or not a timewarp is
required.

In the discrete domain, there exist quite a few cases
where a timewarp is not necessary and the late-arriving
operation Oa can either be ignored or executed immedi-
ately without a timewarp (see Figure 2). For the discrete
domain the improved timewarp �rst checks if there exist
operations Oi with timestamp Ti so that Ta � Ti < TC . If
not, Oa can be executed without endangering consistency.
Second, in case there is a (non empty) set of operations
with Ta � Ti < TC , we examine for each Oi if it con
icts
with Oa. In this context, two operations are de�ned as con-

icting if they change the same aspect of a sub-component.

Oi

no

no

i aconflict(O  , O  )

i aoverwrite(O  , O  )

O  withi∃

O  withi∃

O   with T  < T  a C

∃ with <<Ta

yes

yes

yes

yes

no timewarp
a

timewarp

a

ignore(O  )

Ti

no timewarp
execute(O  )

no no timewarp
execute(O  )

a

a

Fig. 2. Decision algorithm for improved timewarp

For example, events changing the object on a whiteboard
page con
ict only if they concern the same object and the
same attribute of that object (e.g., color, size, position). In
order to decide whether two operations for the same sub-
component are in con
ict, the application has to provide
an appropriate function conflict(Oi, Oa) which is called
by the generic consistency service. Figure 3 outlines this
function for the mlb. In essence, the con
ict function for
the mlb decides that two operations are con
icting if: (1)
they are executed on the same object and change aspects of
the object which are identical or dependent on each other,
(2) the two objects share the same parent (a parent is a
grouping of objects) and the stacking order or visibility
information of the objects is changed, or (3) both objects
change their parent to the same new parent. It is important
to realize that any application may start using the generic
service with a very simple con
ict function, which returns
true in almost all situations. Later on this function may
then be improved to prevent more timewarps. For the mlb
we have noticed that a relatively simple con
ict function
already reduces the number of timewarps sigini�cantly.

con
ict(Oi, Oa):

1. objectID(Oi) = objectID(Oa)
{ Oi is state or Oa is state
{ Oi is delete event
{ Oi and Oa are change events

� subType(Oi) = subType(Oa)
� objType 2 fpolygon, polylineg
and subTypes 2 fmove point, add pointg

� objType = text and subTypes 2 fchange font,
insert char, delete char, change cursorg

2. objectID(Oi) 6= objectID(Oa)
and parent(Oi) = parent(Oa)
{ Oi and Oa are state and overlap(Oi, Oa)
{ Oa=i is state and Oi=a is change event with

subType 2 fraise, lower, change parentg

3. objectID(Oi) 6= objectID(Oa)
and parent(Oi) 6= parent(Oa)
{ Oi and Oa are change events with subTypes =
change parent and target(Oi) = target(Oa)

{ Oi and Oa are change events with subTypes = set
active

Fig. 3. Con
icting ADUs of the mlb



If no con
icting operation Oi is discovered, we can exe-
cute Oa immediately without a timewarp.
Finally, if there exists at least one con
icting Oi, it is

checked if one Oi overwrites the e�ects of Oa, implying
that the state of the medium after execution of Oa and
Oi would have been identical to the state of the medium
that has been reached by performing Oi only. If there is
at least one such Oi, then Oa can be ignored, and no time-
warp is necessary. As for determining con
icting opera-
tions, the application has to provide an appropriate func-
tion overwrite(Oi, Oa) which decides whether one oper-
ation may overwrite another operation.
Figure 4 speci�es the overwrite function for the mlb. For

example, let Oa and Oi be events that change the same
attribute of an object (e.g, the color of a rectangle). Then
the state of the object's attribute will re
ect Oi after both
Oa and Oi have benn executed. Even if a timewarp were
executed, the user would miss the fact that the attribute
of the object had a di�erent value for a certain period of
time, since only the state of the medium at TC is displayed
to the user.

overwrite(Oi, Oa):

1. objectID(Oi) = objectID(Oa)
{ Oi is state and Oa is event
{ Oi is delete event
{ Oi^ Oa are change events

� subType(Oi) = subType(Oa) excluding
� objType 2 fpolygon, polylineg
and subTypes = add point

