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Abstract

In this paper we evaluate the feasibility of incremental contract signing on widespread
employed mobile devices. Prerequisites for the employment, such as the ability to communicate
and to run cryptographic operations, will be motivated and their computational as well as timely
complexity will be discussed. We will identify suitable cryptographic algorithms and recommend
appropriate key lengths for mobile usage and analyze their performance on real devices. Metrics to
rate the scalability will be introduced and applied. The overhead resulting from the communication
necessary to conduct incremental contract signing will also be evaluated by the use of different
communication patterns. The trade-off between computational and timely savings will be addressed,
as the efforts can differ due to different schedules. Taking care of both is crucial for the success of
contract signing, because in a mobile environment battery power and time are limited resources.
Possible scenarios are sketched based on these measurements and the feasibility of incremental
contract signing with respect to these two, above mentioned, factors will be shown. Furthermore,
optimizations are presented in form of advanced signing schemes, allowing for an almost 50%
gain in efficiency compared to naive schemata.

I. INTRODUCTION

We proposed incremental contract signing (ics) in [1] as a solution to the problem of signing trade
contracts in a fair manner offline, i.e. without the need for any trusted party being immediately
involved. Especially the increasing, mobile usage of digital content and the idea introduced by the
concept of Digital Ownership justifies this approach. The vision of digital ownership management
(dom) is not to own the content – its binary representation– itself, but the rights associated
with the desired content. Furthermore it should be possible to trade these rights associated with
intangible goods such as digital content at anytime and anywhere. Our statement is, that the (digital)
representation of content itself is, due to its widespread availability and ease of access, of no worth.
Instead, the services build upon the ownership of rights, which are associated with the content, are
of interest as they provide proof of legal usage and added value. In the first place, these rights allow
legal users to access the related content by the use of digital ownership services (dos). “Conventional
online music-stores” lack additional services such as proof of ownership, repeated access in the
desired format, and, even more important, the ability to trade and lend these rights. Mobile devices
provide enough computational power and storage capacity, to allow ubiquitous usage of digital
content. Besides this mobile usage, the demand for spontaneous interactions between participants
does exist as users want to show off their digital belongings, use them in the particular manner and
finally trade associated rights offline. A detailed description can be found in [2] and [3].

We focus on the offline scenario, where no trusted authority is immediately involved and trading
takes place in an ad-hoc manner. Short range communication such as Bluetooth will be employed
to search for interesting trade partners in the own proximity and for the entire communication
necessary to negotiate and sign the trade contract. Mobile devices should communicate directly
with each other instead of relying on an internet connection to access a trusted authority of the
digital ownership management to conduct a trade. The aim of this technical report is to prove the
feasibility of ics on mobile devices with respect to cryptographic and communication issues.
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This report is structured as follows: We will first sketch the big picture in Section II to understand
the needs the idea of digital ownership poses on cryptographic algorithms. A brief overview of the
system architecture will be given, but the main focus will be on the demands of incremental contract
signing. The mandatory computational and timely effort of suitable algorithms and key lengths will
be analyzed in Section III. Based on these findings an improvement of almost 50% by adapting
the scheduling will be explained in Section IV. Section V is dedicated to the communication
overhead resulting from necessary signature handover and the restrictions imposed by a shared,
wireless communication channel. An evaluation of the performance will be presented and potential
improvements are pointed out. The target platform as well as (freely) available cryptographic
libraries will be introduced, compared and rated towards their suitability in the following section.
Digital signature algorithms and some widespread used hash functions will be sketched. The
mathematical background for a choice of relevant digital signature algorithm will conclude this
section. In Section VII real world issues, such as devices, implemented libraries and test-settings will
be discussed. Observations and findings made during our test series will be presented. Section VIII
contains a conclusion of the insights and results provided by this report. The Appendix contains
the statistical plots for chosen scenarios as well as the entire set of histograms.

II. BIG PICTURE

Nowadays, digital content has to be associated with a tangible element, e.g. a CD-ROM, to be
traded. The digital ownership management employs a trusted authority that keeps track of the
rights which grant access to the content and appropriate services. In order to participate, users
and content provider have to register themselves. The latter ones will also register the content
they want to offer. Certificates are issued for both, users and content, by the trusted authority
stating their authenticity. Public key cryptography will be used for certificates issued by the trusted
authority, authentication and for offline contract signing. Initial ownership of rights can be obtained
via purchase in a web shop, by redemption of vouchers, give-away promotions, etc. According
ownership information will be stored in the database and can be stated in an ownership certificate
also issued by the trusted authority. As we assume that devices are not continuously connected to
a trusted authority, especially at the moment of an interaction with others. The only information
available in such an ad-hoc setting are certificates provided by each user. These certificates have
been issued by an authority that all involved user trust and have to be stored on the mobile devices.
Now, these devices can disconnect from the trusted authority and strike out for mobile usage.
Although all certificates represent a snapshot of the past, user certificates and the description of the
digital assets, so-called creation certificates, are essential to know who you are interacting with and
what the subjects of the trade are. While the information inside these certificates can not become
invalid, the information inside ownership certificates, stating who owns what, can become invalid
within an instant when a users signs a trade contract for these assets and hands it over. Because
of this, ownership certificates should only be used as an indicator of ownership, which is similar
to the real world, as being in possession of a tangible object does not imply to be its legal owner.
These three types of certificates (user, creation and ownership) provide all information necessary to
conduct a trade. A user confirms the validity of the ownership certificates, which are relevant to the
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trade, by signing the trade contract. After the contract has been signed, it has to be submitted to the
trusted authority for processing. Processing includes the verification of the attached signatures and
contractual liabilities followed by their commitment. In case of proven fraud, prosecution in terms
of remuneration, bad recommendations or other sorts of social pressure within the community will
take place. Each user has to know her private keys for authentication and contract signing. This
knowledge can be verified by anyone using challenges based on the public key, i.e. the information
contained in the trusted authority signed user-certificate. See [4] for more details. Please be aware
of the fact that the purpose of incremental contract signing is to enable fair offline trading within
the realm of the digital ownership management, as signing general purpose contracts does not make
sense due to missing abilities to enforce the liabilities.

A. Basics of Incremental Contract Signing

The aim of incremental contract signing is to enable fair trading while being offline. It will happen
that a contract has to be signed by users that neither know nor trust each other. They might be
entire strangers which noticed each other by employing interest sensing, which makes use of short
range communication as presented in [5]. The following steps, partially relying on cryptographic
operations, have to take place: After finding an interesting partner to trade with, priming has to take
place by mutual authentication of the participants followed by a presentation of the own belongings
and the proof of legal ownership. After the negotiations have taken place, the contractual text is set
up and has to be signed by each user. Well known procedures exist for authentication as well as
for creation and verification of signatures which also includes certificates [4]. Several approaches
tackle the fair exchange of a secret by introducing lots of effort and algorithms dedicated to this
special problem, see [1]. In our situation, these secrets would be each users’ contract signatures.
Our approach allows signing of trade contracts offline in a fair manner by the use of well-known
public key digital signature algorithms.

By handing over a signature for a contract, especially when being the first party to do so, an
unlimited option to decide if the contract will be submitted and processed is granted to potentially
malicious counterparts. The holders of such options can for example wait and search for better
offers, play with the market based on the option, or just keep the others from trading as they
have signed a contract. The value of such an option depends on the time it can be exploited. By
associating an expiration date with every signature, options can be exploited only as long as the
inducing signature is valid. This enables a fine-grained control by the signer. Shorter options are
of much less value than longer ones, due to the limited time available for negotiation with others,
changes of the market and the signer being blocked.

Incremental contract signing relies on a round-based increment of the current signatures’ expiration
dates. The contract can be submitted for processing as long as a valid signature of each user
is attached. Normally, each user’s recent signature lasts longer than the one before, pushing the
expiration date further. As a result, multiple signatures have to be created and handed over by each
user to achieve the desired expiration date of the contract by keeping the risk at an acceptable, low
level. Due to this, each user has to receive and verify the signatures of all users before she hands
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over her next signature. The first signature of each user can not be triggered by this, but has to
be handed over by good-will. We assume that no signature expires before all other signatures of
a prolongation have been handed over and before the respective user has handed over its longer
lasting successor. The determination of the signatures’ expiration dates are not subject of this paper,
but we will show that a sufficient amount of signatures for incremental contract signing can be
created and verified on current mobile devices within a reasonable timespan available during an
ad-hoc meeting.

Lets have a look at an example: As said before, incremental contract signing is build on the idea to
restrict the signatures’ validity periods to limit the risk each users incurs. For each of these validity
periods, regular contracts will be signed by each user with her according signature. For example: A
trade contract should be valid for the next 24 hours, but the risk of handing over a 24 hour lasting
signature seems too high. If the users agree to sign only contracts that incur a maximum risk of
four hours, this 24-hour period will be “split” into six portions, each lasting four hours longer than
the one before. The first one lasts only four hour, the second eight, the third twelve hours and so
on until the desired duration, 24 hours, have been signed. The ordered handover of these signature
grants only an advantage of four hours to a potentially malicious counterpart – because the next,
longer lasting signature will only be handed over after the successful verification of all other users’
recent signatures. Then each user is in possession of a completely signed contract lasting four hours
less than the next one to be signed. At the end a contract lasting for 24 hours has been signed, but
each user’s risk has been only four hours. The risk can be reduced further by decreasing the validity
periods’ duration. But then, the number of prolongations g increases. In our first approach, a single
signature of each user is needed per prolongation. Now, a trade-off between the incurred risk and
the number of prolongations does arise and has to be adjusted. If the risk should be smaller the
more prolongations are necessary – resulting in an higher effort for signing. Vice versa, the risk
becomes higher the less prolongations are desired. To reduce the risk by a factor of 1/g, the effort
increases by the factor g.

B. Mandatory Cryptographic Operations

The focus will now be on the cryptographic operations that are needed to realize the functionality
of the digital ownership management and especially for ics. Short range communication such as
Bluetooth will be analyzed in Section V. Concerning cryptography, it has to be distinguished
between

a) operations that have to take place in real-time, e.g. contract signing or signature verification,
where others are waiting for the result of the operation, and

b) operations that can be accomplished at anytime before and laid in stock for later usage, e.g.
key pair generation.

Operations that take place at the trusted authority are of no concern as sufficient computational
power as well as libraries are available1. We focus on the question, if the computational power of
mobile devices and the performance of libraries as well as desired algorithms suffice the needs.

1 Issues such as scalability and protection against (distributed) denial of service attacks are not subject of this paper.
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Offline trading relies on two sources of information,

1) the certificates signed by the trusted authority and
2) the information assembled and signed by the users.

Both have to be handed over and verified while negotiations and contract signing takes place
– just-in-time. Signature creation and verification are mandatory to allow a mobile device to
participate. Although these operations rely on public key cryptography, which is slower than
symmetric cryptography, they have to be possible within an acceptable timespan despite the very
limited computational power available on the mobile devices. The main focus of this technical report
will be on the evaluation of the two crucial operations: creation and verification of signatures.

