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Abstract—In this paper we propose a distributed algorithm
to detect whether a given node is present or absent in an ad-
hoc network. This information is valuable since many proposed
protocols and applications for MANETs exhibit worst-case be-
havior when an intended communication partner is currently
not present. Our distributed algorithm improves upon existing
approaches to presence detection by significantly reducing the
overhead that is required to decide whether a node is present: a
reduction by 70–80 % is well possible. We describe the proposed
algorithm and assess its properties both analytically and through
simulation.

I. INTRODUCTION

Node mobility is a key challenge in mobile ad-hoc networks.
On the one hand, mobility implies that nodes can move, that
communication links between nodes may break, while new
links become available, and so on—but mobility also includes
the possibility that nodes may enter and leave the network. Be
it due to physical absence or because of switched-off devices:
nodes in a mobile network will not be present at all times.

In [1], we pointed out that for many applications it is vital
to know whether some given destination node is currently part
of the network or not. One specific example—and therefore
one possible application of the mechanisms discussed in this
paper—is reactive MANET routing: protocols like DSR or
AODV make the implicit assumption that all desired commu-
nication partners are actually present in and reachable over
the network. If this is not the case, and a connection to a
non-present node is requested, repeated flooding for route
establishment attempts causes significant, but entirely wasted
overhead. There are many other examples in various contexts,
where information on the set of currently present nodes is
highly useful.

A first mechanism that tackles this problem was proposed
in [1]. It allows to check whether other nodes are present.
However, it provides more information than just node pres-
ence, it also yields a distance estimate to the respective node.
This is a result of the employed data structure, a soft state
variant of Bloom filters. This data structure provides a lossy
compression of presence information and at the same time
allows to remove old, timed-out information. As an effect
of this particular data representation, it also yields distance
estimates.

Although such a hop distance estimate may be useful
in some situations, it is not always necessary. It actually
turns out that presence information can be represented in a
substantially more compact form without distance information.
This saves a significant amount of network bandwidth. The
key to do so is a new, more space efficient method to
remove old information. Here, we use a phase-based, coarse

synchronization mechanism in order to periodically remove
outdated presence information. We introduce a protocol that
implements this mechanism and present both analytical and
simulation results. Finally, in order to underline and concretize
the effects if applying a presence detection mechanism, we
pick one specific, well-known application scenario—reactive
MANET routing—and apply the presented mechanisms there.
This underlines and concretizes the results. In both the general
evaluation results and the application scenario, we compare
the algorithm presented here with the presence detection
mechanism previously proposed in [1].

In the following section, we survey related work in the area
of obtaining information about the set of nodes that are active
in the network. We then introduce the proposed approach in
Section III. We evaluate it analytically and using simulations
in Section IV. Section V contains the application study with
reactive MANET routing. We finally conclude this paper with
a summary in Section VI.

II. RELATED WORK

Although detecting the presence of nodes is a largely
unexplored field, not only in the context of MANETs, there are
a number of research directions that deal more or less directly
with the presence of nodes in wireless networks.

Close relatives to presence detection are location services
for geographic routing. Examples are GLS [2] and HLS [3].
However, a location service provides significantly more infor-
mation about a node than just deciding whether it is present
or not, namely its current position. Therefore, the cost to keep
the information up-to-date and to perform a lookup in such
a service is much higher. Furthermore, most location services
exhibit their worst-case behavior in terms of effort in the case
of a request for information about a non-present node.

Some systems for presence detection in wireless environ-
ments have been successful applications on their own, for
example the Lovegety [4]. A number of research projects
deal with the exchange of presence information via single-
hop wireless communication, with or without infrastructure.
Examples are [5]–[7]. But none of these systems considers
presence detection over multiple wireless hops.

