A Generic Late-Join Service for
Distributed Interactive Media

Jurgen Vogel, Martin Mauve, Werner Geyer, Volker Hilt, Christoph Kuhmtinch,
Praktische Informatik 1V
University of Mannheim
L15, 16
68131 Mannheim
{vogel,mauve,geyer,hilt,cjk} @informatik.uni-mannheim.de

ABSTRACT

In this paper we present a generic late-join service for dis-
tributed interactive media, i.e., networked media which
involve user interactions. Examples for distributed interac-
tive media are shared whiteboards, networked computer
games and distributed virtual environments. The generic
late-join service allows a latecomer to join an ongoing ses-
sion. This requires that the shared state of the medium is
transmitted from the old participants of the session to the
latecomer in an efficient and scalable way. In order to be
generic and useful for a broad range of distributed interac-
tive media, we have implemented the late-join service
based on the Real Time Application Level Protocol for Dis-
tributed Interactive Media (RTP/1). All applications which
employ this protocol can also use the generic late-join ser-
vice. Furthermore the late-join service can be adapted to the
specific needs of a given application by specifying policies
for the late-join process. Applications which do use a dif-
ferent application level protocol than RTP/I may still use
the concepts presented in this work. However, they will not
be able to profit from our RTP/I base implementation.

Keywords
Distributed Interactive Media, Late-Join, Generic Service,
RTP/I

1. INTRODUCTION

The term distributed interactive medium is used to denote a
networked medium which involves user interactions with
the medium itself [9]. Typical examples of distributed inter-
active media are shared whiteboards [3][14], networked
computer games [2], and distributed virtual environments
[5]. One fundamenta problem that applications for these
media need to address is the support for participants who
arrive late and wish to join an ongoing session. This is
known as the late-join problem.

The late-join problem is challenging since distributed inter-
active media typically employ a replicated distribution
architecture. That is, the application of each participant
maintains a local copy of the medium’s shared state. For
example, in a shared whiteboard application this state may
comprise the text shown on each whiteboard page aswell as
annotations and modifications that have been made by par-
ticipants over the course of the session. Without informa-
tion about the current shared state of the medium it is not
possible to participate in a session. The application of a
latecomer therefore needs to take special actionsto retrieve
the relevant parts of the shared state information.

In general asolution to the late-join problem hasto perform
two tasks:

1. It must identify those pieces of the shared state that are
needed by the latecomer to participate in the ongoing
session.

2. It needs to provide the late coming application with this
information at the appropriate point in time in an appro-
priate way.

Thefirst task isimportant since alarge part of the medium’s
shared state may not be immediately relevant for a late-
comer. In a shared whiteboard session, for example, only
the state of the current page may be required to enable a
latecomer to participate in the session. The state of other
pages may be needed only when they become visible later
on. A solution to the late-join problem therefore needs a
way to explore which pieces of shared state are available in
a session, and under which conditions a certain piece of the
shared state is required.

Once it has been decided when the pieces of shared state
are needed the second task is to retrieve those pieces at the
appropriate time. Thisis a complex task since pieces of the
shared state may be required at different times, e.g. imme-
diately (the current page of a shared whiteboard), or later
on triggered by some user action (an old shared whiteboard
page that becomes visible). Furthermore the state informa-
tion needs to be retrieved in a way that does not overload
the network or the participating applications. This is espe-
cialy difficult since distributed interactive media often
involve large groups of users.

A solution to the late-join problem is called a late-join
algorithm or late-join service. The application program of
the latecomer is a late-join client, while those applications
that transmit state information to the late-join client are

caled late-join servers. The role of late-join clients and
late-join servers is dynamic, i.e, a late-join client may
become a late-join server for another late-join client later
on.

In this paper we present ageneric late-join service. It can be
used for arbitrary distributed interactive media. We imple-
mented the service using the information provided by the
Real Time Application Level Protocol for Distributed Inter-
active Media (RTP/l) [10]. RTP/I captures the common
aspects of distributed interactive media and thereby enables
the development of reusable functionality without any
medium-specific information. The concepts presented in
this paper are independent of RTP/I and may also be used
for applications that use other application level protocols.
However, these application will not be able to profit from
our implementation of the late join service.

The generic late-join service is highly customizable to the
needs of diverse applications. Furthermore it minimizes the
burden that is placed on the network and the participants of
a session. The generic late-join service has been imple-
mented in Java and is currently used by a 3D telecoopera
tion application. Other applications are being converted to
use RTP/I and the late-join service.

The remainder of this paper is structured as follows. In Sec-
tion Two existing approaches to solve the late-join problem
are examined. In Section Three we present our media
model for distributed interactive media. This model alows
us to discuss the late-join problem in a media-independent
way. A short presentation of the Real Time Application
Level Protocol for Distributed Interactive Mediais givenin
Section Four. The generic late-join service is discussed in
detail in Section Five. The sixth section contains a sum-
mary of our experiences with integrating the generic late-
join serviceinto an existing 3D telecooperation application.
This paper is concluded by a summary and an outlook to
future work.