We assume that the trusted authority is capable of all operations. In contrast, mobile devices have to
provide signature creation and verification as the least common denominator. Optional, but desired
functionalities are additional services such as the creation of key pairs as well as encryption of
the contract with the trusted authority’s private key. Normally the private key should never leave
the device it is created and used on. In this case the mobile device has to be able to generate
cryptographic key pairs, register the public key with the trusted authority and prove the knowledge
of the private key by responding to a challenge based on the public key to be registered. Otherwise
the user’s key pair has to be created by the trusted authority and transferred to the device. Encryption
of the contract with the trusted authority’s key is necessary to ensure privacy as only the trusted
authority can encrypt the contract during its processing. This procedure should be used if users
that are not directly involved in a trade get hands on the contract, e.g. in case of chained offline
trading or if the contract will be submitted by users not participating in the trade. The following
list provides a summary of all operations; the optional ones are marked with ∗:

• at the trusted authority (TA)

– creation of a strong (root) key pair for the trusted authority,
– creation of key pairs for the users,
– creation of (user, creation, ownership) certificates,
– decryption of contracts encrypted with the TA’s public key,
– verification of signatures generated by users and

• at the mobile device (MD)

– creation of key pairs∗,
– verification of the certificates issued by the trusted authority,
– creation of signatures for contract signing,
– verification of signatures generated by users and
– encryption of contracts with TA’s public key∗.
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III. CRYPTOGRAPHIC COSTS OF ICS

The aim of this analysis is to estimate the cost of incremental contract signing with emphasis on the
cryptographic operations. Costs will be evaluated with respect to the computational power needed
to create and verify the signatures and the time needed to do so. Although both aspects seem to be
linearly related, this does not hold for all settings as different schedules can be employed. Because
it is not possible to determine the number of operation to express the computational costs, they
will also be expressed by the time the operation needs. Based on fundamental findings, which will
be described throughout this section, the feasibility for a given settings can be easily evaluated.

Therefore, we will

1) determine the number of signature creations and verifications necessary as well as
2) derive the cost of these operations and
3) introduce metrics to allow for comparison considering the number of involved users and the

desired cryptographic strength
4) and finally calculate the time span needed to sign contracts by for the proposed schedules.

A trade-off between the number of users n, the desired cryptographic strength and the time available
for signing dsign does exist. We consider only reasonable parameterization; excluding both extreme
courses: The one with minimal effort, where each users’ first signature lasts until the desired
expiration date of the contract and the unsuccessful one with maximal effort as useless signatures
with too short validity periods are exchanged. The minimal effort is de facto naive contract signing
as only a single, long lasting or an even unlimited valid signature of each user is needed. The
latter one with maximum effort will happen in case of wrongly-chosen parameters or it has been
caused on purpose. Then it is some sort of denial of service attack, but with high costs on both
sides. Nevertheless, the subject is reasonable and therefore successful parameterization and potential
improvements by examining the computational as well as the timely cost if n users are involved.
This means that the number and cost of cryptographic operations will be determined and time
necessary to do the processing and to wait for the signatures to be handed over in the chosen
setting. Two scenarios are explained in the following sections.

A. Parallelized Schedule

The first schedule presented here is straight forward and called parallelized as maximum paral-
lelization of operations is employed and the signatures exchanged during one round are dedicated
to the same expiration date. A round is defined as the handover of n subsequent signatures, the
longest lasting signature of each user that has not been handed over before.

The calculation of the expiration dates of every signature is possible according to the chosen risk
assessment strategy before-hand [1]. Each round consists of three phases which can be easily
identified in Figure 1:

[a] (parallelized) signature creation,
[b] their pairwise (sequential) exchange and
[c] finally their (sequential) verification.
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The exchange of signatures between all users has to be sequential, because the communication
channel is shared and the communication itself is unicast. A similar restriction exists for the
verification of signatures due to single core hardware of the processors used for cell phones.
Every user has to hand over his signature to all others. If n users are involved, each user has
to hand over her own signature n−1 times and to verify n−1 signatures of the other users. The
synchronization of these three phases results from the fact that a user will handover her next, longer
lasting signature only after she has received and verified all other users’ recent signatures. As a
result, the time needed to perform incremental contract signing is dominated by the slowest device.
Obviously, the computational cost will be the same for each user as they have to process the same
amount of signatures. Figure 1, which will now be described, provides a sketch of the first three
rounds in such a setting where three users are involved. The users can be distinguished by different
shapes of gray. The three phases during each round can be easily identified: First, each user creates
the signature valid until the expiration date, e j, associated with a particular round [a]. j refers to
the number of the prolongation, which is in the parallelized setting equal to the number of the
round. Then a pairwise handover of the signatures takes place, one pair after another which is
indicated by the vertical slots and the signatures that are exchanged [b]. Each user has to verify
the signatures of the other users after the exchange of all signatures [c]. The process starts over
by creating signatures for the next expiration date if the validity all signatures has been checked
successfully. As soon as the expiration date ei is equal or greater than the desired expiration date of
the contract ec, incremental contract signing succeeded. In this parallelized schedule, a prolongation,
i.e. the increase of the signature’s expiration date, takes place once each round. But, the expiration
date will only be prolonged if each user has handed over, received and verified the signature and
accepted the expiration date of all other users’ signatures. Therefore, the number of prolongations
g is equal to the number of rounds c.

Fig. 1. Parallelized Schedule, 3 Users, 3 Rounds, 3 Prolongations.

Our feasibility analysis is based on such a setting. We refer to the cryptographic operations that
are directly involved in incremental contract signing: creation and verification(s) of a signature, as
signature processing. n− 1 signatures, one from each user, have to be processed by every other
user during each prolongation. While a signature can only be created once per prolongation and
user, its verification has to be done by all other, n−1, users.
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In this context, the time needed to hash the text to be signed and to be stored is small enough
to be neglected. The overhead caused by the signature exchange will be evaluated separately in
Section V. Further we assume that key generation has already taken place.

The analysis starts with the cost estimations for each user. We assume that g prolongations are
necessary. Thus, the number of signatures each user has to create is equal to the number of
prolongations g. Because each user has to verify the signatures of all other users during every
round, g(n− 1) verifications have to be done per user. Parallelization of the signature creation is
possible due to the determinism of the signatures’ expiration dates. After this introduction we will
distinguish precisely between timely and computational cost. If more than two users are involved,
sequential verification takes place at each user, as shown in Figure 1. During each round, a single
signature has to be handed over by each user to all other users; in this example in a round robin
manner: U1,U2,U3,U1, . . . and so on. Furthermore, each round is dedicated to a single prolongation:
c rounds with c = g are necessary. The handover between pairs of users is realized as a bi-directional
exchange, i.e. each of the two users hands her signature during a single communication over shown
in the Figure 1. The colored blocks in each communication slot indicate the signatures which have
been received. Parallelization of the users’ actions are possible, which results in a timely cost that
is equal to the computational one per user. The overall computational costs are n-times the cost per
user. Although some devices might be faster, they will be “synchronized” by the next handover as
normally no user wants to incur more risk than any other. Because of this, the overall time needed
is determined by the slowest device.

To analyze the cost, both operations – signature creation and verification – have to be considered
separately as 1) their execution times and 2) their number of executions is different in a scenario with
more than two users. The execution time depends on the employed algorithm, the key length and
the device. Algorithm and key length have to be chosen carefully to achieve desired level of security
under the given circumstances, such as the value of the traded assets, time available for contract
signing, desired contract expiration date and multiple usages of the key pair. Recommendations on
the key length can be found in Section VI-G. Detailed measurements, which are the substantiation
for the following argumentation can be found in the Appendix.

Our cost analysis consists of the following five steps:

1) representation of the cost for verification by the cost for signature creation (inner ratio),
2) representation of the cost of different key lengths by the shortest one (outer ratio),
3) combination of inner and outer ratios,
4) application of real run-time measurements for the key lengths’ used as unit and
5) summarization.
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B. Inner Ratio

Signature processing has been introduced as the combination of the two signature centric operations,
which have to be done just-in-time: creation and verification. These are the building blocks for the
estimation of the costs because they take place during each round by every user. The timely as well
as the computational costs for the processing of a single signature of each users is composed of
the cost for signature creation and, as all users create signatures, the verification of all other users’
signatures. This is summarized in Equation 1.

|signature processing| = |creation| + (n−1)|veri f ication| (1)

To simplify the analysis it is useful to determine the ratio – if any exists – of both operations’
run-time. Instead of dealing with the costs for creation and verification, the cost of processing could
be expressed by means of signature creation. Additionally, this would allow a better understanding
of the scalability as the cost depends on two variables which have different impact: the number of
prolongation g and involved users n. Then, for further analysis only a single run-time measurement,
the execution time of one signature creation is necessary. Although feasibility studies would be
possible by the direct usage of run-time measurements, our approach allows for generalization.
As we will see later on, it is also a useful to rate the scalability and the suitability of different
communication patterns.

We refer to the ratio of signature verification to its creation as inner ratio because it is specific to
the considered algorithm and the key length. Both operations are deterministic processes for a given
key. Because of this, there has to be a correlation between the efforts needed to create a signature
and its verification. In contrast, RSA key generation has a non deterministic run-time as it relies
on picking very large numbers and testing them to be prime; which might fail and the process has
to start over. A mathematical analysis seems to be possible by estimating the bit pattern of the
exponent and derive how many exponentiations are necessary on average. But, an examination of
the run-time measurements on real devices have to be done anyways as implementation and device
specific issues might influence the theoretically derived results. The ratios of the minimum, average
and median run-times have been derived from these measurement and can be found in Figure 2 for
several key lengths and devices when being powered, online and idle – which means processing
nothing except our speed measurements. The run-times of signature creation and verification have
to be linearly dependent, i.e. these ratios should be about the same on all devices, for the above
introduced assumption to hold. Please notice the difference of the vertical axis, which is a factor
of 10.

Let’s first have a look at RSA, whose ratios are plotted in Figure 2(a). The abbreviations used, refer
to the devices the majority of our test runs took place, the Sony Ericsson M600i, the Nokia 5800xm,
6300 and E50. More details about these device can be found in Section VII. It can clearly be seen
that for each key length a specific ratio does exists. This is reasonable, because the complexity
of RSA verification and creation differs. More details can be found in Section VI-F.1. The plots
illustrate that the proposed correlation between signature creation and verification exists, i.e. that
the ratio does not depend on the device, but only on the key length and algorithm. The minimum,
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Fig. 2. Inner Ratio of Run-times, Signature Verification:Creation, RSA and ECDSA

median and average value have been considered and their inner ratio has been calculated – which
are nearly identical. Please be aware of the fact that we do not refer to the minimum, median and
average of the ratios, but to the ratios of the minimum, median and average values. Due to this, the
“minimal” ratio is for some devices slightly larger than the average and medium ratio or as in a
single case about 30% smaller. The ratio of the maximums have not been considered as they varied
too much to provide any insight in this context. It can be seen that RSA verification is – due to
the chosen exponent of 216 +1 – quite fast compared to signature creation. The usage of such an
“inexpensive” exponent is recommended by X.509 [6] and harmless as long as certain requirements
are met. In case of ECDSA, which is shown in Figure 2(b), all ratios are approximately the same.
Neither the device nor the key length seem to have any influence. Which is in contrast to RSA,
where the ratio clearly depends on the key length.