� objType = text and subTypes 2 fchange font,
insert char, delete char, change cursorg

2. Oi and Oa are change events with subTypes =
set active

Fig. 4. Overwriting ADUs of the mlb

It is interesting to note that the set of overwriting oper-
ations is a real subset of the set of con
icting operations,
meaning that not all con
icting operations are overwriting
as well. For example, let Oa be a state which indicated
the creation of a new object on a whiteboard page and Oi

be an event which changes the stacking order of another
object on that page. Then Oa and Oi con
ict regarding
the display order of all objects belonging to that page, but
Oi does not overwrite Oa.
This stepwise testing regarding the necessity of a time-

warp is more diÆcult for continuous media due to the fact
that here operations are valid only at their given time-
stamp. The execution of a late-arriving operation Oa gen-
erally requires a timewarp of the a�ected sub-component.
Ignoring Oa is possible, but deciding whether the e�ect of
Oa would have been completely overwritten seems to be
more complex than in the discrete domain. In any case
a continuous medium can still use the generic consistency
service by instructing the service to skip the optimization.

C. Generic Timewarp Service

The improved timewarp has been implemented as a
generic service. One task of the service is the manage-
ment of the timewarp history. After operations have passed

through the local lag service and have been executed by
the application, they are handed over to the timewarp ser-
vice. Since memory space is limited, operations cannot be
stored in�nitely, which has two implications: (1) the range
of the timewarp is limited, meaning that an inconsistency
caused by late-arrivingOa with Ta so that TC�Ta exceeds
a certain threshold h cannot be repaired by timewarping.
Extending h will increase the probability that an incon-
sistency can be repaired by a timewarp but will consume
more memory space. The threshold can be chosen by the
application in order to �ne-tune this trade-o�. For the mlb,
h is set initially to 180 seconds and can be changed by the
user. (2) The history does not start from the beginning of
the session. A timewarp is therefore possible only if the
history contains at least one state of each sub-component
with a timestamp � TC � h. Thus, the timewarp service
requests every h

2
the state of the medium from the appli-

cation (spread over a certain period of time to limit the
application load). If a �ner granularity is needed, the ap-
plication can insert additional states into the history.
When the application receives a late-arriving operation,

the generic service decides on the necessary actions as de-
picted in Figure 2. As mentioned above, tests regarding
con
icting and overwriting operations are implemented by
the application and are called via an appropriate interface
function. Should a timewarp have to be performed, the
service provides the application with a complete sequence
of states and events in order to restore the medium's state.
The application then executes this operation sequence like
ADUs created or received normally.

VI. State Request

Even though the receipt of an operation outside the
range of the timewarp history should be very unlikely, it
cannot be ignored if guaranteed consistency is required.
One reason for such a situation might be repeated packet
loss and retransmission. If the local repair of an incon-
sistency is not possible, the a�ected application instance
has to request the state of the inconsistent sub-component
from other session members.
A similar problem occurs if session participants want

to join an ongoing session. This requires that the late-
joining application request the current state of the medium.
Once an application has received an initial state for a sub-
component it is able to maintain consistency by using the
methods described above. In [VMG+00] we describe a
generic late-join service for RTP/I. This service provides
selective and policy-based state initialization of the late-
joining application. However, the late-join service does
not ensure consistency when requesting the state of a sub-
component. This is the task of a consistency service as
presented here.
Consistency support for state requests raises two prob-

lems: �rst, which application instance should answer to a
state request, and, second, how can it be guaranteed that
the received state be consistent? The �rst problem is a
typical example of feedback mechanisms where a request
can be served by a number of session members, but only



one answer (feedback) is needed. In order to prevent a
so-called implosion of answers there exist several mecha-
nisms to avoid feedback implosion [FW01]. We decided
to use the state-of-the-art exponential feedback raise algo-
rithm [NB99]. The basic idea is that each member able to
serve the request set an exponentially distributed timer. If
this timer expires, the state is sent. Should the answer of
another application instance be received before the state is
sent, the own timer is canceled, thus preventing multiple
feedbacks.