2. EXISTING APPROACHES

Existing late-join algorithms can be separated into
approaches that are handled by the transport protocol and
those that are completely realized at the application level.
Application level late-join algorithms can be subdivided
further into centraized agorithms and distributed
approaches.

Representatives of the first category are reliable multicast
transport services that offer late-join functionality. An
example of such a protocol is the Scalable Reliable Multi-
cast protocol (SRM) [1]. A reliable multicast protocol can
offer the late-join service by using its loss recovery mecha-
nism to supply the late-joining application with all data
packets missed since the beginning of the session. The
application then reconstructs the current state from these
packets.

The usage of transport protocol functionality to solve the
late-join problem has four major drawbacks:

1. Itisinefficient since alarge part of the transmitted infor-
mation may no longer be relevant. For example an

image on a shared whiteboard page which has already
been deleted in the meantime.

2. Itis generally more efficient to transfer state informa-
tion than to transmit all transport packets that have lead
to that state. When editing atext, for example, it makes
sense to transmit the state of the text rather than all the
packets that contain the description of a character that
has been typed or deleted. This becomes even more
important when the overhead for packet headersis taken
into account.

3. The application either hasto be able to reconstruct every
packet that has ever been transmitted, or the transport
service needs to buffer the transmitted packets indefi-
nitely. Thisis clearly not acceptable for alarge number
of applications.

4. The state of certain media may not be easily recon-
structible from a simple replay of packets. The problem
here is that for certain media (such as an networked
action game) an event is only valid at a certain point in
time. In order to reconstruct the state of such a medium
from outdated packets, the application would have to
perform atimewarp to the beginning of the session and
then arapid replay of states and events. It is by no
means guaranteed that all, or even a significant number
of, application will be able to perform this task.

Because of these problems we generally view the replay of
packets as inappropriate for late-join support. Instead the
current shared state should be explicitly queried by the late-
comer. This leads us to existing late-join approaches at the
application level.

The distinct advantage of application level approaches is
the usage of application knowledge to optimize the late-join
process. Centralized late-join approaches require that asin-
gle application exists that is able to act as the late-join
server for the shared state. When a late coming application
joins the session it may contact the state server which will
in turn deliver the relevant state information. An example
where a centralized state server is used for late-join pur-
poses is the Notification Service Transport Protocol [12].

A centralized state server results in the typical disadvan-
tages of al centralized solutions. Main problems are the
existence of a single-point-of-failure (lack of robustness),
and the high application load for the server, which might
become a bottleneck. Because of these drawbacks we have
decided not to use a centralized late-join server for our
generic late-join service.

Distributed late-join approaches seek to avoid the problems
of a centralized approach by involving multiple applica-
tions in the late-join process. In particular, many applica-
tions may be able to assumetherole of alate-join server for
any given piece of shared state. The failure of any single
application can generally be tolerated without preventing a
latecomer from joining the session. Applications that use a
distributed late-join approach are the network text editor
(NTE) [6] and the digital lecture board (dib) [3].

The innovative idea of the method used for the dib is to
employ a separate (multicast) group for the data that is

transmitted to latecomers. Requests for the state of a page
are transmitted to the regular session by the late-join cli-
ents. Replies are sent to the late-join group by the applica-
tions that act as late-join servers. An application may leave
the late-join group once it has received all required infor-
mation about the shared state. A reply implosion of the
potential late-join serversis prevented by using an anycast
mechanism that is based on random timers.

The approach used for the dib has several positive charac-
teristics. Firgt, it limits the burden of the late-join activity
that is placed on session participants who are not latecom-
ers. These participants just need to check whether they have
been selected as late-join servers. The transmitted state
information is only received by those applications that have
not yet finished their late-join activity. Second, for the same
reason, the approach also minimizes the network load: state
information is only transmitted over those parts of the net-
work that lead to an application still lacking late-join infor-
mation. Third, the dib late-join effectively prevents a reply
implosion when more than one participant isable to act asa
late-join server.

However, there are also some areas in which the dlb solu-
tion can be further improved:

1. In addition to preventing a reply implosion, a request
implosion should also be avoided. Thisis particularly
important if a user action (such as changing the page in
a shared whiteboard) may trigger the need for additional
state information. In this case multiple late-join clients
might require the same state information simulta-
neously.

2. Some applications that represent potential late-join
servers should join the late-join group. Requests for
state information could then be transmitted to the late-
join group, so that uninvolved applications do not have
to handle requests for state information. Only as afall-
back solution should the request be sent to the original
group. This requires to give criteria that decide which
potential late-join servers should enter or leave the late-
join session.

3. The dlb approach is application-dependent. It is not
based upon a generic application level protocol, and it is
not easily customizable to the diverse needs of different
distributed interactive media.

Because of its positive characteristics we have chosen the
dib approach as the basis for our generic late-join service.
Upon this basis we have developed an improved and
generic late-join service for distributed interactive media.