All this are strong indicators that the assumption of a device, operating system and virtual machine
independent inner ratio is true. Sufficient indicators and information have been collected to allow the
exploitation of this to ease cost analysis and to decide on the suitability of certain scenarios. Now,
it is possible to express the cost of incremental contract signing with the run-time of signature
creation as unit. The estimated ratios, summarized in Table I, are based on the medians of the
particular setting’s measurements.

TABLE I
INNER RATIO OF MOBILE DEVICES, SIGNATURE VERIFICATION:CREATION.

Device RSA512 RSA768 RSA1024 RSA2048 ECDSA
M600i 0.1429 0.0994 0.0777 0.0394 1.2913
E50 0.1333 0.1000 0.0781 0.0389 1.2952
5800xm 0.1458 0.1032 0.0784 0.0396 1.2842
6300 0.1435 0.0978 0.0754 0.0379 ∅

As stated before, there are two aspects to consider: the computational and the timely cost. The
computational cost per user is equal to the timely one. The overall timely cost is, due to parallel
processing, equal to the one per user, the overall computational one is n-times the one per user.
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If, for example, RSA512 is employed, signature processing would “cost”, according to Equation 1
each user per round approximately

• 1+0.14 = 1.14 signature creations in a two user scenario,

• 1+2 ·0.14 = 1.28 signature creations if three users are involved.

The longer the key is, the cheaper the verification becomes. Employing RSA1024 would result in
costs of 1.078 in a two user and 1.156 in a three user setup. Verification of signatures using ECDSA
is, in contrast to RSA, slower than their creation – but independent of the key length. Therefore,
signature processing by the use of ECDSA costs for every key length.

• 1+1.29 = 2.29 signature creations in a two user scenario,

• 1+2 ·1.29 = 3.58 signature creations if three users are involved.

These are important information as one signature processing has to be done per user during
each prolongation. In case of ECDSA the number of users does not scale well because signature
verification, as the more expensive operation, has to be carried out more often. RSA verification
is compared to creation – due to the suitable chosen exponent – quite fast and it becomes faster
the longer the key is. This effect is due to the different complexity of signature creation and
verification [7]. But, so far only the inner ratio has been determined, not allowing for a direct
comparison of the different algorithms and their key lengths. This will be subject of the following
section.

C. Outer Ratio

So far, the operations within a certain key length have been compared and a respective ratio has
been derived. The use of such a ratio allows for a very fast and effective comparison. We will now
choose a well-known reference, compare the executions times and derive the ratios to express their
difference depending on key lengths. We refer to this as outer ratio because it puts different key
lengths and thereby different levels of security, in relation to each other. RSA512 and ECDSA192
in the online powered setting have been chosen as reference for the respective algorithm. Again,
only creation and verification of a signature are of interest and have to be estimated for each device.
This time, individual plots for the ratios of each of these two operation are provided in Figure 3.
The ratios have been derived from the same set of measurements. As expected, the ratios seem to
be device independent. A slight deviation between devices becomes noticeable for the longest key
lengths evaluated, RSA as well as ECDSA. This can clearly be seen in case of RSA2048 where
the difference between devices is ≈ ±6%, which is tolerable as these ratios should only enable an
approximation. These deviations seem to be device dependent as they appear for both algorithms,
RSA and ECDSA, the same way: The E50 and the M600i have lower ratios than the 6300 and the
5800xm, which means that they are slightly faster. Table II summarizes these findings by the use of
an average value across devices. To ease understanding, the inter-algorithm comparison has not been
included in this table, but run-time measurements for the recent version of the employed Bouncy
Castle [8] cryptography libraries can be found in Table III. These measurements are just a snapshot
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of the actual libraries and employed hardware. Therefore, improvements of the implementation and
the use of faster as well as optimized hardware have to be continuously evaluated. Every single
aspect can have a major impact on such an inter-algorithm ratio2.
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Fig. 3. Outer Ratio – RSA and ECDSA – Signature Creation and Verification.

TABLE II
AVERAGE OUTER RATIO OF MOBILE DEVICES.

RSA512 RSA768 RSA1024 RSA2048 ECDSA192 ECDSA239 ECDSA256
RSA512 1.00 3.18 7.19 52.39 - - -
ECDSA192 - - - - 1.00 1.64 1.94

D. Overall Ratios

By combining both, inner and outer, ratios it is possible to use the run-time of RSA512 resp.
ECDSA192 signature creation as unit for cost estimation of longer key lengths. Combination takes
place by the multiplication of inner and outer ratio; their product is called cost indicator. They
are plotted in Figure 4 for different key lengths and number of involved users to enable the direct
comparison of their cost and visualizes their impact. Graphs are provided for settings with two to

2The inter-algorithm ratio will not be considered in this paper.
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four users and up to ten prolongations. Please remind, that we still provide only the cost indicators,
i.e. relative numbers. Real measurements are subject of the next section. Two plots, Figure 4(a)
and 4(b), are provided for RSA. The first plot contains all RSA key lengths to provide an overview,
allowing for a comparison among similar ECDSA and RSA key lengths, and the second one without
RSA2048, because RSA2048 signature processing results in large values rendering the other, lower
ones almost indistinguishable. It can be seen, that RSA does, due to the inexpensive verification,
scale well with the number of users. Because of this, the graphs for the different RSA key lengths
are clearly separated, but grouped by the number of participants, i.e. key length is the dominating
factor. In contrast, the cost indicators for ECDSA do neither cluster by key length nor by the
number of involved users, i.e. their graphs are mixed up. Choosing a longer key length has the
same implication for the cost as adding another user and vice versa. Three factors can be pointed
out: 1) Verification is more expensive than creation and has to be done more often for n ≥ 3, 2)
inner and outer ratios are about the same and 3) the outer ratios themselves do not differ that much.

It turned out, that RSA scales well with an increasing number of user and that the desired key
length can be chosen independent of the number of users. Whereas this an issue with ECDSA,
because adding one user results already in a degradation of security, because a shorter key length
has to be chosen if the time available for contract signing is limited.
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To determine the real cost for each combination of device, algorithm and key length, the run-time
for the basic operation, signature creation, has to be determined. Of course, real measurements have
been used to derive the findings presented so far. These depend on the load status of the device
and will be subject of the following section.

E. Real Measurements

So far, all comparisons are relative to the cost of the two chosen units, the run-time of signature
creation by the use of RSA512 and ECDSA192. Table III provides these two missing measurements
to enable calculation of the costs that arise in realistic settings. Two out of five examined scenarios
have been considered here: The most probably fastest one, where the device is running only our
calculations while being power-supplied and the other one with un-powered devices and their
“specific full-load”, i.e. media-player and if available internet access by the use of WLAN and GPS
turned on. The run times for both settings are listed together with their difference as percentage for
each device and setting. We decided to use these two in our opinion extreme, but realistic settings.
Obviously, it depends on the load of the mobile phone as the run-time increases for the E50 by
as much as 83%, for the other three devices of about 40% if load is imposed on the device. The
E50 seems to have massive problems with the task scheduling when content is played back in
the foreground and speed tests are run in the background. The increase by 83% has been caused
by audio playback, while video playback almost stopped our test application. The RSA2048 key
generation needed multiple hours instead of the usual couple of minutes. Thus, we noticed the E50
measurements, but do not consider them as we refer to an assumed average increase of the run-
time of about 40% from an “idle” to a full-loaded device. Nevertheless, the capabilities and strange
behaviors of employed devices have to be figured out before starting mission critical operations or
releasing software for such affected devices.

Three important facts have to be pointed out:

1) The major difference between the speed of the chosen RSA and ECDSA key lengths, which
can be expressed by an inter-algorithm ratio. This factor is listed in the last column of
Table III, but no further investigation will take place. The factors for these two settings are
about the same for every device, but they strongly rely on the device itself. To rate the
different computational power of devices an inter-device ratio could be introduced.

TABLE III
SIGNATURE CREATION. RUN-TIME[MSEC] ON VARIOUS DEVICES AND SETTINGS.

RSA512 ECDSA192 RSA : ECDSA
Device idle full-load idle full-load idle full-load

power increase unpowered power increase unpowered powered unpowered
M600i 55.6 ≈35 % 74.0 2391.0 ≈31 % 3142.0 1 : 43.00 1 : 42.46
E50 45.3 ≈73 % 78.5 2023.0 ≈83 % 3711.0 1 : 44.66 1 : 47.37
5800xm 48.7 ≈37 % 67.0 1706.5 ≈45 % 2489.5 1 : 35.04 1 : 37.15
6300 115.3 ≈39 % 160.5 ∅ – ∅
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2) Although our test series ran only on a limited set of devices, the difference between them
became obvious with the 5800xm able to compute ECDSA only about 35 times slower than
RSA compared to the E50 and M600i with a factor of about 45. Again, the cell phone has
to be regarded as a black box, not knowing where the difference comes from.

3) Not only the relation between certain measurements are different, but also the basic run-times
differ by a factor of about 2. The 6300 is only half as fast as the other devices, although a
processor of similar speed is employed.

F. Summary

A lot of important information have been gathered during our test series, while evaluating the
performance of devices, algorithms and operations. Furthermore, their relations have been evaluated
and exploited. The existence of an inner and outer ratio has been documented and successfully
used. Typical usage scenarios have been classified and their impact on the performance have been
recorded for later usage. Different characteristics and available computational power of devices
have been identified.

The availability of strong cryptography as well as its feasibility has been shown. It turned out that
the clear advantage of RSA is its ability to verify signatures fast compared to their creation, which
has been made visible by the (small) inner ratio. A fast verification allows to increase the number
of users with almost no impact on the performance because the cost for signature processing are
kept low. In case of ECDSA, signature verification is more expensive than creation, not allowing
for scalability with respect to the number of users.

Additionally, the creation of signatures is about a factor of 35 to 45 faster compared to ECDSA.
But, this ratio seem to be device dependent, i.e. relate to different hardware, operating system
and virtual machine combination as device specific adaptations have neither been integrated into
the libraries nor into the applications. Enormous changes might take place making ECDSA more
interesting.