As already mentioned, routing protocols for mobile ad-hoc
networks are able to determine the presence status of a node.
However, reactive protocols like AODV [8] induce very high,
unnecessary network traffic in the case of a route discovery to a
non-present destination. Thus, they might actually benefit from
an additional presence detection service. In contrast, proactive
routing protocols like OLSR [9] can directly determine the
presence of a node. However, they do so at the cost of
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continuously keeping track of all nodes and all routes. This is
only viable if a proactive routing protocol can be efficiently
employed in a given environment.

More closely related to the problem of presence detec-
tion, [10] presents a design for an instant messaging system
for sparse mobile ad-hoc networks called SPEED. Instead of
the presence of nodes, the authors consider the dissemination
of presence states of users, such as “available”, “busy”, or “do
not disturb”, with the assumption that users’ devices stay in
the network even if a user is “non-present”. Like many of the
previously discussed protocols, SPEED generates significant
overhead in the case of users whose devices are not present in
the network. Therefore, it might in fact profit from additional
node presence detection.

Finally, [1] describes a solution to the problem of presence
detection using a soft state variant of Bloom filters, which is
further discussed in the next section. In the paper at hand we
present an alternative way to distribute presence information,
causing significantly less load on the network.

III. ALGORITHM

One primary objective of using a presence detection proto-
col in a network is to reduce unnecessary overhead, which may
otherwise occur when communication with nodes or services
is attempted, even though the intended communication partner
is currently not available. For achieving this goal, it is of
utmost importance that the overhead of the presence detection
protocol itself is small—otherwise it will in many situations
outweigh the benefits.

A way to achieve a small footprint of presence detection
is to compress the presence information exchanged between
the nodes. A central observation made in [1] is that presence
information does not need to be absolutely accurate, as long
as only a small number of false positives occur. In case of
a false positive, a node is wrongly considered to be present.
This is not critical for many typical applications: in the worst
case, the cost of a false positive is an unnecessary attempt to
contact a non-present node, just as if no presence detection
were used. Thus, in that case, the system behaves like one
without presence detection. False negatives, however, must not
occur, because they would result in connection attempts not
being made, even though the destination node is in fact present.
Because a certain number of false positives is tolerable, while
false negatives are unacceptable, Bloom filters [11] are an
interesting candidate for representing the set of currently
present nodes in a very compact form.

The central problem that arises is to remove information
about no longer present nodes from the aggregate. The solution
proposed in [1], called soft state Bloom filter, achieves this
goal. However, it comes at the cost of substantially increasing
the size of the standard Bloom filter. The additional informa-
tion carried in the modified Bloom filter can be useful, because
it allows to provides the querying node with an idea about
the distance to the destination, if it is present. Often, though,
such distance estimates are not necessary—and therefore the
central question in the paper at hand arises: is it possible

to perform presence detection with unmodified Bloom filters,
and still remove old information? In this section, we will first
briefly recapitulate Bloom filters and the soft state extension
introduced in [1], before we then show how this can, in fact,
be accomplished.

A. The Bloom Filter

A Bloom filter [11] is a data structure that represents a
set S = {s1,s2, . . . ,sn} of n elements to support membership
queries. It is described by an array a of m bits, which are
initially set to 0. k independent hash functions h1, . . . ,hk are
used, each maps every possible item in the set to a uniformly
distributed value in the range {1, . . . ,m}. There are two basic
operations that can be performed on a Bloom filter. New
elements can be added, and the presence of an element can
be queried.

To add a new element s, which is a node ID in our specific
case, the bits at positions h1(s),h2(s), . . . ,hk(s) in a are set to
1. In order to determine the presence of some node x, the bits
at these positions are checked. If any of these is 0, then it is
certain that x is not in S. Otherwise, it can be assumed that
x is in S with some remaining probability of a false positive
that occurs when an element is actually not in the set, but all
respective bit positions have been set to 1 by adding other
elements.

The union of two Bloom filters is calculated by a bit-wise
OR operation. Hence, to disseminate presence information,
nodes may periodically send beacons containing a Bloom filter
of the node IDs they know are present, including their own ID.
Upon receiving such a beacon, they can merge the received
information with what they already know. But this does not
provide a means to delete a value once it has been added.