3. MEDIA MODEL

In order to provide a generic service that is reusable for a
whole class of mediait isimportant to investigate the media
model of this media class. In the following we give a brief
overview of the characteristics of the distributed interactive
media class. A more detailed discussion can be found in

[9].
States and Events

A distributed interactive medium has a state. For example,
at any given point in time the state of a shared whiteboard is

defined by the content of all pages present in the shared
whiteboard. In order to perceive the state of a distributed
interactive medium a user needs an application, eg. a
shared whiteboard application is required to see the pages
of a shared whiteboard presentation. This application gen-
erally maintains a local copy of (parts of) the medium’s
state. Applications for distributed interactive media are
therefore said to have areplicated distribution architecture.
For all applications participating in a session the local state
of the medium should be at least reasonably similar. It is
therefore necessary to synchronize the local copies of the
distributed interactive medium’s state among all partici-
pants, so that the overall state of the medium is consistent.

The state of a distributed interactive medium can change for
two reasons, either by passage of time or by events. The
state of the medium between two successive events is fully
deterministic and depends only on the passage of time.
Generally, a state change caused by the passage of time
does not require the exchange of information between
applications, since each user's application can indepen-
dently calculate the required state changes. An example of a
state change caused by the passage of time is the animation
of an object moving across the screen.

Any state change that is not afully deterministic function of
time is caused by an event. Generally events are (user)
interactions with the medium, e.g. the user makes an anno-
tation on a shared whiteboard page. Whenever events occur,
the state of the medium is in danger of becoming inconsis-
tent. Therefore, an event usually requires that the applica-
tions exchange information - either about the event itself or
about the updated state once the event has taken place.

Partitioning the Medium - Sub-Components

In order to provide for a flexible and scalable handling of
state information it is desirable to partition an interactive
medium into several sub-components. In addition to break-
ing down the complete state of an interactive medium into
more manageable parts, such partitioning allows the partic-
ipants of a session to track only the states of those sub-com-
ponents in which they are actualy interested. Examples of
sub-components are 3D objects (an avatar, acar, aroom) in
a distributed virtual environment, or the pages of a shared
whiteboard. Events affect only a target sub-component.
Sub-components other than the target are not affected by an
event.

4. RTP/

While the media model provides an important insight into
the distributed interactive media class, the design and
implementation of a generic late-join service requires a
more formal foundation. The Real Time Application Level
Protocol for Distributed Interactive Media (RTP/I) [10] pro-
vides such a foundation. While our implementation of the
generic late join service makes use of RTP/I, the concepts
presented here may also be used by applications which do
use other application level protocols.

RTP/I consists of two parts: a data transfer protocol for the
transport of event and state information, and a control pro-
tocol for meta-information about the medium and the par-
ticipants of a session:

e The data transfer protocol (RTP/I) frames the transmit-
ted states and events of the medium with information
that is common to the distributed interactive media
class. With this information a generic service, like the
late-join service presented here, can interpret the seman-
tics of the information without knowing anything about
the medium-specific encoding. Typical examplesfor the
information contained in the RTP/I data framing are a
timestamp which indicates at what time an event hap-
pened or a state was calculated, an identifier for the
affected sub-component and the type of the data (event
vs. state information). In addition to state and event
transmission RTP/I is also used to request the state of a
sub-component in a standardized way.

e The RTP/I control protocol (RTCP/1) conveys informa-
tion about the participants of a session. This includes
the participants' names and email addresses. This infor-
mation can be used to establish a light-weight session
control. Moreover RTCP/I provides information about
the sub-components that are present in a session. Infor-
mation about each sub-component is regularly
announced. The announcement contains three types of
information: (1) the ID of the sub-component, as it is
also used in the framing of the datatransfer protocol. (2)
An application level name for the sub-component. This
name alows an application to identify the sub-compo-
nent. A typical example for an application level name
could be the title of a shared whiteboard page. (3) An
announcement whether this sub-component is actively
used by any participating application in order to present
the medium to the user. The visible pages of a shared
whiteboard presentation would belong to the class of
active sub-components, while the invisible pages would
belong to the class of passive sub-components. All three
types of information can be used by the late-join service
and the application using the late-join service to deter-
mine the relevance of sub-components.

RTP/I isclosely related to the Real Time Transport Protocol
(RTP) [7] which is mainly used for the transmission of
audio and video. However, while RTP/l reuses many
aspects of RTP it has been thoroughly adapted to meet the
needs of distributed interactive media.

5. GENERIC LATE-JOIN SERVICE

The architecture of the generic late-join service is depicted
in Figure 1. Thelate-join service intercepts the data (events,
states, and requests for states) that arrives from the base
session. Since this data is transmitted using RTP/I the
generic late-join service can understand the semantics of
this data to a degree sufficient to provide the late-join func-
tionality. Knowledge about the medium-specific encoding
is not required. After examining the data the late-join ser-
vice forwards it to the application.