The second problem is caused by the fact that an appli-
cation which wants to answer a state request is not able to
guarantee the consistency of the state it holds locally. For
example, there might be a late-arriving operation en route
to that application. In order to discover and repair this
problem all applications check the transmitted states they
receive against their local state copies. This can be easily
done since the RTP/I framing identi�es the events that are
included in the transmitted state. Therefore, an applica-
tion needs only to compare the information it holds locally
with the information contained in the framing; it does not
have to compare the actual states. The comparison can
lead to four main results:

� The received state includes the same events as the state
of the local application. In this case nothing has to be
done. This is by far the most common case.

� The received state includes all events that are included
in the state of the local application as well as some ad-
ditional events. In this case the local application has
missed some events and should adopt the received state.

� The state of the local application includes all events that
are part of the received state as well as some additional
events. In this case the remote application has sent an
inconsistent state and the local application will send its
own state to repair this problem (using the feedback sup-
pression method explained above).

� Each state contains events that are not contained in the
other one. In this case both states are inconsistent. Now
it is checked which state contains more events, using the
unique ID of the senders of the events as a tiebreaker if
the number of events is equal. If the local state contains
fewer events than the received state, then the local state
is discarded and the received state is adopted. If the
local state contains more events than the received state,
then the local state is transmitted using the appropriate
feedback suppression.

After a limited number of iterations this algorithm will
result in all participants having the same state. If there is
no single participant who has received all operations, the
overall result is a consistent state across all participants
which misses some events. This is acceptable since it can
only happen because of the exceptional situation that a
network partitioning has occured which lasted longer than
the length of time the timewarp history is kept. In this
situation it seems reasonable to keep the state of the par-

tition where most changes have been executed and adapt
the state of the other partition(s).
The generic consistency service can manage the state-

request algorithm autonomously. The application needs to
provide only functions for retrieving and setting the state
of the sub-components.

VII. Intention Conflict Detection

The combination of local lag, timewarp, and state re-
quest is suÆcient to ensure consistency according to the
criterion de�ned in Section Three. However, even when
this criterion is enforced, the original intention of a user
may be violated. For example, consider two participants
each changing the same attribute of a whiteboard object
(almost) simultaneously. The total physical-time-ordering
relation favors the participant whose operation takes place
slightly later (or whose tie-breaker is greater). If the space
of time between the two con
icting operations is very short,
the e�ect of the operation created by the losing participant
is not visible at all, leaving the user confused. To support
collaboration it is therefore desirable to be able to identify
intention con
icts and inform the users about them.
There exist a number of mechanisms to preserve user

intentions that are realized together with consistency con-
trol. Operational transformation was originally designed
for shared text editors; it transforms operations before their
execution so that user intentions are maintained [SJZ+98].
Another possibility would be to extend the total ordering
relation so that in case of an intention con
ict operations
will be ordered according to certain priorities (e.g., the ses-
sion chair wins over other participants). However, these
mechanisms are very complex to develop and they are al-
most always medium-speci�c. We propose that intention
con
icts should be made visible to the users so that they
can resolve them and avoid further intention con
icts. For
example, if two users try to move the same object on a
shared whiteboard page, they should be informed that their
intentions con
ict. Typically they will then employ some
social protocol to decide who will continue with the action.
The consistency service handles intention con
icts within

the local lag queue and the timewarp history. The proce-
dure is as follows: when receiving local and remote oper-
ations it is checked whether the operation causes an in-
tention con
ict involving the local user. Only operations
which have timestamps that are within a certain threshold
of the new operation's timestamp are considered for this
purpose. This threshold is a parameter provided by the
application. Preliminary experiments have shown that a
value of around one second seems to be preferred by users
of the mlb.
The decision whether or not two operations con
ict with

each other is made by means of a function provided by the
application. Typically the con
ict function described in the
timewarp section can be reused for this purpose. In case
a con
ict is discovered, the application is provided with a
list of all operations concerned. The application can then
inform the users in an appropriate way. The mlb uses this
mechanism to indicate an intention con
ict by attaching a



balloon help window to the a�ected objects that includes a
list of rivaling participants (see Figure 5 for an example).