B. Soft State Bloom Filter

Addressing the problem of removing the presence of nodes
from an aggregate, the soft state presence detection proposed
in [1] replaced the single bits in the Bloom filters by l-bit
counters. They are interpreted as the “age” of the respective
Bloom filter entry. A node initializes all counters with a max-
imum value. This maximum value indicates that the position
of the Bloom filter is not set (it is thus equivalent to setting
a bit position to 0 in the standard Bloom filter). Furthermore,
each node keeps the bit positions corresponding to its own ID
at a value of zero. All other counters that are not already at the
maximum value are incremented whenever a beacon is sent.

Thus, each node continuously announces its own presence
with age 0 and ages all other presence information by 1 each
interval. Upon reception of a beacon from some other node,
the position-wise minimum value of the local and the received
aggregate are computed; thereby, presence information is dis-
seminated in the network. A node is considered present if all
corresponding Bloom filter positions are not at the maximum
value. The aging of the information means that entries of
leaving nodes will eventually die out, because they are no
longer refreshed by a node keeping the respective position at
zero.



Note that this is something significantly different than the
mechanisms for removing entries from Bloom filters pro-
posed in earlier work on Bloom filter modifications, the most
prominent example being counting Bloom filters [12]. These
algorithms also often use counters at each Bloom filter entry,
but for an entirely different purpose: counting Bloom filters
store the number of additions at this position in the counters,
which allows for explicit (as opposed to soft-state) removals.

C. Phase Synchronization

Because the information in a soft state Bloom filter’s
positions ages while traveling through the network, the values
of the counters at the bit positions corresponding to a node
give an idea of the distance to this node. The cost of this
information is, however, high: the algorithm proposed in [1]
results in a size increase of the exchanged Bloom filters by
a factor of l, in comparison to standard, unmodified Bloom
filters. As it turns out, it is actually possible to achieve
network-wide soft state behavior without the need to transmit
soft state Bloom filters with counters at each position in the
presence announcement beacons.

In order to get rid of the overhead for counters in each
bit position, we return to exchanging standard Bloom filters
in periodic beacons. As mentioned before, they do not allow
to selectively remove information about single, specific, no
longer present nodes. The general idea how old information
can nevertheless be removed is surprisingly simple, at least at
a first glance: we may periodically reset all bits in all nodes,
and then start over by collecting information about all (still)
present nodes again. However, two challenging problems make
implementing such an approach more tricky than it initially
seems.

The first such issue is related to synchronizing the process
of resetting the Bloom filters in the nodes. If old information is
removed asynchronously, it will not be permanently removed.
To see why, consider the example shown in Figure 1(a). For
simplicity’s sake, instead of “real” Bloom filters, presence
information of the three nodes x, y, and z is represented by
a single bit each in our examples; in the example aggregates,
x maps to the first, y to the second, and z to the third bit.
In Figure 1(a), z has just left the network. Its presence has
been (and is still) known by x and y, which can be seen from
the third bit in their aggregates being set. x is first to reset
its aggregate. However, with a naive reset, x may then receive
a beacon from y that still contains the old information. As a
result, not only the information about y’s presence, but also
the outdated information about z is recovered. If y later resets
its own aggregate, the next beacon from x will again revive
the information about z. In short, presence information of the
no longer present node z will never die out.

Accurately synchronized clocks in all nodes could provide
a solution to the problem by scheduling them to reset all
the Bloom filters at the same time. However, perfect time
synchronization is not realistic in many distributed real-word
applications. So, instead of relying on time synchronization,
we solve the problem by using a phase synchronization

(a) Naive resetting. (b) Phase synchronization.