The application transmits all regular data directly to the
base RTP/I session without informing the late-join service.
late-join information is handed from the application to the
late-join service. An example for thistype of information is
the state of a sub-component that is required by the late-join
service to support a remote latecomer. The reason for pass-
ing this data to the late-join service instead of transmitting

it over the base RTP/I session is asfollows: the generic late-
join service maintains an additiona late-join RTP/l session.
This session is used to transmit al late-join oriented data.
The late-join service joins and leaves this additional RTF/I
session at appropriate times. This ensures that only a small
subset of all participants need to handle late-join data.

Finally there exists ageneric services channel. This channel
is shared by al generic services (there may be multiple
generic services present in a single application). It is used
to convey signalling data for the generic services. In order
to limit routing effort at the network level the generic ser-
vices channel has the same network address as the base
RTP/I session. Transport layer multiplexing is used to sepa-
rate the generic services channel from the base RTP/I ses-
sion. An application remains a member of the generic
services channel for the lifetime of a session.

T RTPI Application
v
Late Join Service
RTPI ‘ T RTPI Tsignalling TRTP/I
v \ v
Base RTP/I | Generic Services | Late Join RTP/I 3 Transport
Session Channel Session Addresses
Pl - >
2 Network
Addresses
Figure 1: Architecture of the late-join service

When joining an ongoing session the late-join service will
learn about the sub-components that are present in a session
through the RTCP/I reports on sub-components. Whenever
a new sub-component is detected the late-join service
informs the application and requests information on how
the late-join should be performed. The application may
choose between a set of policies, ranging from no action to
immediate retrieval of the sub-component’s state. In addi-
tion to the sub-component ID the application may use the
information which is delivered via RTCP/I (application
level name, and whether the sub-component is active for at
least one user) to determine which policy is appropriate for
a given sub-component.

When the condition occurs that was specified by the policy
the state of the sub-component is requested by the late-join
service. Thisis done by transmitting RTP/I state queries to
the late-join group using a message implosion avoidance
mechanism. This mechanism makes sure that no message
implosion occurs if multiple latecomers want to request the
state of the same sub-component at the same time. A simi-
lar mechanism was first used by SRM [1] to achieve a scal-
able reliable multicast. In order to avoid a message
implosion the late-join service waits a random time before
transmitting an RTP/I state query. The value of the random
timer is evenly distributed in an interval that depends on the
distance (in terms of network delay) to the participant who
transmitted the report of the sub-component. The smaller
the distance, the smaller is the upper bound on the timer.
Thereforeit islikely that applications which are close to the

origin of areport will reply first. Any other late-join service
that wants to send a state query for the same sub-compo-
nent suppresses this message when it sees that the message
has already been transmitted by someone else. In thisway a
message implosion can be prevented effectively.

The request is repeated if there is no answer after a certain
amount of time. If multiple requests for the sub-compo-
nent’s state remain unanswered, it is concluded that thereis
no late-join server for that sub-component present in the
late-join group. In this case the late-join service uses the
generic services channel to request that a participant which
holds the state of the sub-component joins the late-join ses-
sion and transmits the state. If thisfails, too, then the appli-
cation isinformed.

When the late-join service receives the desired state infor-
mation it passes it on to the application and marks this sub-
component as complete. When there are no new sub-com-
ponents detected for a period of time and al sub-compo-
nents are marked as complete, then the late-join is finished.
At that time the late-join service may leave the late-join
group. If, at any later point in time, a new sub-component is
detected, then the application may ask the late-join service
to resume its duty and join the late-join group again. When
new sub-components are introduced in an ongoing session
this can be used to conveniently request the state of the new
sub-components in away that is policy-driven.

Late-Join Policies

An application that uses the generic late-join service may
specify a late-join policy for each sub-component that has
been discovered by the late-join service. Setting different
policies for sub-components makes it possible to retrieve
different sub-components with different priorities; some
may be retrieved immediately, others when network capac-
ity is available or when they become important for the pre-
sentation to the user. The use of policies ensures high
flexibility and an easy adaptation to the needs of individual
applications. Existing solutions to the late-join problem,
such as the one used for the digital lecture board, lack this
ability.

The generic late-join service offersfive late-join policies:

« event-triggered late-join,

e nolate-join,

e immediate late-join,

« network-capacity-oriented late-join, and

* application-initiated late-join.

An application may change the late-join policy for a given
sub-component at any time. We will examine the event-trig-
gered late-join policy in more detail while the other policies
are only outlined briefly.

Late-Join Policy: Event Triggered Late-Join

An application may decide that a sub-component is
required only when it is the target of an event. For example,
if apagein a shared whiteboard becomes the active page by
means of an “activate page” event. This is supported

through the event-triggered late-join policy. Besides defer-
ring the request of state information until it is actualy
needed, this policy also increases the likelihood that multi-
ple latecomers may profit from asingle state transmission if
multicast is used. The reason for this is that the late-join
service may refrain for along time (until the first event for
the sub-component occurs) from requesting the state of a
sub-component with an event-triggered late-join policy. All
latecomers who join during that period will profit from a
single transmission of the sub-component’s state.