This section will conclude with the comparison of realistic settings, i.e. examples for a different
number of users, algorithms and key lengths. The generic formula of the computational as well
as timely cost of a single round per user can be found in Equation 2. The appropriate values for
the given algorithm, key length and number of users have to be specified. Table IV provides the
run-times per prolongation of an idle powered scenario with different number of users and two
pairs of key lengths for RSA and ECDSA of comparable strength.

|cost per prolongation and user| = |signatureCreation| · outerRatio · (1+(n−1) · innerRatio)
(2)

It became obvious that ECDSA is already in a two user scenario ways too slow, as a single
prolongation needs about 4 seconds compared to 400 msec in case of RSA. The usage of ECDSA
at these levels of security is not feasible. ECDSA is about a factor of ten slower than RSA in
the optimal case with only two users, becoming worse the more users participate. RSA signature
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processing, even with a key length of 2048, which is considered secure for the next few years (until
≈ 2012), needs only a couple of seconds per prolongation. This analysis pointed out that multiple
prolongations – mandatory for incremental contract signing – are possible by the use of RSA1024
within the short time period characteristic for ad-hoc scenarios.

TABLE IV
ESTIMATED TIME PER PROLONGATION, MULTIPLE USERS, ONLINE POWERED.

Algorithm & Generic Formula Number of Involved Users
Key Length n=2 n=3 n=4 n=5
RSA1024 (1+(n−1) ·0.08) ·7.2 ·50msec 388 msec 417 msec 447 msec 475 msec
ECDSA192 (1+(n−1) ·1.30) ·1.0 ·1750msec 4025 msec 6300 msec 8575 msec 10850 msec
RSA2048 (1+(n−1) ·0.04) ·53 ·50msec 2756 msec 2862 msec 2968 msec 3074 msec
ECDSA256 (1+(n−1) ·1.30) ·1.9 ·1750msec 7647 msec 11970 msec 16293 msec 20615 msec

Figure 5 provides two plots for different key lengths in a setup with two to five users, depicting the
timely effort needed for up to ten prolongations. It is a more detailed visualization than Table IV.
The run-times of RSA1024 and RSA2048 are compared with the run-times of ECDSA192 and
ECDSA256 as each part is of equivalent strength. ECDSA is represented by dotted lines, the
continuous line in the figures is the run-time necessary if RSA is used. In contrast to ECDSA the
different users can not be distinguished as their graphs do overlap. The situation is similar for both
strengths, Figure 5(a) and 5(b).
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Fig. 5. Run-times, Comparison of Two Equivalent RSA and ECDSA Key Lengths, 5800xm Online Powered.

ECDSA and RSA have been compared based on real measurements for different settings. It turned
out that RSA is much more suitable to the idea of incremental contract signing due to the different
costs of the mandatory operations, signature creation and verification. Besides this, the basic run-
times are much smaller, allowing for the use on mobile devices with little computational power.
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IV. SEMI-SEQUENTIAL ICS

The signing schema described before, named parallelized signing, is intuitive due to its complete
parallelization of each prolongation: All users create a signature with the same expiration date at the
same time during the first phase. Then, the necessarily sequential handover of the signatures will
take place. During the last phase of each prolongation, the verification of all these signatures has
to be done – all users in parallel, each of them one signature after another. As all users’ signatures
refer to the same expiration date, the order of the signatures’ handover is not relevant. Figure 6
presents a variety of (handover) schedules. Common to all of them is, that signatures of the recent
prolongation have to be exchanged, before any signature of the next prolongation will be handed
over. Lets have a closer look at these handover schedules. The round robin (rr) one is quite intuitive,
easy to set up and most likely be used, although the drawback is that during each round the same
user has to go first. A completely chaotic (cc) approach can prevent this, without any drawback
except setting up the schedule. This problem is also mitigated by the rotating rr (rrr), where the
user that goes first during each round also changes in a round robin manner. The bounce back (bb)
schedule is related to rr, but reversing the order after each round. Now, the odd situation arises
that the last user of each round has to hand over two signatures back to back. This phenomenon
will be examined and exploited in the next section.

Fig. 6. Handover schedules: round robin, bounce back, almost arbitrary, completely chaotic.

A. Semi-Sequential Scheduling

An improvement by almost 50% is possible by adapting the handover and signing schema. So far,
all users signed for the same expiration date and these n signatures are handed over and verified
before the next round starts. The fact that the last user, handing over her signature for the current
prolongation does not incur any risk at all – as she is in possession of all other users’ signatures for
the recent expiration date – can be exploited. A theoretical explanation and a formal model is given
in [1]. Normally, each user has to contribute to incremental contract signing by incurring some small
risk. To incur some risk at all, she has to hand over a signature lasting longer, most likely until
the expiration date scheduled for the next prolongation. But then, this single signature can be used,
instead of two subsequent signatures of the same user, for the recent and the next prolongation. One
signature per two consecutive prolongations can be saved by this approach. The only prerequisite
is, that this very signature will only be handed over after all other users’ signatures for the recent
prolongation have been received and successfully verified by this last user. This schedule is called
semi-sequential because as many operations as possible are carried out in parallel, while the last
user has a special role. She has to be known beforehand. The handover(s) as well as the verification
of her signature can not be integrated in the parallelization that is possible among the other users.
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We will address this fact later in more detail. All handover schedules except the completely chaotic
one are suitable as the last user of each prolongation has to be chosen before signature creation
starts. At this very moment, this particular user will be the only one creating a signature valid for
the next prolongation’s expiration date. The almost arbitrary (aa) handover schedule, where the last
user of each round is determined before, is the least common denominator. The schedules can be
found in Figure 7.

If this is exploited, one signature can be “shared” among two consecutive prolongations. Therefore,
the number of signature processings is:

• gn are necessary in the parallelized setting,
as n signatures during each of the g prolongations.

• gn− (g−1) = g(n−1)+1 are necessary in the semi-sequential scenario,
as gn signatures are needed in parallelized one, but g−1 signature processings can be saved.

A closer look is necessary to rate the savings as the overall number of signatures depends on
both, g and n, but the reduction depends only on g. Equation 3 describes the fraction of signatures
compared to the parallelized setting for n users. Additionally the optimal case with n = 2 is also
contained:

gn− (g−1)
ng

=
g(n−1)+1

ng
n = 2 ⇒ g+1

2g
⇒≈ 50% for large n (3)

By the use of the semi-sequential schema the number of signature processing is reduced to g+1
2g .

In the most likely case, where only two users are involved and the number of prolongations g is
large, the achieved advantage is maximal with almost 50%. In case of a two user setting, every
signature except the last signature of each user is dedicated to a different expiration date.

Fig. 7. Semi-Sequential Schedule, 3 Users, 3 Rounds, 4 Prolongations.

A more complex setting with three users is depicted in Figure 7. Signatures are handed over in
a round robin manner, which means that the last user of a prolongation is known before. Two
subsequent prolongations overlap at this very user as her recent signature is shared among them.
This happens multiple times in the figure: If a bar, indicating the signature creation, contains the
label “ei, j” this signature has to be used as the last signature to complete the signature set dedicated
to ei and as the first signature when assembling the set valid until e j. But then, the signatures can
not be exchanged any longer in a pairwise manner as these particular users would incur a higher
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risk. The signature exchange with this user has to be split into unidirectional handovers. Handover
means, that the signature of this user are handed over to all other users, without immediately
receiving their signatures in return. Please note that the number of signatures until a prolongation
of the expiration date can take place has been reduced. Instead of n signatures only n− 1 are
needed for all except the first prolongation; the first prolongation still needs n signatures. Thus, the
alignment between round and prolongation does not exist anymore, because of the reduced effort to
complete a prolongation. More prolongations are possible with the same computational and timely
effort. While in the parallelized scenario, shown in Figure 1, only three prolongations were possible
within three rounds, the semi-sequential approach allows for four prolongations.

B. In-Detail Analysis

Please remind, that the savings discussed so far address only the overall number of saved signature
processings. Both, the computational (battery power) as well as the timely effort respective savings
can foster their exploitation. Until now, the discussion was focused on the number of signature
processings, which means the computational cost each user has to shoulder. These saving can vary
between users as prolongations are not necessarily aligned to rounds. Because of this some users
may have to create one signature less, but they have to verify more signatures. The inner ratio
is the mandatory information to calculate the distribution of the load among users during the last
round. The computational effort is only distributed evenly, if the overall number of signatures is
a multiple of the number of users, i.e. gn− g + 1 = cn↔ g− 1 = cn, c ∈ N. The computational
savings are equally distributed is this case, as each user has to process c instead of g signatures.

The possible net gain in time by the use of semi-sequential signing depends strongly on the
inner ratio. There are two relevant factors that are influenced by the inner ratio: The minor
one is the unequal distribution of signature creation and verification, the not maximally exploited
parallelization of the verifications is the major one. For the latter one, an additional time slot for
verification has to be introduced to allow the other users to verify the last users signature. Instead
of a single verification phase c) during the first prolongation, as shown in Figure 1, two verification
phases c1) and c2) interleaved by the handover phase b2) of the last user’s signature are necessary.
Although the computational cost remains the same, see Equation 1, the timely cost increases by
the cost of one verification:

|signature processingsemiseq, time| = |creation| + n |veri f ication| (4)

The impact of this additional effort can be easily estimated if the inner ratio is known. In case
of RSA, with an inner ratio of about 0.08 the impact will be small regardless of a reasonable
number of users. In contrast, the impact for ECDSA usage is tremendous as the inner ratio is
about 1.3. Lets first examine some exemplary settings, shown in Figure 8 with 12 prolongations
and a different number of users involved. Figure 8(a) shows the computational effort which is
necessary for the semi-sequential schedule in relation to the parallelized one to achieve the given
number of prolongations. In this plot, the cost of the parallelized setting is set for any number of
user to 1. There are no savings possible in case of one prolongation. As shown before, the savings
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are maximal for two users and a large number of prolongations. The highest advantage is achieved
if only two prolongation would take place.

While the computational effort needed decreases continuously, the timely savings vary with a
decreasing tendency due to the above mentioned whole-numbered ratio between the n users and
the g−1 signatures saved. Plots of the timely savings are provided for both algorithms in a similar
setup: RSA in Figure 8(b) and ECDSA in Figure 8(c). Although computational savings exists right
from the second prolongation for any n, the timely savings begin at prolongation number n + 1.
The rate of the savings, if there are any, depends first of all on the inner ratio and, as already
seen for the timely savings, on the number of users. The savings in case of RSA are significant,
because an additional verification per prolongation is, due to the small inner ratio (ir), of minor
impact. Semi-sequential signing employed with ECDSA does results, due to its high inner ratio,
only in minimal savings in a two user setting. If more than two users are involved, ECDSA is in
the semi-sequential setting, due to its big inner ratio, much slower than the parallelized one.

Again, Figure 7 is a good example, because it depicts that only nine signatures are needed to
achieve four prolongations in a three user setting. In the parallelized setting, ng = 3 ·4 = 12 are
needed, which means that the semi-sequential one achieves the same result with an effort of only
75%. The timely savings are in case of RSA 20%, for ECDSA about -3%.