VIII. Experimental Evaluation

We evaluated our approach by conducting a series of
experiments with a prototype of the multimedia lecture
board. Our aim was to gain a �rst impression of how
many timewarps can be prevented using the mechanisms
described above and how much time is required for an in-
dividual timewarp. The performance of local lag and the
discovery of intention violations was not evaluated in detail
since their computational complexity is insigni�cant. This
was con�rmed by some preliminary experiments.
The experiments were conducted with 2 PCs equipped

with Athlon 1000 processors, running Windows 98 as the
operating system. The aim set for the two participants
was to collaborate to create an outline of a protocol stack
as shown in Figure 5.
In order to be able to state how much burden our ap-

proach places on an application we created a worst-case
scenario for the experiments:

� An arti�cial network delay was introduced by bu�ering
packets at the sender before transmitting them. This
arti�cial delay was set to 150 ms, while the local lag was
set to only 100 ms. Therefore, each operation arrived
late and was a potential candidate for a timewarp.

� For the drawing of text we used poly lines rather than
the regular text primitives. This was done since each
mouse movement while drawing a poly line translates to
one operation. Furthermore, each poly line segment is
a separate object. Thus the number of operations and
objects in the experiment were each very high.

The prime source of timewarps in this scenario is the
creation of objects such as the poly line segments that are
used for the text (see Figure 3). This is because upon the
creation of an object the object is assigned a layer for the
display order of the objects. An object which is created
after another object is on a higher layer than the older
object and may therefore obscure the older object if they
intersect. Whenever the creation of two objects overlaps
in time because of the arti�cial network delay, the creation
operations are potential candidates for a timewarp, since
the layer of one of the objects could be wrong. Another po-
tential source of con
icting operations is the resizing and
positioning of the boxes. When both participants are work-
ing on the same box, con
icting operations can happen.
We made three runs of the experiment. The results of

these runs are shown in Table I. The �rst row identi�es the
run of the experiment. The second row shows the number
of operations that were received late by a participant. Be-
cause of the arti�cial network delay this number is identical
to the number of operations issued by the remote user. In
a more natural environment with an adequate amount of
local lag we expect that only those operations which are
dropped by the network and have to be retransmitted will
arrive late. It should be noted that the number of oper-

ations issued by the local user is not shown in the table.
The number of operations was roughly equal for both users
in all experiments.
The third column shows the number of operations that

did not cause a timewarp since there was no operation with
a greater timestamp when the remote operation arrived
(see Figure 2). Column four shows the number of oper-
ations that did not cause a timewarp because they were
not in con
ict with operations that had a greater time-
stamp. The �fth column indicates the number of opera-
tions that were overwritten and therefore did not lead to
a timewarp. Finally, the sixth column shows how many
timewarps took place, while the seventh column displays
the average amount of time required to perform a time-
warp.
Overall it can be noted that only 0:3% to 1% of the

late arriving operations caused a timewarp. Furthermore,
the time required for a timewarp was only around 200 to
300 ms. Taking into account the large number of oper-
ations that had to be executed during the timewarp and
the duration of the experiments (3-5 minutes), this seems
very acceptable. Also, while conducting the experiments
we discovered some ineÆciencies with the maintenance of
the queue for the operations that are stored to perform a
timewarp. We expect that improving the implementation
will cut the time required for the timewarp by at least 50%.

IX. Related Work

In the last decade, much work has been done in the area
of optimistic consistency control for replicated applications.
One of the prime existing approaches is operational trans-
formation [SJZ+98], [EG89]. With operational transfor-
mation remote operations are transformed before their ex-
ecution so that the application's state is consistent after
execution of the transformed operation (in terms of con-
vergence, causality preservation, and intention preserva-
tion). Originally, operational transformation was designed
for shared text editors. Designing the correct transforming
functionality for more complex applications is considered
very diÆcult, especially in the case of continuous media.
In contrast, it is fairly straight-forward to realize local lag
and timewarp for an application.
An alternative approach to the total physical-time-

ordering relation is causal ordering as de�ned by Sun/Ellis
[SE98] derived from Lamport's work on physical clocks
[Lam78]. However, causal ordering is not feasible for con-
tinuous media since operations need additionally to be ex-
ecuted at the correct point in time. In contrast, local lag,
timewarp, and state request can be applied to both the
discrete and the continuous domains.
Another example of optimistic consistency management

is object replication [SC00]. The idea is to handle intention
con
icts due to simultaneous operations changing the same
objects by replicating the object concerned. Instead of �nd-
ing a total order between all rival operations and showing
only the e�ects of the last operation, multiple versions of
the same object are created and displayed. The partici-
pants can either select a certain version or keep them all.