The finite state machine for the event-triggered late-join
policy is shown in Figure 2. The name of the initia late-
join state is “ sub-component discovered” (SD). At the time
the application chooses the late-join policy the late-join
state changes to “wait-for-event” (WFE). In the WFE state
the late-join service listens to incoming RTP/I packets and
checks whether they contain an event or a state for the sub-
component. If a state is received then the state is handed to
the application, and the late-join state becomes “complete”
(COMP) for the sub-component. This may happen when a
state is transmitted for some reason (e.g., as a means of
resynchronization) in the base RTP/I session.

When an event for the sub-component is received, then the
late-join state for the sub-component becomes “ sub-compo-
nent needed” (SN), and a random timer is set. The random
timer prevents a request implosion in the case that the sub-
component is required by multiple latecomers at the same
time. If the state of the sub-component is received while the
request timer is running a transition from SN to complete
(COMP) is performed.

When the random timer expires before the state of the sub-
component has been received, then an RTP/I state query
packet is transmitted to the late-join group, another random
timer is set, and the late-join state changes to “sub-compo-
nent requested I” (SR I). When a reply to this request is
received then the late-join is complete for that sub-compo-
nent. If no reply is received before the timer expires, then a
new reguest is transmitted. In the case that a remote request
for the sub-component is received, the timer is reset (not
shown in Figure 2).

If multiple requests fail, then there is not appropriate late-
join server for this sub-component in the late-join group. In
this case the late-join state for this sub-component changes
to “sub-component requested 11” (SR 1), and ajoin request
is transmitted on the generic services channel. Upon receiv-
ing this request potential servers check whether they should
join, using a join implosion avoidance mechanism similar
to the one used for regquest implosion avoidance. When an
application decides to join, it also transmits the required
information to the late-join group.

When repeated requests for state information fail, the appli-
cation isinformed, and the state is set to WFE. A new event
for the sub-component triggers another request round. This
makes sense since an event indicates that the problem has
been repaired and that a late-join server for this sub-compo-
nent should be available.

timer expired/
inform application

timer expired/
send state query and
set query timer

timer expired/
send state query and
set query timer

Figure 2: Event-triggered late-join

Late-Join Policy: No Late-Join

This policy is chosen by the application to indicate that it is
not interested in the sub-component. In a distributed virtual
environment this policy could be used for sub-components
that the user will never be able to see. By choosing the “no
late-join” policy the overall amount of state information
that isrequired for the initialization of the late-join client is
reduced. This has a positive effect on the initialization
delay as well as on the network and the application load.
When the late-join service is notified that the application
has chosen this policy for a sub-component, then the sub-
component is marked as complete.

Late-Join Policy: Immediate Late-Join

An application may choose the immediate late-join policy
when the sub-component is required at once to present the
medium to the user (e.g., the currently visible pages of a
shared whiteboard). An application can derive the informa-
tion whether a sub-component is required immediately
from the sub-component ID, from the application level

event received /
set query timer

timer expired/
send join request
and set join timer

state received /
inform application

application: setPolicy(EVENT)/ -

state received /
inform application

state received /
inform application

name, or from the fact that it is needed to display the
medium to at least one user.

The finite state machine for the immediate late-join policy
is similar to the one of the event triggered late-join policy.
The main difference is that there exists no wait for event
(WFE) state. Instead the late-join state becomes “ sub-com-
ponent needed” as soon as the application sets the immedi-
ate late-join policy for a sub-component.

Late-Join Policy: Network-Capacity-Oriented Late-Join

For sub-components where the state is not immediately
required an application may choose the network-capacity-
oriented late-join policy. With this policy the late-join ser-
vice monitors the incoming and outgoing network traffic of
the application. This replaces the WFC state from the
event-based late-join policy. If the traffic falls below a
threshold set by the application then a transition to the
“sub-component needed” state is performed. Whenever a
state query is about to be transmitted, the network traffic is
checked. Only when it is still below the threshold, is the

query actually transmitted. Otherwise the query is delayed
further. In al other aspects the network-capacity-oriented
late-join policy is identical to the event-triggered late-join
policy.

Late-Join Policy: Application-Initiated Late-Join

At any point in time the application may choose to change
the late-join policy of a sub-component. In this way it is
possible to upgrade policies like “no late-join” or “network
capacity oriented late-join” to any other policy if this
becomes necessary.

The application can define new late-join policies by ini-
tially setting the late-join policy for a sub-component to “no
late-join”. When the application-defined policy indicates
that the state of the sub-component should be retrieved then
the application can change the policy to “immediate late-
join”. This should be used only for experimental purposes.
If another late-join policy becomes important for certain
applications, then the late-join service should be expanded
toincludeit.

Joining and Leaving the Late-Join Session

Unlike existing approaches, the generic late-join service
allows a small number of applications which have com-
pleted their late-join process to stay in the dedicated late-
join group. If these applications are chosen well they can
assume the role of late-join servers for future latecomers,
while the vast majority of applications (those that have
completed their late-join process and that are not member
of the late-join group) are completely uninvolved in the
late-join process.