The semi-sequential signing schema is optimal regarding the number of signatures to be processed.
Although it has only been briefly motivated, the result is equal to the formal findings when relying on
the users’ abilities derived from the reception of signed signatures from all others [1]. One drawback
for semi-sequential signing has to be mentioned as it introduces more sequential operations: The
signature exchange can not take place as a pairwise exchange if the prolongation’s last user is
involved because signatures dedicated to different expiration dates have to be exchanged. Closely
related to this is the fact that the signatures can not be verified by all n users in parallel which also
causes additional delays. Fortunately the two user scenario is not affected by these drawbacks. An
evaluation of the impact resulting from the increased communication overhead will be provided in
Section V and countermeasures will be presented. In contrast, the impact of sequential verification
also depends on the algorithm that has been chosen and the number of users. Again, the inner
ratio can be used to express the relative additional costs. Semi-sequential signing increases the
number of sequential handovers and verifications by one per prolongation – similar to an additional
user. Semi-sequential signing is recommended if the computational savings are of main importance.
Regardless of the signing schedule, the usage of RSA with its small inner ratio is recommended
to avoid any timing issues.

C. Summary

We were able to show that incremental contract signing is feasible by the use of widespread
available public key algorithms on nowadays mobile devices. As neither an adaption of known
algorithms nor any special purpose algorithms have been used, any digital signature algorithm
can be used. RSA and ECDSA have been chosen, based on theoretical considerations presented
in Section VI-F, to be evaluated for the creation and verification of signatures. It turned out that
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Fig. 8. Comparison: Parallel and Sequential Scheduling, Timely and Computational Cost.

ECDSA is quite slow despite its short keys and does not scale well with an increasing number of
users. Unfortunately, only a single cryptographic library was suitable to our policies, so that no
comparison between different implementations was possible. But, significant differences in the ratio
of RSA and ECDSA have been discovered among the devices. Therefore a continuous evaluation of
the software development and hardware releases is necessary. The operations that have to be carried
out just-in-time are possible during an ad-hoc meeting where a reasonable number of prolongations
is demanded if RSA is employed. This holds for both signing schemes, the naive, parallelized
schedule and the semi-sequential one. By the use of RSA in the semi-sequential signing schema
an improvement of almost 50% can be achieved in the most likely two user setting. Thus, strong
cryptography is possible, which enables the novel approach of incremental contract signing on
nowadays mobile devices.
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V. COMMUNICATION

We envision that applications built on top of our libraries provide a responsive, well featured
graphical interface to the user and handle the entire communication with other devices in the
background – besides all other tasks. Still, the emphasis is on Bluetooth communication as it is
widespread available on cell phones although certain drawbacks do exist. As part of the digital
ownership research project, a Bluetooth communication library, BtCom, has been developed to
suffice these needs and enable communication without bothering about details. Therefore the
application programmer can rely on a high-level API providing message-based communication.
Although we do focus entirely on the communication ability, much more functionality such as
improved device-discovery and service-inquiry has been integrated. BtCom has already been used
in other libraries providing FTP-like access of the mobile device’s persistent storage or http-request
tunneling over Bluetooth to save air-time as well as applications, e.g. a mobile trading card game.
The following measurements estimate the round trip time (RTT) from the API method invoked to
send the message until it is received by the receive method of the originating device. The message
is returned by the responding device at the “application’s” application level, not somewhere down
in the libraries. The message has to pass the API twice on each device, approximating a real
answer/reply scenario. Additional, the message is not returned, but another one with different content
is assembled and sent back.

Both, a responsive user interface and communication have to be designed carefully with respect
to the available resources. Even more, if they have to be used together. All network issues and
message handling as well as user interface drawing and interaction processing have to be done
in separate threads. Especially the intervals for buffer and queue examination have to be chosen
carefully. Depending on the desired responsivity different polling intervals can be employed for all
of the mentioned areas. Although this are all interesting aspects of programming mobile devices,
the communication is our main concern: While a communication delay of more than 1000 msec
for a chat application is tolerable, the round trip times for interactive applications such as games
have to be much smaller. Even tighter restrictions can be used if no interaction between users, but
simple data exchange takes place between devices. We are not going into the difference between a
general purpose library and an optimized communication setup, which is able to achieve round-trip
times of about 170 msec. Table V shows the round-trip-times for a message containing an one
kilobyte large payload. The measurements provide the values that have been derived for minimum,
median and average from the exchange of a few thousand messages. A payload of 1024 bytes
has been assembled from 64 chunks, each 16 bytes long. It turned out that the periods of higher
RTTs observed on some devices resulted from the user interface waiting for input. As soon as
the screen saver became active, the RTTs dropped. Unfortunately, we also observed the different
behavior in form of a better performance as long as the device was waiting for user input. Although
these events (screen saver activation and deactivation) will not happen in a normal scenario, the
knowledge about their impact on the RTTs is of importance. It might be reasonable to forbid or
even deactivate user interaction to speed an ongoing combined communication and signing process
up. The table contains measurements for pairs of devices, where the device specified by the row
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sends, the device noted in the column replies, i.e. receives the incoming message and sends its
own in return. Because of this, measurements between disjunct devices are not symmetrical. 3000
messages were send for each device, which resulted in 3000 replies. It turned out that the RTT for
a message with 1kb payload, which would be sufficient for signature exchange, is far below 1 sec.

TABLE V
RTT – AVERAGE RTTS. PAYLOAD SIZE 1KBYTE. MINIMUM / MEDIAN / AVERAGE[MSEC].

Devices M600i 5800xm 6300 E50 K800i
M600i 481 / 512 / 525 403 / 479 / 471 442 / 495 / 503 386 / 479 / 479 506 / 714 / 723

5800xm 327 / 369 / 377 – 186 / 325 / 316 235 / 623 / 467 298 / 392 / 448
6300 451 / 487 / 515 221 / 368 / 330 248 / 390 / 407 340 / 377 / 378 469 / 556 / 608
E50 526 / 643 / 645 616 / 689 / 692 559 / 690 / 668 – 668 / 706 / 753

K800i 491 / 635 / 656 268 / 366 / 386 407 / 528 / 551 235 / 454 / 417 513 / 741 / 750

A different kind of test series have taken place to get an idea of the overhead resulting from the
assembly of the payload and the bits transfered per second. In this setting only the three pairs of
identical devices, 6300, K800i, M600i, were used. The measurements for different payloads, each
consisting of 128 chunks, are provided in Table VI. Again, 3000 messages have been send in each
direction. In addition, a 0kb payload has been used, i.e. an empty packet to learn about the overhead
introduced by the layered architecture of the library and application and the air interface. It turned
out, that the majority of the round trip time resulted from handling the packet. The difference
between RTTs of different payload sizes is small compared to the RTT of an empty packet. The
bit rate per second, which increases with the increasing payload is the indicator. The larger the
payload is, the more efficient the communication is. All devices support Bluetooth 2.0, the 6300
and the K800i also EDR.

TABLE VI
RTT (MIN / MED / AVG) [MSEC] AND BANDWIDTH [KBPS] BETWEEN PAIRWISE IDENTICAL DEVICES.

Devices 0kb 1kb 2kb 4kb
6300 236 / 371 / 386 – 250 / 391 / 410 21 258 / 400 / 428 41 260 / 400 / 432 82
k800i 384 / 479 / 492 – 513 / 875 / 874 9 738 / 1067 / 1083 15 926 / 1460 / 1476 23
m600i 339 / 383 / 390 – 477 / 510 / 533 16 710 / 777 / 813 21 873 / 1029 / 1046 32

A. Observations

During our test runs we were able to observe the influence of (waiting for) user interaction in contrast
to an active but inexpensive screen saver. Additional to this we discovered quite a variety of different
RTT pattern. For your tests, bursts of 1000 messages were sent, i.e. the user was interacting with
the device at least every 1000 messages to start the transmission. Therefore the screen saver was
not active every 1000 messages for a certain amount of RTTs. During the test runs, the screen
saver inclusive keyboard lock was allowed to become active to learn about its impact. Additional
user interaction took place to verify the impact of interrupting the screen saver and forcing the
reactivation of the user interface. We present the RTT measurements by the use of two plots for
each setup: First, the RTTs are plotted along the timeline and then as a cumulative function. Figure 9
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shows the plots for the three setups where two identical devices exchanged multiple thousands of
messages. The first half of the measurements results from one device, the second half from the
other device. Messages were alternatingly exchanged in bursts of 1000 messages to learn about
the a possible influence of the device on its own performance. The plots of Figure 10 contain
measurements, again in form of plain RTTs and the cumulative function, for a single burst between
two devices. Figure 9(a) shows the communication between two Sony Ericsson M600i with the
majority of the RTTs at about 500 msec and few longer RTTs. Neither an influence of the screen
saver and the automatic key lock nor a difference between the two devices could be detected.
In case of the communication between two K800i, shown in Figure 9(b), two accumulations can
be found at 600 msec and 750 msec – although the RTTs are scattered up to 1100 msec. The
difference between screen saver active and inactive can not be revealed in this plot, but had been
identified in close ups as little black spots at 620 msec and 690 msec but without scattering up to
1100 msec. This is somehow strange as the two K800is seem to communicate faster and with more
constant RTTs if the screen saver (black screen with simple digital clock) is not active. Figure 9(c)
provides the RTTs between two 6300, which are very precisely accumulated around two, almost
three RTTs, 270, 400 and 500 msec. The influence of the user interactions can be seen by short
black spots which result from an RTT increase of about 50 msec if the user interface is active. A
slight difference between the two devices can be as the first 3000 messages have been sent from
one device, the last 3000 messages from the second 6300. We do not have an explanation for this
minor bias as both devices were identically configured and restarted before each test run. A single
burst of 1000 messages between these devices can be found in Figure 10(a). Figure 10(b) and 10(c)
show the communication measurements between two different devices known from the plots before,
one K800i and one 6300. As the K800i and 6300 have quite individual RTT patterns the RTTs
between different devices can not be clearly classified. It can not be distinguished between delays
resulting from the initially sending or the responding side. But, the scattered RTTs result from the
sending K800i, not from the responding K800i. The influence of the deactivated screen saver, is
much more obvious than in the plots provided before.

Because 1000 resp. 6000 measurements are plotted in each graph addressed so far, the cumulative
distribution is also provided to visualize the quantity of measurements in each accumulation. These
accumulations cause “steps” in the cumulative function. It can also be seen that for all settings
without an K800i being involved, very precise RTTs for the majority of packages sent can be
stated. But, the individual device has to be considered as the screen saver can have positive, none
or even negative impact on the performance.