Fig. 5. mlb Screenshot

TABLE I

Timewarp Performance

run late operations no later operations no con
ict overwrite timewarps average timewarp time
1 687 310 323 47 7 281 ms
2 594 246 314 31 2 250 ms
3 515 193 295 25 2 195 ms

Drawbacks to this approach are a complex management of
multiple versions of the same object, and a confusing e�ect
for the user if too many di�erent versions exist (e.g., when
subsequent operations create successive versions). Further-
more for continuous interactive media this approach seems
to be problematic. For example, consider a networked com-
puter game in which object duplication would result in two
representations of the same object in the game. The com-
bination of local lag and timewarp prevents this problem
and makes sure that the end result is the same as if all user
operations had been executed in the correct order at the
correct point in time.

In [Edw97] an approach to the handling of intention con-

icts in collaborative applications is presented. This work
focuses on detection and resolution of con
icts that violate
the application state integrity (e.g., moving an object after
it has been deleted). Con
ict detection is done within the
operation history, which is similar to our approach. How-
ever, we rely on the users to resolve intention con
icts in
order to provide a light-weight service which is application-
independent.

In [Mau00] we explored the theoretical background of
local lag and (basic) timewarp in continuous media. The
work presented here improves on these concepts and shows

how they can be optimized to also be useful in the dis-
crete domain. Furthermore, we now provide a generic ser-
vice which allows arbitrary RTP/I-based applications to
integrate these mechanisms. In the present paper we also
evaluate the performance of the improved timewarp and
we extend the consistency support to include mechanisms
for the detection of intention con
icts and consistent state
requests. The latter is required in particular to support
late-joining participants.

X. Conclusion and Outlook

We have presented an optimistic consistency service for
distributed interactive media. The service eliminates a
large percentage of inconsistencies by voluntarily delaying
local operations. This method is called local lag. Those
inconsistencies that cannot be prevented are repaired us-
ing an improved timewarp algorithm. Timewarp can repair
inconsistencies using exclusively local information without
burdening the network or the applications of other users.
Our advanced timewarp algorithm improves upon exist-
ing timewarp approaches by minimizing the number of re-
quired timewarps. For handling exceptional situations and
in order to support late-join functionality, the consistency
service is able to request parts of the medium's state in a



consistent way. Finally, the consistency service is able to
detect intention con
icts between the actions of di�erent
users.

The consistency service has been implemented in C++
as a generic service which is based on the application-level
protocol for distributed interactive media (RTP/I). Any
application using RTP/I can reuse the generic service with-
out further modi�cation. In order to demonstrate the fea-
sibility of our approach we have integrated the consistency
service into the multimedia lecture board (mlb), a shared
whiteboard system. To test the performance of the consis-
tency service we have conducted a preliminary evaluation
of the advanced timewarp algorithm. The results show
that a signi�cant number of timewarps can be prevented
in the discrete domain and that the amount of computa-
tional resources required for the improved timewarp is quite
acceptable.

In the future we will conduct a real-life evaluation of
the service by using the mlb during teleseminars between
several European universities. Furthermore, we plan to
integrate the consistency service into other applications for
distributed interactive media. Of particular interest will be
the use of the service for continuous media like networked
computer games or distributed virtual environments. We
expect that the main challenge will be the de�nition of the
appropriate functions (such as con
ict and overwrite) that
have to be provided by the application.

Acknowledgments

Development of the multimedia lecture board is part of
the project ANETTE, which is supported by the DFN-
Verein under contract TK602-VA/T 102.1.

References

[Edw97] W.K. Edwards. Flexible Con
ict Detection and Manage-
ment in Collaborative Applications. In ACM UIST, pages
139{148, 1997.

[EG89] C.A. Ellis and S.J. Gibbs. Concurrency Control in Group-
ware Systems. In ACM SIGMOD, pages 399{407, 1989.