Figure 1. Phase synchronization for the removal of old information.

mechanism. Each node maintains a phase counter, which
increments periodically. A node advances to the next phase
after having operated in its current phase for a globally
specified maximum phase duration (C beaconing intervals).
Whenever such a phase transition occurs, the node resets its
Bloom filter and starts over with collecting information about
other nodes from scratch. The current phase ID is attached
to every transmitted beacon. A phase will typically last a few
seconds, and therefore a small (for instance, 32 bit) integer
phase ID suffices even for a very long timespan, so that it
does not significantly increase the beacon size. The phase ID
in the beacons allows nodes to recognize and ignore beacons
from neighbors which are less advanced in phases, making
sure that old information—from phases with lower IDs—will
not reappear in the aggregate.

Figure 1(b) depicts a situation similar to that in Figure 1(a),
except that phase IDs are used. In the figure, x resets its
aggregate, transitioning from phase 8 to phase 9. When it
receives a beacon from y with phase ID 8, this information
is ignored. As soon as y is also in phase 9, information
is accepted again. Therefore, information on y’s presence is
accepted, but outdated information on the no longer present
node z is reliably removed.

However, such an approach requires that the nodes in a net-
work must somehow come to be in the same phase. We there-
fore let nodes in less advanced phases “catch up” with more
advanced neighbor nodes, thereby (coarsely) synchronizing
their phases. The principle we apply in this synchronization
process is that every node catches up with its most advanced
neighbor. Each node maintains that principle by examining the
phase IDs in received beacons, and adjusting its own phase
accordingly if the ID is higher than its own current value. In
Figure 1(b), y performs such a transition when receiving a
phase 9 beacon from x. Of course, such a neighbor-triggered
phase transition also includes resetting the local aggregate, just
like a timeout-triggered one.

Note that an accurate synchronization—i. e., all nodes ad-
vancing to the next phase exactly at the same time—is not
necessary, as long as the nodes remain within the same
phase for long enough, so that presence information can be
disseminated through the whole network. We will soon return
to the issue of choosing phase length and beaconing interval
appropriately in more detail.



Figure 2. Temporary inconsistency.

D. Overcoming Temporary Inconsistencies

Temporary inconsistencies after a phase transition are the
second central problem that needs to be solved in order
to make presence detection with small, unmodified Bloom
filters viable. Immediately after a phase transition, a node’s
aggregate is empty. Until information has been gathered again
in the new phase, it is of no use for presence detection—
recall that false negatives are to be avoided. It takes time
before information from all present nodes reappears at each
aggregate. An example is depicted in Figure 2: x is first to
transition from phase 8 to phase 9, resetting its aggregate.
There is a short period during which y is not seen, and an
even longer time until z, which is not a direct neighbor of x,
also reappears.

To overcome this, we use an additional, more durable local
copy of presence information. We reuse the soft state Bloom
filter described in Section III-B for this purpose. However, in
contrast to [1], the soft state Bloom filter is kept only locally.
It is not transmitted over the network. Whenever information
from a received beacon is incorporated into the local aggregate,
the corresponding positions in the local soft state Bloom filter
are also refreshed. However, the soft state Bloom filter is
not reset upon a phase transition. Instead, the information
gradually decays where it is no longer refreshed and eventually
fades out just as described above. The local soft state Bloom
filter thus bridges the gaps after phase transitions, in some
sense smoothing out the algorithm’s behavior.

E. Detailed Algorithm Description

After having outlined and motivated the phase-based ap-
proach to remove old presence information from unmodified
Bloom filter aggregates, we will now proceed by more for-
mally introducing the complete protocol and data structures.

Data structure: For our phase-based presence detection
protocol, each node locally maintains four data items: the
current phase ID p of this node, the node’s Bloom filter
presence aggregate a for the current phase (which is used
for information exchange), the soft state Bloom filter b for
local presence lookups, and the interval counter c indicating
for how many beaconing intervals the current phase already
lasts at this node.