B. Complexity of Communication

The measurements estimate the communication necessary for the signature exchange between two
users, i.e. their consecutive handover of one signature each. It turned out that the RTTs do not differ
significantly for the different examined payloads: 0, 1, 2 and 4kb. Therefore, it is almost arbitrary
if a small acknowledgement or a big chunk of data is sent. This simplifies the analysis because
the measured RTTs can be used for both, pairwise exchange of signatures and the unidirectional
handover. These findings will be applied to the parallelized and the semi-sequential scenario in the
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Fig. 9. Round Trip Times and Cumulative Function of Symmetric Device Constellations, 3 Bursts each, interleaved.
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following sections. Furthermore, the suitability of piggybacking signatures will be introduced and
the possible gain be discussed.

1) Parallelized Signing:
In the parallelized setting, where pairwise signature exchanges between n users are possible, only
n(n−1)

2 communications have to take place per prolongation. Such a bidirectional signature exchange,
where no verification of the received signatures takes place before handing over the own signature,
is harmless, as all signatures are dedicated to the same expiration date. Besides this most efficient
communication pattern, the communication and the verification operations can be clearly separated
in the two phases: signature exchange [b] and signature verification [c] as shown in Figure 1. Only
then, the entire parallization of verification is possible which can result in significant time savings.

• Therefore, the overall number of communications is

– g n(n−1)
2 if n users are involved and g prolongations take place.

The complexity is in O(n2) per prolongation.

2) Semi-Sequential Signing:
In the semi-sequential setting, communication and verification can not be clearly separated in two
phases and carried out without interruption. The single operations have to be interleaved, because
the last user of each prolongation hands over a longer lasting signature, used within two consecutive
prolongations, after having received and verified all signatures of the recent prolongation. Because
a pairwise exchange is not possible with the last user of the recent prolongation, which is also the
first user of the next prolongation, additional handovers have to take place in a setting with more
than two users. The communication and verification have to be interleaved as shown in Figure 7.
Unfortunately the pairwise handover (signature exchange) between a subset of the users is only
possible if four or more users are involved.

• The communication effort during the first prolongation is:

– (n−1)(n−2)
2 pairwise handover(s) between the first n−1 user(s),

– n−1 handover(s) towards the last user and
– n−1 handover(s) from the last user to the first n−1 user(s).
⇒ n(n+1)

2 −1 altogether for the first prolongation.

• The communication effort for every subsequent prolongation is:

– (n−2)(n−3)
2 pairwise handovers between all except first and last user

– n−2 handover(s) towards the last user and
– n−1 handover(s) from the last user to the first n−1 user(s)
– n−2 handover towards the first user.
⇒ n(n+1)

2 −2 altogether for every subsequent prolongation.

• Therefore, the overall number of communications is

⇒ g n(n+1)−4
2 +1.

The complexity is in O(n2) per prolongation.
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3) Piggybacking:
Until now, the communication patterns have been derived from the needs of the cryptographic
operations. Another approach is to piggyback the signatures, but still adapting the pattern imposed
by the ccryptographic operations. Employing communication in a round-robin manner, i.e. only n
pairs of users need to communicate by forming a circle. Then, the complexity of communication
during a single prolongation is O(n) instead of O(n2).

Although the size of the payload per communication is now n-times higher, it is much more
effective because of the higher bandwidth that can be achieved. As shown before, transmitting more
bytes per transmission is cheaper than multiple transmission with less payload. The communciation
speedup by piggybacking can be applied to both cryptographic schedules, the parallelized and the
semi-sequential one. Although the cost of communication is reduced, the gain can be reduced or
even negated by additional (timely) cost for the sequential verifications. By the use of piggybacking
only signature creation can be parallelized. Therefore a thoroughly evaluation of the single cost
factors, communication and signature verification have to take place. Then, the timely cost for
every prolongation except the first one is

|time per prolongationpiggybacked | = |creation| + (n−1)(n−1)|veri f ication|. (5)

C. Comparison

So far, two communication patterns adapted directly from the cryptographic plot have been
presented. The principle of piggybacking signatures to reduce the number of communications has
been introduced and can be applied to both signing schedules. These two will also be respected
during the following comparison. The drawback of introducing more sequential verifications is
crucial, i.e. it has to be considered when rating the gain achieved by signature piggypacking.
A comparison of the communication effort of these four approaches in typical setups with ten
prolongations and a different number of users, n = 2, . . .5 is presented in Table VII. The costs for
a single communication between the different device combinations have been determined before;
a round trip time of rtt = 600 msec is assumed. About 80% of the measurements, as shown in the
Figures 9 and 10, meet this limit.

TABLE VII
NUMBER OF COMMUNICATION AND TIME NEEDED IN DIFFERENT SETTINGS.

communication
scenario formula amount of communications and time needed

n=2 n=3 n=4 n=5
adapted
parallelized g n(n−1)

2 10 6.0 sec 30 18.0 sec 60 36.0 sec 100 60.0 sec

adapted
semi-sequential g n(n+1)−4

2 +1 11 6.6 sec 41 24.6 sec 81 48.6 sec 131 79.0 sec

piggybacked
parallelized gn 20 12.0 sec 30 18.0 sec 40 24.0 sec 50 30.0 sec

piggybacked
semi-sequential g(n−1)+1 11 6.6 sec 21 12.6 sec 31 18.6 sec 41 24.6 sec
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The communication for both native schedules, the parallelized and the semi-sequential, does not
scale with respect to the users involved as their complexity is in O(n2). Fortunately this is not
an issue for the most likely two user scenario. Piggybacking does not make sense in a two user
scenario, a simple pairwise exchange of signatures is more effective. Nevertheless, the theoretical
costs are also listed in Table VII. The two user parallelized setting is as fast as possible, the
semi-sequential one is with an increment of 1/g slightly slower. Therefore, the decision which
schedule to use has to be based on the timely difference resulting from the cryptography. But, the
cost for communication differs dramatically, if more than two users are involved. Although both
piggybacked communication patterns are faster, the timely impact of the sequential verification has
to be considered. Please remind that the proposed optimizations assume that verification can be
done in serial instead of being parallelized due to its short runtime compared to transmission. This
ratio between creation and verification of a signature is expressed by the inner ratio. The smaller
the inner ratio is, the more suitable is this algorithm and key length combination for sequential
verification. The proposed optimizations are therefore not suitable for all cryptographic algorithms,
because these result in a trade-off between communication and verification speed as verification
has to be done in serial instead of parallelized by all users.

VI. PLATFORM, INFRASTRUCTURE AND ALGORITHMS

Because the vision of Digital Ownership is relevant to almost everyone, we decided to target only
widespread available mobile platforms. These have to be able to store and playback reasonable
amounts of digital content and provide sufficient computational resources to allow for strong
cryptography. The access to short range communication is mandatory to get into contact with other
devices. Infrastructure based data-communication such as GPRS is of advantage, but optional. We
have chosen mobile phones as most PDAs were targeted at the business customers, too expensive
and not widespread used. There was also a lack of the mandatory short range communication
abilities as well as accessible APIs. Another important factor was the platform and programming
language our libraries and applications should use. Sun’s Java Platform, Micro Edition, short Java
ME, [9], has been chosen. First of all it seemed to be easy enough to use and that some source code
could also be reused for the server side as Java ME contains a subset of Java SE’s functionality.
While this worked out for the first evaluation runs, the server side has been migrated to Ruby on
Rails [10] as it became clear that its is more suitable for further prototyping and later usage in a
productive environment.

This section is structured as follows: First we will introduce the Java ME platform, then an overview
of Java’s Cryptography Architecture will be provided, followed by a closer examination of potential
Java Security Provider. The next two subsections are dedicated to digital signatures including hash
functions and an in detailed examination of a choice of digital signature algorithms. The last
subsection contains a conclusion and recommendations on the keylengths that should be used.

A. Introducing the Java Platform Micro Edition

The Java Platform, Micro Edition (Java ME) from Sun Microsystems [11] is a derivate of the Java
Platform, Standard Edition (Java SE) with focus on the special demands of limited devices. Like
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the Java SE Bytecode, every program compiled in Java ME Bytecode can be interpreted by a Java
ME virtual machine, called KVM (K for kilobyte) instead of Java SE’s JVM. Since mobile devices
are less powerful than desktop computers, they are referred as limited devices, meaning their CPU
is rather slow and their memory is small compared to machines supporting the Java SE. The Java
ME consists of three parts: configurations, profiles and optional APIs.
The configuration is the base part, determining a subset of Java SE’s API. It depends on the
hardware capabilities of a device which configuration is supported. Two different configurations
exist: The Connected Device Configuration (CDC) used on faster PDAs, a minority of smart-phones
or set-top boxes and the Connected, Limited Device Configuration (CLDC), implemented often in
cell phones. Because of the wide spreading of Java ME compatible cell phones, our cryptography
libraries have to run on the CLDC as the lowest common denominator.
Profiles expand the API with device-specific user interfaces and storage functions; cell phones
are usually compatible with the Mobile Information Device Profile (MIDP), which will be used
throughout this paper, and PDAs use the Personal Digital Assistant Profile (PDAP). Although CDC
profiles are more flexible and offer a more complex API, they will not be target of our development
due to the self-imposed restrictions, i.e. too less devices employed.
Optional APIs may be used on top of the profiles, like a Bluetooth or 3D gaming API for a
specific MIDP compatible device. Figure 11 provides an overview, please refer to [12] to get a
deeper understanding of Java ME.

Fig. 11. Java SE and Java ME Stack Components

The Java ME’s CLDC configuration with MIDP profile provides only a small subset of the bigger
Java SE, which affects complete parts of the Java language a high level language programmer is
accustomed to. For example, the CLDC 1.0 does not support floating point numbers at all, while
they are implemented in CLDC 1.1, which makes the newer version recommendable.
Unfortunately, still the complete API for cryptographic computations is absent in these versions.
Meanwhile, MIDP 2.1 is available on a small number of phones while MIDP 3.0 has been announced
in February, 2009. To allow usage of cryptographic libraries written in Java, the mobile phone
has to support CLDC 1.1 and MIDP 2.0 as minimal denominator and target platform for our
(cryptographic) libraries and further development. Another requirement mentioned in the beginning
was that the devices provide access to their short range communication abilities, i.e. Bluetooth.
Although many devices have a Bluetooth interface to synchronize with a PC or to connect to a
wireless headset, this is not sufficient. To enable Java ME to access the communication device
JSR-82 has to be supported. Besides all this, additional pitfalls caused by incorrect and incomplete
implementations have to be managed.
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B. Java Cryptography Architecture in Java SE and ME

To understand Sun’s two different cryptographic modules for the Java language, a brief overview at
history is helpful. From version 1.1, Java is bundled with the module Java Cryptography Architecture
(JCA), a library with interfaces for signing and hashing. In Java 1.2, another API was introduced:
the Java Cryptography Extension (JCE), offering functions for several symmetric and asymmetric
algorithms. But due to U.S. export regulations in force at that time, cryptographic source code was
treated the same way as weapons and the export of the Java Software Kit to other countries was
prohibited. Therefore, Sun split the JCA and the JCE and put all classes affected by U.S. export
laws into the JCE and the non-prohibited into the JCA, enabling delivering Java with the JCA
outside the U.S. - without the JCE. The laws changed in 1999, making it possible to bundle Java
version 1.4 with a weaker JCE for export. Weak in this context refers to the maximum key length
of the supported algorithms, allowing to easily break encryption by brute force. Today, after another
change of the regulations in 2004, the only difference between the weak and strong JCE is a file
containing security policies. U.S. law permits downloading and replacing the file with one from
Sun’s website to gain “unlimited strength” support.
The JCA offers a set of classes in the package java.security for transparent implementation
and use of cryptographic functions like encryption or hashing, which enables other developers than
Sun to design own cryptographic service providers. The programmer does not need to worry which
certain cryptographic service provider is used. In Java ME, Sun excluded the JCA from the CLDC
to downsize the consumption of disk space on mobile devices, but some providers created special
mobile editions of their frameworks that also regard the technical circumstances on mobile devices.