This approach raises the question of who should be member
of the late-join group? Obvioudly all applications that have
not yet finished the late-join process for all sub-components
should stay in the late-join group. A late-join service could
theoretically leave the late-join group as soon as the late-
join for all sub-components has been completed. However,
it should not do so without further consideration since this
could leave the late-join group without a late-join server for
certain sub-components. This would increase the time that
alate-join client has to wait before it gets the state of a sub-
component. It is therefore important to define an algorithm
that decides which applications should stay members of the
late-join group, even if they have completed their own late-
join operations for all sub-components.

There are anumber of criteriathat need to be considered for
an algorithm that decides whether an application should
stay in the late-join group or not:

e Group size. The late-join group should be as small as
possible. The smaller the group, the less network traffic
is generated, and the fewer the applications that are
involved in late-join management. A small group also
decreases the likelihood that more than one late-join
server will reply to the state query of alate-join client.

¢ Sub-component presence. Ideally each sub-component
for which the state is likely to be requested should have
alate-join server in the late-join group. This reduces the
delay for late-join clients.

e Group invariance. The number of join and leave opera-
tions should be small for the late-join group since each
of these operations is associated with overhead at the
network layer (e.g., multicast routing).

« Simplicity. The applications should be able to perform
the algorithm with a minimal effort in computation and
communication.

Let us consider three different approaches to decide which
applications should remain in the late-join group to act as
late-join servers:. distributed, isolated, and application con-
trolled.

Distributed Membership Management

In distributed membership management the applications
exchange information about their capabilities to act as late-
join servers. This can be done viathe generic services chan-
nel. With this information an optimal set of potential late-
join servers can be determined. For example, the partici-
pants who are able to provide late-join server functionality
for many sub-components should be preferred as members
of the late-join group.

The main drawback of the distributed membership manage-
ment isits complexity. Applications need to exchange addi-
tional information to alow for this kind of membership
management. This information needs to be transmitted and
processed, which may lead to significant overhead, espe-
cially for large sessions. For these reasons we have chosen
not to use distributed membership management for our
generic late-join service.

Isolated Membership Management

I solated membership management seeks to avoid additional
messages and processing overhead by using local informa-
tion. Each application decides on its own whether it should
join or leave the late-join group. | solated membership man-
agement therefore seeks to increase smplicity at the cost of
adlight reduction in the other quality criteria.

Our generic late-join service uses isolated membership
management. Applications will leave the late-join group by
means of a ‘smart timeout’, and they enter the late-join
group upon the request of alate-join client.

An application leaves the late-join group if it has not
answered any state queries for a certain amount of time.
This amount of timeis not fixed, but is calculated based on
three values:

1. An average late-join group membership time provided
by the application. In this way the application can give a
hint to the late-join service on how fast applications
should leave the late-join session.

2. The number of sub-components that the application can
provide as a late-join server compared to the total num-
ber of sub-components present in the session. In this
way applicationsthat can serve alarge percentage of the
sub-components will stay longer in the late-join group.

3. The number of late-join state queries that could have
been answered by the late-join server compared to the
number of late-join state queries that actually have been
answered by this application and not by some other late-
join server. The lower this percentage is, the less impor-

tant is the presence of the application in the late-join

group.
When the timer expires the application leaves the late-join
group. It may happen that the late-join group contains no
late-join server for a given sub-component. If there is no
late-join activity for a prolonged time the late-join group
may even become empty. Generally this is a good thing,
since it savesresourcesin the event that late-joins are infre-
guent. However, there must also be away to alow applica
tions to re-join the late-join group if a new late-join client
appears.

As described above, a late-join client transmits a message
on the generic services channel if the state queries for a
sub-component remain unanswered in the late-join group.
All applications that are able to become a late-join server
for this sub-component use an SRM style implosion-avoid-
ance mechanism to decide who will actualy join the late-
join group. The generic service of the selected application
transmits an acknowledgment to the generic services chan-
nel, joins the late-join group, and transmits the requested
state of the sub-component.

Application-Controlled Membership Management

In some cases the application may want to decide explicitly
who should join the late-join group rather than leaving this
decision to the late-join service. For example, in a medium
that uses a floor control mechanism only the floor holder
may be able to transmit the state of a sub-component. Since
there is only one candidate for joining the late-join session,
it would be wasteful to use an implosion avoidance mecha
nism. Therefore our late-join service allows the application
to specify that it should immediately enter the late-join
group if the state of a certain sub-component is requested.

In order to determine when an application should |eave the
late-join session, the smart timeout mechanism described
above is aso used for application-controlled membership
management. This is reasonable since an application will
generally not be able to determine with a higher accuracy
than the late-join service when it is no longer needed as a
late-join server.

Generic Late-Join Service API

Theinterface to the late-join service is depicted in Figure 3.
The first two functions are called when RTP/I and RTCP/I
data is received for the original RTP/I session. Based on
this information the late-join service discovers new sub-
components and triggers requests for the state of sub-com-
ponents.