Timeout: Periodically each node transmits a beacon. All
nodes use the same beaconing interval length B, but their

beaconing cycles do not need to be synchronized, i. e., they
need not (and typically will not) generate beacons at exactly
the same time. At the beginning of each beaconing interval, a
node performs an operation consisting of four steps:

1) Decay the entries in the local soft state Bloom filter b.
2) If c is at the threshold C, advance the phase p, reset c to

zero, and reset a to contain only the presence information
of the local node.

3) Broadcast (a, p, c) to the neighbors.
4) Increment c.
The beacons contain the current interval counter c because

this allows for nodes to “catch up” when they receive beacons
in which the interval counter c is higher than their own current
value. This results in an even tighter synchronization.

Merge operation: The merge operation is performed when-
ever a presence detection beacon is received from a neighbor.
It accomplishes two main functions: (1) it adds presence
information received from neighbors who are either in the
same phase or in a more advanced one, and (2) it synchronizes
the node to the most advanced neighbor.

Upon receival of a beacon (p′, a′, c′) from a neighbor, by
examining the phase ID p′, the node decides whether it should
ignore the beacon, or catch up with the neighbor, or simply
perform a normal update to its local information (p, a, b, c).
The detailed procedure is shown in Algorithm III.1.

Query operation: In order to determine whether some node
x is present, a node checks its local soft state aggregate b
at positions h1(x),h2(x), . . . ,hk(x). If any of the bit positions
corresponding to node x is not set (i. e., either it has never
been set or it has already expired), it may be concluded that
x is not present. Otherwise, x is considered present with some
probability of a false positive.

IV. EVALUATION

In the previous section, we introduced a phased-based
algorithm to disseminate presence information. In this section,
we assess the performance and suitability of the proposed
scheme. In particular, we concentrate on three aspects: the
reliability of the scheme in terms of the false positive rate, how
to choose the length of a phase, and the speed of information

Algorithm III.1 Merge operation
if p > p′ then {the sender is less advanced}

{do nothing}
else if p = p′ then {both are in the same phase}

a←merge_bloom_filters(a,a′)
b←merge_bf_into_softstate_bf(b,a′)
c←max{c,c′}

else {the sender is more advanced}
a← a′

add own presence information to a
b←merge_bf_into_softstate_bf(b,a′)
c← c′

p← p′

end if



propagation. Where appropriate, comparison with the soft state
approach from [1] is also presented.

A. False Positive Rate

A false positive occurs when the bit positions corresponding
to the sought-after node are all set by other added elements.
We use standard Bloom filters, so the probability of a false
positive is well-known. It depends on three factors: the number
of bit positions in the filter m, the number of hash functions k,
and the number of elements n that are present in the set. The
probability that a bit position is still zero after n elements with
k bit positions each have been added is (1−1/m)kn. Thus, the
probability that all k bit positions of the sought-after node are
one is (

1−
(

1− 1
m

)kn
)k

≈
(

1− e−kn/m
)k

.

B. Choosing the Phase Length

The algorithm proposed here spreads information bi-
directionally among nodes in the same phase, and uni-
directionally otherwise, i. e., information from a more ad-
vanced node is accepted at a less advanced node, but not
the other way around. However, once a uni-directional dis-
semination takes place, the less advanced node will at the
same time synchronize itseft with the more advanced neighbor.
Consequently, a central issue is to choose an appropriate phase
length: excessively long phases will delay the removal of
outdated information from the network. On the other hand, if
a phase is too short, a “complete” picture will not have been
collected before the most advanced node again transitions to
the next phase, resetting the aggregates.

It is straightforward to see that the worst case is the
following simple scenario: assume the network has a chain
topology with nodes labeled 0,1,2, . . . ,d. Let 0 be the most
advanced node and d the least advanced node within the
current phase, i. e., 0 will be the first to transition to the next
phase. In order for 0 to receive presence information from d,
the new phase must first propagate along the chain from 0
to d, i. e., every node 0, . . . ,d− 1 must send a beacon. Once
d is synchronized to the new phase, each node d, . . . ,1 must
send a beacon in that order for the bits set by d announcing
its presence to arrive at node 0. At this point in time, 0 must
not yet have advanced to a new phase again. In other words,
a phase length should be no shorter than the time needed to
relay information in beacons from 0 to d and back.