C. Java Security Provider

Several security providers exist which enhance Java’s cryptographic abilities. Only the more
widespread are discussed here to benefit from a bigger number of testers, which guarantees greater
code maturity. The criteria to evaluate the security providers are pretty much the same as for
the digital signature algorithms in Section VI-F: Besides the availability of RSA and ECDSA, all
implementations of discussed algorithms should be flawless regarding security aspects, the sources
should be open (also to review the implementation) and free of charge. Ideally, a separate mobile
edition exists that reimplements Java ME’s lack of necessary data types for cryptography like
BigInteger and is optimized regarding performance on mobile devices.

1) Sun JCE: Sun’s JCE is the standard cryptographic service provider in Java SE and can be
found in the package javax.crypto. It supports a variety of symmetric algorithms, but only a few
asymmetric like RSA, while ElGamal, DSA and ECDSA are not implemented. The source code
is not available and it cannot be integrated into mobile projects because of lacking classes like
java.math.BigInteger and java.math.SecureRandom.

2) SATSA: The Security and Trust Services API for J2ME (SATSA) by Sun realizes parts of the
JCE as optional API adding cryptographic functionality to Java ME [13]. It implements the digital
signature algorithms RSA and DSA, but no elliptic curve cryptography. By supporting smart cards
as security elements, cryptographic operations can be performed in a trusted environment on mobile
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devices. Unfortunately, devices are not necessarily supplied with smart cards (or the programmer
does not has access to them, like a SIM card in a cell phone), nor any cryptographic hardware, so
the functionalities have to be implemented in software, since the cryptographic provider has to be
runnable on every Java supporting mobile device. Although SATSA is free to use, its source code
is not available.

3) Bouncy Castle: The Bouncy Castle Crypto API [8], developed by the Legion of the Bouncy
Castle, is a completely free and open source cryptographic service provider. It is a Clean-Room-
Implementation of the JCE (meaning, that it supports the same interfaces, but is developed
from scratch) and supports every algorithm asked for - and even a lot more. A lightweight
version for limited mobile devices is available, too, which realizes the missing BigInteger

and SecureRandom for use with Java ME.
Bouncy Castle is a voluntary project. In the beginning, the lack of documentation, examples and
support resulted in a challenge to get it to work. A good point to start is [14]. While Java SE
offers the well-documented JCA interfaces for use with Bouncy Castle, the lightweight ME version
requires direct work with the Bouncy Castle classes, involving examining the source code for
understanding the gearing of the package.

4) Cryptix: The Cryptix project [15] is another implementation of the JCE. Although it supports
many algorithms, it lacks support for elliptic curves and offers no Java ME suitable version. PDA
support is available and has been used for example in the iClouds of the Darmstadt University of
Technology, [16]. Since support and development on the project seem to have stopped in 2005, it
cannot be considered an option for our cryptographic applications. A subproject for elliptic curves,
Elliptix, is in a pre-alpha state since 1999 and has not been updated anymore. Both projects came
from a spin off from Systemics in the year 1999, see [17] for more details.

5) IAIK: The Institute for Applied Information Processing and Communication (IAIK) of the Graz
University of Technology [18] provides a implementation of the JCE that is free of charge for
research and educational purpose, but not for commercial use. A separate lightweight mobile version,
the IAIK JCE-ME, is available. The IAIK JCE has a lot of different security algorithm schemes
implemented and an optional API for elliptic curve cryptography is offered. The main advantage over
Bouncy Castle is the availability of support for IAIK’s products, the drawback of the commercially
orientation are its costs and the fact of closed source. IAIK advertises the speed of the algorithms
as a design focus.

Conclusion: It is quite disappointing, that besides build-in functionality such as https no support
for generic cryptography does exist from the manufacturers. Due to the necessity of additional
hardware, such as specific SIM-Cards, SATSA is not feasible for widespread and inexpensive use.
Because of our policy to foster usage of open-source and freely available software, the use of the
IAIK libraries was not the first choice. As the development of Cryptix, one of the two open-source
projects, stopped in 2005, only Bouncy Castle was left for evaluation. The Bouncy Castle project
is an open-source project under continuous development and both, voluntary reports on the internet
and project documentation have improved over the last few years. All algorithms and platform
targeted by our project are supported and well-functional.
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D. Digital Signatures

To compensate the slowness of public key algorithms, it is not recommendable to sign the whole
document t, but a hashed version of the document m = h(t). This also solves security concerns of
some algorithms like existential forgery in RSA [19]. Hash functions are covered in Section VI-E.

When M is the message space and C the cipher text space, signing a document m ∈M means to
perform the encryption function E : M→C on the document with the private key of a public key
algorithm and to obtain the signature c = E(m), with c ∈C. Only the owner of a key pair knows
the private key and without it, nobody else can sign the document in the same way.
The signature can be verified by taking the signature and a public key as arguments and compute
the decryption function D : C→M to get the encrypted message m′ = E(c), with m′ ∈M. If the
private and public key belong together, the document itself will be the result of the operation, so
that m = m′ (see Figure 12).

(a) Creation of Digital Signatures. (b) Verification of Digital Signatures.

Fig. 12. Creation and Verification of Digital Signatures

Key pairs must not be used additionally to encrypt or sign data besides authentication, because this
is of high risk to security. If Eve pretends that she wants to prove Alice’s identity, Eve is supposed
to send a random number to Alice as challenge. In fact, the random number is the hashed value
h(m) of the text m. Alice cannot recognize this and signs the hash value. Actually, when sending
the signed hash to Eve, Eve receives a self-chosen document signed by Alice [19]. A solution to
this is the use of different hash functions for authentication and encryption, which produce different
hash value lengths, so that the length of a hash value determines its purpose.

E. Hash Functions

A message digest h is a preferably random fixed-length representation of a message m of arbitrary
length, created by a one-way hash function h = H(m). One-way hash functions are hash functions
with additional characteristics. While it is easy to compute h from m, the other way finding m
from h is hard. Also, it is hard to find another message m′ to m, such that H(m) = H(m′). Message
Digests are used by digital signature protocols to shrink the number of bytes to sign, because
signing is slow and message digests, ranging from 160 bits to 512 bits, are usually shorter than
the original message. Several signature protocols even need hashing for security reasons (see DSA
in VI-F.4).
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Reducing a message to a shorter representation, comparable to a fingerprint of the message, may
enable Eve to find two random messages m and m′ with H(m) = H(m′), also called birthday
attack. If it is hard detecting two random messages with the same hash value, the algorithm is
called collision-resistant. Using a non-collision-resistant algorithm for digital signatures alleviates
the search of different messages with the same hash value, so that it cannot be determined, which
message was intentionally signed.

A popular family of hash functions, the MD (short for Message Digest) family, has been
designed by Ronald Rivest, with the fifth one, MD5 from 1991, being the newest and strongest.
While it is mainly used to create checksums of files available for download or storing passwords in
databases, it is considered insecure due to its hash length of only 128 bits, allowing birthday attacks.
In 2005, Lenstra, Wang and de Weger showed two different certificates with the same hash sum [20].

Another family of hash functions is the SHA family (short for Secure Hash Algorithm),
proposed by the NIST as a Federal Information Processing Standard (FIPS), see [21], and being
technically similar to the MD family. The most common representative is SHA-1, which is often
used in a variety of cryptographic applications. Its predecessor, SHA-0, has already been proved
to be vulnerable against collision attacks, reducing its complexity from 280 to 239, so it can be
considered broken [22], while SHA-1’s complexity has been reduced from 280 to 263 [23]. This
makes SHA-1 not insecure yet in signing applications, because finding a document with the same
hash value as another already signed document is still not feasible, but better attacks are expected
to come. The family was enlarged by the SHA-2 algorithms SHA-224, SHA-256, SHA-384 and
SHA-512, each creating according hash lengths, while the variants SHA-0 and SHA-1 create 160
bits hashes. The SHA-2 group is technically very similar to SHA-1: Although no weaknesses
of SHA-2 have been found yet, they are expected to come. Nevertheless, the longer hash sums
provide secure use for the next years, as long as no new critical mathematic weaknesses in the
SHA family are discovered. All SHA-2 algorithms are covered by a U.S. patent held by the NSA,
while SHA-1 is free to use.

A third group of hash functions is the RIPEMD (RACE Integrity Primitives Evaluation Message
Digest) family. The first member of the group, the original RIPEMD, is considered insecure
due to collisions found for MD4, on which RIPEMD is based [24]. Therefore, RIPEMD-128
was developed, producing a 128 bits hash length like RIPEMD, but seeming collision resistant
yet. A stronger variant is RIPEMD-160, computing 160 bits output, while two other successors,
RIPEMD-256 and RIPEMD-320, only reduce the risk of collisions. The algorithms are developed
in an open community and none of them is covered by patents [25]. Compared to SHA-1,
RIPEMD-160 is faster, but not as widespread and well-investigated as NIST’s algorithm. Since
security is more important than speed, use of SHA-1 is recommended.
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F. Choice of Digital Signature Algorithms

A public key algorithm that is able to work as a digital signature algorithm has to be chosen
considering our demands of cryptography on mobile devices – encryption and signing. Only three
public key algorithms are capable of signing besides encryption: RSA, Rabin and ElGamal [26].
A fourth one, the Digital Signature Algorithm (DSA), cannot be used to encrypt. These algorithms
are discussed in this Section. A special variant of the DSA, the Elliptic Curve DSA (ECDSA), is
described in an own subsection. The criteria are, in order of importance:
Security. Ideally, keys will be valid and not compromised for years, representing an union with
the associated digital identity3. Security aspects of the algorithms are possible vulnerabilities of the
underlying mathematical techniques and appropriate key lengths to avoid breaking key pairs via
brute force in an estimated period of time.
Availability. The algorithm should be freely available and the implementation open source to allow
for thoroughly examination. Although software patents are not applicable in the European Union,
an algorithm should be free to use worldwide.
Speed. With each new mobile device generation, processing units become faster, but mobile devices
still are rather slow compared to desktop computers. Cryptographic calculations demand operations
on very large numbers, while specialized coprocessors are usually not available. The level of security
needed for the desired operations, e.g. a key pair used for authentication for several years versus
one time contract signing valid for a couple of days. The stronger the cryptography, the longer
operations last. Because of this the strength, i.e. the employed algorithm and key length has to be
chosen carefully.
Memory Consumption. Mobile devices have very limited amount of memory, which allows only
for applications with a small footprint. In contrast, build-in persistent storage has a capacity of a
few dozen of megabytes, whereas exchangeable memory cards are capable of several gigabytes.
Persistent storage becomes important at the latest if digital content has to be carried around.