When a new sub-component is discovered, then the late-
join service asks the application about the late-join policy
that should be associated with the sub-component. If all
sub-components should be treated with the same policy
then it is possible to set a default policy by means of set -
DefaultPolicy. The latejoin service will then refrain
from asking the application about late-join policies for indi-
vidual sub-components.

An application can at any timecall setPolicy toassigna
new late-join policy to a sub-component. This may also be
called on a sub-component for which alate-join has already
been completed. The late-join may be used in this way to

recover the state of sub-components in a late-join policy
driven fashion.

The application may specify the policy for joining the late-
join group and the base time for leaving it. When the late-
join service needs to transmit the state of a sub-component
as a late-join server, then it reguests the sub-component’s
state from the application by means of the get SubCom-
ponentState method. Finally the application may be
informed of an unsuccessful late-join attempt through a
1ljFailed cdl.

Implemented by the generic late-join service:

void rtpiDataReceived (RTPIData rtpiData)

void rtcpiPacketReceived (RTCPIPacket
rtcpiPacket)

void setPolicy(LJPolicy policy, long subID)

void setDefaultPolicy (LJPolicy policy)

void setJoinGroupPolicy (JGPolicy policy)

void setLeaveGroupBaseTime (long baseTime)

Implemented by the application:

LJPolicy askForPolicy(long subID)
RTPIData getSubComponentState (long sublID)
void 1jFailed(long subID)

Figure 3: Generic late-join service API

Consistency and the Generic Late-Join Service

A distributed interactive medium generally needs to take
specific actions to maintain a consistent shared state for all
participants of a session. This includes ensuring that events
are applied to the state of the medium in the correct order at
the appropriate point in time. It may also be necessary to
realize state repair functionality to recover from network
partitioning or lost events. The piece of software that is
responsible for these actions is called a consistency service.

The generic late-join service provides the application and
the consistency service with an initial state of the sub-com-
ponents in a policy driven and efficient way. It is not the
task of the late-join service to realize the functionality that
should be provided by a separate consistency service. This
would limit the applicability of the generic late-join ser-
vice, since different distributed interactive media may have
different requirements regarding consistency while having
the same requirements for a late-join service. In addition to
the generic late-join service presented here we have
designed and implemented a consistency service for distrib-
uted interactive media which are continuous (i.e. these
media require that events are applied to the state of the
medium at a given point in time). A detailed description of
the algorithm for this consistency service can be found in
[11].

6. EXPERIENCES

We have used the generic late-join service for a 3D teleco-
operation application called TeCo3D - a shared workspace
for dynamic and interactive 3D models [8]. TeCo3D was
developed to allow users to share collaboration-unaware
VRML (Virtual Reality Modeling Language) models, i.e.
models which have not been specifically developed to be

used by more than one user at atime. With this functional -
ity itispossible to include arbitrary VRML content, as gen-
erated by standard CAD or animation software, into
teleconferencing sessions.

TeCo3D was developed by reusing a Java3D VRML loader
as 3D presentation and execution engine and employs a
completely replicated distribution architecture with reliable
multicast as means of communication. When a user imports
alocal VRML object, the VRML code is parsed and the
parts which are responsible for user interactions are
replaced with custom components turning the collabora-
tion-unaware object into a collaboration-aware model. User
initiated operations are captured by the custom components
and are transmitted to all peer instancein the session, where
they are injected into the local model. In order to provide
access to the shared state of items on the shared workspace
we have enhanced the VRML loader by a method to get and
set the state of arbitrary VRML objects.

The mediamodel for distributed interactive media provides
agood fit for TeCo3D. The sub-components are the VRML
objects. The state of these objects represent the state of the
sub-components while the events are user interactions with
the objects. TeCo3D uses RTP/I as application level proto-
col.

TeCo3D uses a floor control based consistency service.
Like the late-join service presented in thiswork, the consis-
tency service is RTP/I based and generic. The floor of a
sub-component identifies the participant with a valid state
of aVRML object. Only this participant is able to transmit
states and events for the VRML object.

The generic late-join service has been developed com-
pletely separate from TeCo3D using a simple demo appli-
cation. The integration of the generic late-join service into
TeCo3D was straight forward. It took less than 5 hours to
complete the integration. The following choices were made
for adapting the generic late-join service to the needs of
TeCo3D:

e The late-join policy for those sub-components that are
currently visible for at least one participant is set to
immediate late-join.

e The late-join policy for those sub-component that are
not visible for any user is set to event triggered.

e The late-join group join policy is set to application
defined. Thisis reasonable since the consistency service
of TeCo3D dlows only a single participant to reply to
state queries for a given sub-component.

The simple and straight forward integration, as well as the
easy way of adaptation shows that the generic late-join ser-
vice is indeed generic and useful for distributed interactive
media. In order to allow others to experiment with this ser-
vice, the generic late-join service can be downloaded as
Java sourcecode from our web site [13].