[FW01] T. Fuhrmann and J. Widmer. On the Scaling of Feedback
Algorithms for Very Large Multicast Groups. To appear
in: Special Issue of Computer Communications on Inte-
grating Multicast into the Internet, 2001.

[GD98] L. Gautier and C. Diot. Design and Evaluation of Mi-
Maze, a Multi-player Game on the Internet. In IEEE
International Conference on Multimedia Computing and
Systems, pages 233{236, 1998.

[GE98] W. Geyer and W. E�elsberg. The Digital Lecture Board
| A Teaching and Learning Tool for Remote Instruc-
tion in Higher Education. In Proc. ED-MEDIA/ED-
TELECOM'98. AACE Association for the Advancement
of Computing in Education, 6 1998. [on CD-ROM only].

[Hag96] O. Hagesand. Interactive multiuser VEs in the DIVE sys-
tem. IEEE Multimedia, 3(1):30{39, 1996.

[HC97] M. Handley and J. Crowcroft. Network Text Editor
(NTE) { A scalable shared text editor for the MBone.
In ACM SIGCOMM, pages 197{208, 1997.

[Lam78] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558{565, 1978.

[Mau00] M. Mauve. Consistency in Continuous Distributed Inter-
active Media. In ACM CSCW, pages 181{190, 2000.

[MD96] J. Munson and P. Dewan. A Concurrency Control Frame-
work for Collaborative Systems. In ACM CSCW, pages
278{287, 1996.

[MH00] M. Mauve and V. Hilt. An Application Developer's Per-
spective on Reliable Multicast for Distributed Interac-
tive Media. ACM Computer Communication Review,
30(3):28{38, 2000.

[MHKE01] M. Mauve, V. Hilt, C. Kuhm�nch, and W. E�elsberg.
RTP/I - Toward a Common Application-Level Protocol
for Distributed Interactive Media. IEEE Transactions on
Multimedia, 3(1), 2001.

[Mil92] D.L. Mills. Network Time Protocol (Version 3) spec-
i�cation, implementation and analysis. DARPA Net-
work Working Group Report RFC-1305, University of
Delaware, 1992.

[NB99] J. Nonnenmacher and E. W. Biersack. Scalable feedback
for large groups. IEEE/ACM Transactions on Network-
ing, 7(3):375 { 386, June 1999.

[SC00] C. Sun and D. Chen. A Multi-version Approach to Con-

ict Resolution in Distributed Groupware Systems. In
Proc. of the 20th IEEE Interaction Conference on Dis-
tributed Computing Systems, pages 316{325, 2000.

[SCFJ99] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.
RTP: A Transport Protocol for Real-Time Applications.
Internet draft, IETF, Audio/Video Transport Working
Group, draft-ietf-avt-rtp-new-03, February 1999. Expir-
ing date August 26th, 1999.

[SE98] C. Sun and C. Ellis. Operational transformation in real-
time group editors:issues algorithms, and achievements.
In Proc. of the ACM CSCW, pages 59{68, 1998.

[SJZ+98] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen.
Achieving Convergence, Causality Preservation and In-
tention Preservation in Real-Time Cooperative Editing
Systems. ACM Transactions on Computer-Human In-
teraction, 5(1):63{108, 1998.

[Tun98] T.L. Tung. MediaBoard. Master's thesis, University of
California, Berkely, California, USA, 1998.

[VGB99] I. Vaghi, C. Greenhalgh, and S. Benford. Coping with In-
consistency due to Network Delays in Collaborative Vir-
tual Environments. In ACM VRST, pages 42{49, 1999.

[VMG+00] J. Vogel, M. Mauve, W. Geyer, V. Hilt, and
C. Kuhmm�unch. A Generic Late Join Service for Dis-
tributed Interactive Media. In 8th ACM Multimedia,
ACM MM 2000, pages 259{268, 2000.

[Vog01a] J. Vogel. multimedia lecture board (mlb). URL:
http://www.www.informatik.uni-mannheim.de/infor-
matik/pi4/projects/ANETTE/anetteProject2.html,
2001.

[Vog01b] J. Vogel. RTP/I Payload Type De�nition for Shared
Whiteboards. Technical Report 5/2001, Department for
Praktische Informatik IV, University of Mannheim, Ger-
many, 2001.