Let u and v be neighboring nodes. Let xu,v be the time
between u sending a beacon and v sending the next beacon
after receiving the one previously transmitted by u. The time
D needed to relay beacons from node 0 to d and back is

D = x0,1 + x1,2 + . . .+ xd−1,d + xd,d−1 + . . .+ x2,1 + x1,0.

Because beacons are sent at periodic, constant intervals, one
may reasonably assume that the offset between the beaconing
cycles of two nodes will not change significantly over time
spans in the order of some beaconing cycles. Under this
assumption, the time span xu,v is always of the same length,

regardless which specific pair of subsequent beacons of u and
v is considered. Consequently, if the values xu,v do not depend
on the specific beacon, it follows that xu,v +xv,u is equal to the
time between two successive beacons sent by u—i. e., it is the
beaconing interval length, here denoted by B. By rearranging
the above sum and using the observation that xu,v + xv,u = B,
we obtain

D =
d−1

∑
i=0

(xi,i+1 + xi+1,i) = d ·B.

Consequently, the phase length C in beaconing intervals
should at least be the network diameter in hops, plus po-
tentially some additional time to account for possible beacon
losses. Note that this is significantly shorter than what one
could have expected at a naive first glance: d beaconing
intervals actually suffice for information to travel over d hops
forth and back again!

As explained in Section III-D, to overcome the temporarily
incomplete information in the Bloom filters after a phase
transition, we use soft state Bloom filters locally as the more
durable local copy of presence information. Its T T L parameter,
determining how many beaconing intervals a soft state Bloom
filter entry remains set without being refreshed, should be set
to a value with the same lower bound as the phase length C.

C. Speed of Information Propagation

In the phase-based approach, information is propagated in
the same manner as in the soft state approach presented in [1].
Thus, it may be expected that the dissemination time should
be the same as for the soft state approach, plus an additional
delay of one beaconing interval for arriving nodes to get phase-
synchronized with the rest of the network (this synchronization
takes place as soon as a newly arriving node receives the first
beacon).

The other interesting parameter is the time until a leaving
node is no longer considered present. In the soft state ap-
proach, after node x has left, it will be considered present
until the counters have completely decayed. If the presence
information about x is currently t beaconing intervals old,
this will happen after T T L− t more beaconing cycles. In the
phase-based approach, after x leaves, it will be removed first
from the exchanged aggregate (the unmodified Bloom filter)
when a node transitions to the next phase, and later from the
node’s local soft state Bloom filter when the T T L expires.
Thus, depending on whether x left right at the beginning or
more towards the end of a phase, the time until information
about x is removed at another node varies in the range
T T L . . .(C + T T L) beaconing intervals, plus or minus a time
less than one phase length due to the fact that some nodes are
more advanced within the phase than others.

As explicated above, both the phase length C and the T T L
should be chosen slightly higher than the expected network
diameter. Thus, the phase-based approach can be expected to
react half as fast as the soft state approach, and the delay will
be proportional to both the length of the beaconing interval
and the network diameter.
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Figure 3. Time until information is received by all nodes.

We conducted simulations to verify this expectation using
the ns-2 network simulator [13]. We placed 200 nodes ran-
domly on a square area of 1500 meters side length, and used
the phased-based presence detection algorithm with m = 1024
filter positions, and a beaconing interval of three seconds. As
the maximal diameter of these networks is 10, we chose a
phase length of 10 intervals, The simulation uses IEEE 802.11
at 1 MBit/s and 250 m radio range. 199 nodes were initialized
with random phase IDs. After they have all synchronized and
learned about the presence of each other, the 200th node enters
the network and the delay until it was recognized as present by
other nodes is measured. The node to be watched alway starts
with phase ID 0, so that it has to synchronize with neighbors
before its presence is recognized.