7. CONCLUSION AND OUTLOOK

In this paper we have presented a generic, RTP/l based,
late-join service for distributed interactive media. This ser-
vice enables latecomers to join and participate in an ongo-
ing session. Since the late-join service does not use any

media specific information it can be employed by arbitrary
applications that use RTP/I as application level protocol.

The two main innovations of the generic late-join service
are its efficiency and its flexibility. The efficiency of the
generic late-join service is realized by the usage of a dedi-
cated late-join session. Unlike than in existing approaches,
only members of this session will be regularly involved in
the late-join process. Members of the base session are not
burdened with the late-join activity. The membership of
potential late-join servers in the late-join group is con-
trolled by means of a smart time-out and join signals from
|atecomers.

The flexibility of the late-join service is realized by means
of diverse late-join policies for the sub-components of the
distributed interactive medium. The late-join policies allow
the simple tailoring to the individual needs of application.
Furthermore the application can decide on the policy for
joining the dedicated late-join session.

We have integrated the generic late-join service into an
existing, RTP/l based, 3D telecooperation application
called TeCo3D. This integration was simple and needed
less than 5 hours. The source code of the generic late-join
service is available for download.

Currently we are working on a C++ port of the late-join ser-
vice. Furthermore we will integrate the late-join service
into two additional applications: a shared whiteboard and
distributed Java animations for teleteaching purposes. We
expect to get important information about how to improve
the late-join service from these items of future work.

REFERENCES

1. S. Floyd, V. Jacobson, C. Liu, S. McCanne and L.
Zhang. A reliable multicast framework for leight-weight
sessions and application level framing. In; IEEE/ACM
Transactions on Networking, Vol. 5, No. 6, 1997, pp.
784 - 803.

2. L. Gautier, C. Diot. Design and Evaluation of MiMaze,
a Multi-player Game on the Internet. In: Proc. of IEEE
International Conference on Multimedia Computing
and Systems, Austin, Texas, USA, 1998, pp. 233-236.

3. W. Geyer and W. Effelsberg. The Digital Lecture Board
- A Teaching and Learning Tool for Remote Instruction
in Higher Education. In: Proc. of 10th World Confer-
ence on Educational Multimedia (ED-MEDIA) ‘98,
Freiburg, Germany, 1998. Available on CD-ROM.

4. W. Geyer, J. Vogel, and M Mauve. An Efficient and
Flexible Late Join Algorithm for Shared Whiteboards.
To appear in: Proc. of the Fifth IEEE International Sym+
posium on Computers and Communications,
ISCC’ 2000, Antibes, France, July, 2000.

5. O. Hagesand. Interactive multiuser VEs in the DIVE
system. In: IEEE Multimedia, Vol. 3, No. 1, 1996, pp.
30- 39.

6. M. Handley, and J. Crowcroft. Network text editor
(NTE): A scalable shared text editor for the MBone. In.
Proc. of the ACM SIGCOMM’ 97, Cannes, France,
1997, pp. 197 - 208.

7. V. Jacobson, S. Casner, R. Frederick and H.
Schulzrinne. RTP: A Transport Protocol for Real-Time
Applications, Internet Draft, Audio/Video Transport
Working Group, |ETF, draft-ietf-avt-rtp-new-04.txt,
1999. Work in progress.

8. M. Mauve. TeCo3D: a 3D telecooperation application
based on VRML and Java. In: Proc. of SPIE Multimedia
Computing and Networking (MMCN) '99, San Jose, CA,
USA, published by SPIE, Bellingham, Washington,
USA, January 1999, pp. 240 - 251.

9. M. Mauve, V. Hilt, C. Kuhminch and W. Effelsberg. A
Genera Framework and Communication Protocol for
the Transmission of Interactive Media with Real-Time
Characteristics. In: Proc. of IEEE Multimedia Systems
(ICMS) '99, Florence, Italy, published by IEEE Com-
puter Society, Los Alamitos, California, USA, June
1999, Vol. 2, pp. 641 - 646.

10.M. Mauve, V. Hilt, C. Kuhminch, J. Vogel, W. Geyer
and W. Effelsberg. RTP/I: An Application Level Real-

Time Protocol for Distributed Interactive Media. Inter-
net Draft: draft-mauve-rtpi-00.txt, 2000. Work in
progress.

11.M. Mauve. Consistency in Continuous Distributed
Interactive Media. Technical Report TR-9-99, Reihe
Informatik, Department for Mathematics and Computer
Science, University of Mannheim, November 1999.

12.J. F. Patterson, M. Day and J. Kucan, Notification serv-
ers for synchronous groupware. In: Proc. of the ACM
conference on Computer supported cooperative work
(CSCW) * 96, Boston, USA, 1996, p. 122.

13.RTP/I. The RTP/I homepage.
http://www.informatik.uni-mannheim.de/
informatik/pi4/projectsRTPI/index.html

14.T. L. Tung. MediaBoard: A Shared Whiteboard Applica-
tion for the MBone. Master’s Thesis, University of
Calafornia, Berkeley, California, USA, 1998.