Figure 3 shows the time until a node is considered present
by all other nodes within 10-hop distance after it has arrived,
and the time until presence information of leaving nodes van-
ished from the aggregates of all other nodes. Corresponding
results of the soft state approach are included for comparison.
The times are given for different beaconing intervals with 95-
percentile error bars.

It can be seen that, as expected, the delay increases linearly
with the beaconing interval length. The average time until a
newly present node is recognized as such (the bottom two
lines) is one interval longer with the phased-based approach
than it is for the soft state approach. For leaving nodes, the
simulation results also confirm the theoretical expectations.

V. EXAMPLE APPLICATION

In the previous section we assessed the general properties of
the algorithm analytically and in simulations. Node presence
detection can, as stated before, be used in a large range of
applications. The results presented in this section quantify its
impact in one specific, exemplary one. Again we compare
the results to those obtained with the soft state Bloom filter
presence detection mechanism from [1].

We analyze both algorithms when they are applied in the
following scenario. In networks with AODV routing [8], we
query the presence detection service at the source node before
starting a route request for a new connection. If the destination
node is considered present, the connection will be initiated
as usual. Otherwise, the route request is delayed until the

presence detection service indicates that the destination node
is present. This avoids unnecessary route discovery attempts
to currently non-present nodes.

In order to be able to investigate the impact of the network
size, we used two classes of networks: (1) networks of 200
nodes in an area of 1500 by 1500 meters (we refer to those as
“medium-size”), and (2) networks of 400 nodes in an area of
2500 by 2500 meters (“large-size”). The simulation study was
conducted using ns-2 [13]. IEEE 802.11 is used at 1 MBit/s
bandwidth. This is a relatively low value; however, note that a
low network bandwidth is particularly hard for a beacon-based
presence detection scheme: at higher total bandwidths, the
fraction of the network capacity spent for presence detection
beacons will be lower. We therefore chose to assess our
scheme under these particularly difficult circumstances.

The communication radius in our simulations is 250 meters,
with a 550 meter carrier sense range. The nodes move ac-
cording to the random waypoint mobility model with random
speeds in the range from 1 to 10 meters per second and a
pause time of 20 seconds. In order to overcome the well-
known limitations of random waypoint [14], we used the
modified version of the model, initialized with the steady-state
distribution. The beaconing interval is set to three seconds. All
connections last 100 seconds and start at some random time
between 10 and 190 simulation seconds. During a connection,
the source node sends constant bit rate traffic with four data
packets per second, each with a payload size of 512 bytes.
The results are averages over 25 scenarios, each with different
traffic and movement patterns. All plots in this section show
95 % confidence intervals.

Obviously a large number of other parameter settings would
have been conceivable. We have selected the parameters
outlined above in such a way that the network is in an
uncongested state for 20 connections when all nodes are
present and no presence detection scheme is used. We then
examine the impact of additional load caused by additional
connections to present and non-present nodes and by the
present detection schemes.

A. Algorithm Parametrization

In simulations with medium-sized networks of 200 nodes,
we use Bloom filters with m = 1024, k = 4, hence the
false positive rate is about 0.086. Since networks of these
dimensions do typically never exceed a diameter of ten hops,
we use four bits per soft state Bloom filter position in the soft
state approach. In the phase-based approach, we set both the
phase length and the T T L parameter of the local soft state
Bloom filters to 10. As a result, the sizes of the aggregates
in the beacons are 512 bytes for the soft state Bloom filter
protocol and 128 bytes for the phase-based approach.

In the case of large-sized networks of 400 nodes, to have
the same false positive rate of 0.086 as in medium-sized
simulations, we used the Bloom filter parameters m = 2048
and k = 4 in both approaches. The soft state Bloom filter
approach uses five bits per position to be able to detect nodes
at distances of more than 15 hops in these bigger networks.
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(a) Medium-sized networks.
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(b) Large-sized networks.

Figure 4. Packet delivery ratio as the number of connections increases, in a
worst-case scenario.

For the phase-based approach, phase length and T T L are set
to 25. As a result, the sizes of the aggregates used by the
soft state and phase-based approaches are 1280 bytes and 256
bytes, respectively.

B. Worst case

The worst case for the presence detection service is a
situation where all network nodes are permanently present. In
that case, the network will not profit from presence detection
services, while they still consume bandwidth.

Figure 4 shows the performance of networks of medium
and large size, in terms of the packet delivery ratio with 95%
confidence intervals, for an increasing number of connections.
Because all nodes are always present, we may not expect any
benefit from presence detection. But we can assess the impact
caused by the additional beaconing traffic in this worst case
situation. For medium-sized networks, Figure 4(a) shows little
negative impact of both approaches, the network performance
in all three cases is roughly the same. The cost of both present
detection approach is so small that it does not add significantly
to the congestion level of the network. However, in large-size
networks (Figure 4(b)), the impact of the soft-state approach
becomes quite pronounced, due to the large beacon size.

C. Absent nodes

Now we keep the number of “working” connections to
present, available nodes fixed at 25. Figure 5 shows the effects
on the network performance, when the number of additional
connection attempts to non-present nodes increases. It can be
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(a) Medium-sized networks.
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Figure 5. Packet delivery ratio as the number of connection attempts to
non-present nodes increases.

seen that, without presence detection, an increasing number of
connection attempts to non-present nodes severely deteriorates
the network performance. The performance with presence
detection, on the other hand, does not show significant negative
effects, no matter how many connections to non-present nodes
are attempted. In medium-sized networks, the performance of
both approaches is stable at a high level. For large networks
the soft state approach’s delivery ratio is 30 % less that the
phase-based approach’s. Again, the reason for this difference
is the bandwidth spent on beaconing.

We compared the average bandwidth spent by a node for
routing packets, data packets, and presence detection beacons,
for the cases with and without presence detection. Without
presence detection the bandwidth used for routing packets
quickly increases, while the available bandwidth for applica-
tion data decreases. Only a small portion of the bandwidth
is actually effectively used. For large networks this is shown
in Figure 6. For medium-sized networks we do not show the
results here due to space limitations; the effect is very similar,
though.

Both presence detection services are able to block the vast
majority of connection attempts to non-present nodes. Thus,
with presence detection, the bandwidth usage remains almost
constant: with an increasing number of connections to non-
present nodes there is only a minor increase in bandwidth
used by AODV, caused by false positives. In medium-sized
networks the bandwidth cost by the phase-based approach is
already significantly lower than that of the soft state approach,
a trait that becomes even more pronounced in large networks.
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(a) Without presence detection.
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(b) Soft state presence detection.
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(c) Phase-based presence detection.

Figure 6. Large-sized networks: bandwidth use per node as the number of
connection attempts to non-present nodes increases.

In Figure 6(b), it is evident that with soft state Bloom filter
based presence detection, the average bandwidth each node
spends on beaconing is in fact the largest part of the three
types of traffic. This limits the network performance in terms
of packet delivery ratio, as observed in Figure 5. The phase-
based approach, on the other hand, maintains a low overhead
for beacon information and can therefore deliver a much higher
percentage of the data packets to their destination.

VI. CONCLUSIONS

In this paper we proposed a new presence detection scheme
for MANETS. In comparison to prior work, it requires sig-
nificantly less bandwidth for the distribution of presence

information. The key idea is to rely on phases to remove
information on nodes that are no longer present in the network.
We investigated key aspects of the approach, such as the speed
of information propagation, the probability of false positives,
and the bandwidth consumption by means of analysis and
simulation.

The aggregation of presence information comes at the cost
of an adjustable amount of false positives, while it guarantees
the absence of false negatives. To underline the practical
benefits that can be obtained by using presence detection, and
the advantages as well as disadvantages in comparison to prior
work, we also showed simulation results from an exemplary
application of presence detection to the route discovery process
of AODV.
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