1) RSA: RSA is an abbreviation for the three inventors of this algorithm: Rivest, Shamir and
Adleman. It was the first public key cryptography algorithm developed and it is the most frequently
used today. Encryption and signing are possible and it is easy to implement. Due to its popularity,
RSA is well-investigated and countermeasures can be taken to all possible attacks discovered yet
(e.g. Chosen Ciphertext Attacks or Low Exponent Attacks) [26].
To generate a key pair, Bob chooses two large (more than 100 bits length) prime numbers p and
q, p 6= q, and computes

n = p∗q.

n is called the RSA-modulus.
Additionally, he chooses a natural number e, the encryption key, with

1 < e < ϕ(n) = (p−1)(q−1) with gcd(e,ϕ(n)) = 1

3 Clearly it depends on the importance and value of the potential gain.
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and computes a natural number d, the decryption key, with

1 < d < ϕ(n) and d ∗ e≡ 1 mod ϕ(n).

In other words
d = e−1 mod ((p−1)(q−1)),

which can be computed with the Extended Euclidean Algorithm, see [27]. The public key is (n,e)
and the private key is d.
To encrypt a message m ∈M (M being the message space and 0≤m < n), with a public key, Bob
computes

c = me mod n, with c ∈C and C is the ciphertext space.

If m≥ n, m can be split into k subsequent blocks mi, i ∈ 1, . . . ,k, where each block’s length is less
than n. Decryption with the private key is computing

m′ = cd = (me)d mod n.

The security of RSA is supposed to be based on the hardness of the factorization problem [19],
meaning factoring large numbers. But it is unknown yet if factoring the large modulus n of a key
pair is the only way of getting the cleartext message m from the encrypted message c and the public
key (n,e), with e being coprime to ϕ(n), meaning that ϕ(n) and e have the greatest common divisor
1 [19].
RSA in this form is vulnerable to chosen message attacks. To prevent this, it is advisable to
follow the recommendations of the Public Key Cryptography Standards (PKCS) devised by the
RSA laboratories [7]. PKCS#1 describes methods of hardening RSA against the above mentioned
attacks sufficiently. RSA is free to world-wide use since the year 2000, as the patent held by the
RSA Security Inc. [28] in the United States expired.
Evaluating the costs of RSA, encrypting requires an exponentiation modulo n. Modular exponenti-
ation is performed by a series of modular multiplications. With a smaller exponent e encryption is
sped up, but when the exponent is too small, so-called Low Exponent Attacks are possible [19]. A
common value for e, recommended by X.509 [29], is (216 + 1), which is a smart choice because
it takes only 17 multiplications to exponentiate. It is possible to choose the same value for e for
all key pairs as long as d differs. Decryption is also an exponentiation modulo n, but this time
the exponent d has to be about the same size as n. Otherwise, the system becomes insecure. The
complexity of usual RSA encryption and decryption implementations is in O(k2) to O(k3), with k
being key bit length, and key generation is in O(k4) [7].
Recommended key lengths dependent on the desired usage with respect to the estimated computing
capacity of modern computers to break a key pair. Today, key lengths are at minimum 1024 bits
and if a key pair should be valid for several years, it is strongly recommended to use a 2048
bits modulus. Again, it depends on the desired usage of the key pair. See Section VI-G for more
details. RSA’s unproven hardness is its greatest disadvantage. But this can be rebalanced with two
arguments: Its widespread use and (because of that) the big interest of cryptanalysts. The more
people are interested in the security of RSA (and with it factoring large numbers), the bigger is the
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chance that a breakthrough will become public. But being analyzed for over thirty years, the “risk”
of breaking RSA seems to be very small. In combination with hash functions (see Section VI-E),
known weaknesses like the existential forgery and RSA multiplicativity become impracticable [19].

2) Rabin: The Rabin public key cryptosystem, also named after its inventor Michael O. Rabin, is
closely related to the RSA cryptosystem. Its security is also based on the factorization problem, but
in contrast to RSA, it is provable equivalent to the factorization problem and therefore considered
secure [26]. Encryption with Rabin is a little more efficient than with RSA, while decryption costs
are about the same. The disadvantage of Rabin is its vulnerability to Chosen Ciphertext Attacks.
These are attacks where Eve has temporary access to the decryption machine and chooses ciphertexts
to get the corresponding messages. With those, Eve can compute the private key and totally break
Rabin. This is why Rabin has only few significance in practice. In an offline-authentication scheme,
such an attack can be accomplished by encrypting a message with the public key and then sending
these randomly seeming bytes as challenge to sign. The answer to the challenge Eve receives is the
decrypted message that can be used to break Rabin. Therefore, it is not reasonable to use Rabin
for offline-authentication.

3) ElGamal: ElGamal’s security is based on the hardness of the discrete logarithm problem. It
describes the difficulty of calculating discrete logarithms in a finite field. To create a key pair, a
prime p and two random numbers g and x have to be chosen, with g and x < p. By calculating

y = gx mod p,

the public key is (y,g, p) and the private key is x.
Signatures of a message m ∈ M, M is the message space, are made by Bob choosing a random
number k being coprime to (p−1). It is very important that k is random and is never used twice,
otherwise Eve can recover the private key x [26]. Bob computes

a = gk mod p

and uses the Extended Euclidean Algorithm to solve the following equation for b:

m = (x∗a+ k ∗b) mod (p−1).

Now, (a,b) is the signature of M; k must be kept secret.
Alice verifies the signature by confirming that

ya ∗ab mod p≡ gm mod p.

It is necessary for m being a message digest, otherwise messages and appropriate signatures
(a,b) can be deduced from another [19]. ElGamal is based on the Diffie-Hellman key agreement
protocol and the operations to sign and verify are very similar to it [19]. No patents cover its use.
ElGamal signing requires computing one modular exponentiation and one Extended Euclidean.
The calculation of a and ya are message-independent, they can be computed and stored before the
actual verification. Thereby, ElGamal is faster than RSA (with only one exponentiation), but the
computations have to be kept secret on the mobile device.
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Verification demands three modular exponentiations, two more than RSA. But the verification
process can be altered so that computations equivalent to one exponentiation are necessary [19].
Key sizes of ElGamal are about the same compared to RSA for an equal level of security. The
ciphertext is double the size of the corresponding message, but this does not matter in our context
as long as only message digests and random numbers of relatively short bit lengths are computed.
One interesting advantage of ElGamal is the possibility to implement it in any cyclic group other
than the prime residue group modulo a prime. If a way was found to calculate discrete logarithms
in (Z/pZ)∗, with p prime, then ElGamal could be reimplemented in another cyclic group, where
discrete logarithms are still hard to solve [19]. Such a group are elliptic curves over finite fields,
discussed in the following Section about an ElGamal derivative, the Digital Signature Algorithm.

4) The Digital Signature Algorithm: The so-called Digital Signature Algorithm (DSA) is a variant
of the ElGamal signature algorithm. It is used in the Digital Signature Standard proposed from the
United States’ National Institute of Standards and Technology (NIST) and specified in FIPS 186-2
[30].
To generate a key pair, Bob chooses a prime number q of 160 bits length and a prime p with
2511+64t < p < 2512+64t for t ∈ {0,1, . . . ,8}. q is to be a divisor of (p−1). Then Bob computes

g = h(p−1)/q mod p, with h ∈ {2,3, . . . , p−2} and h(p−1)/q mod p > 1.

He chooses a number x with 0 < x < q and determines

y = gx mod p.

The public key is (p,q,g,y) and the private key is x.
To sign a message m, Alice generates a random number k < q. Afterwards, she computes the
hash H(m) from m with a one-way hash function. The standard specifies use of the Secure Hash
Algorithm discussed in SectionVI-E. Furthermore, she calculates

r = (gk mod p) mod q,

s = (k−1(H(m)+ xr)) mod q.

The signature is the pair (r,s). Bob verifies the signature by computing

w = s−1 mod q,

u1 = (H(m)∗w) mod q,

u2 = rw mod q,

v = ((gu1 ∗ yu2) mod p) mod q.

The signature is verified by checking that v = r, [26].
Because of modular exponentiations of fixed 160 bits length, DSA is faster than ElGamal, which
needs modular exponentiations of the length of the module p. Moreover, DSA can be sped up
analogue to ElGamal by precomputing the message-independent values r and k−1.
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The security of DSA, as an ElGamal variant, is also based on the discrete logarithm problem. One
way to attack DSA is the existential forgery, which can be prevented by checking

1≤ r ≤ q−1 and 1≤ s≤ q−1

before verification of a signature. Another way are algorithms alleviating computation of the
logarithm problem. The best known algorithms like Shanks or Pohlig-Hellman [19] still need more
than

√
q steps to solve a logarithm problem of q bits. Because 2159 < q < 2160 in DSA, at least 279

operations are necessary, which can be considered secure [19].
A U.S. patent attributed to David Kravitz, a former NSA employee, covers DSA, but it was made
available world-wide royalty-free. Although DSA is efficient, secure and freely available, it is
not been integrated in the crypto toolkit, but a variant of it: Elliptic Curve DSA described in the
following section, which implements DSA in another cyclic group and offers even more advantages.

5) Elliptic Curve DSA: Cryptographic algorithms basing on the discrete logarithm problem can
be improved by implementing them in the cyclic group of elliptic curves over finite fields. By
choosing a certain curve, it is possible to apply speed enhancements utilized in (Z/pZ)∗, making
signing and verifying faster, but preventing the application of algorithms simplifying the logarithm
problem, like Shanks or Pohlig-Hellman [19].
An advantage of this are smaller key sizes to gain the same security level compared to non-
elliptical public key cryptosystems (see Table VIII). The downside are more complex mathematical
computations for generating signatures, so that implementations of elliptic curve cryptosystems in
spite of smaller keys are not necessarily faster.
Elliptic Curve DSA (ECDSA) is a variant of DSA based on the Elliptic Curve Discrete Logarithm
Problem (ECDLP). Because elliptic curves were of interest in mathematics a long time before the
application to cryptography was considered, the risk of developing new algorithms breaking the
ECDLP is reduced.
Elliptic curves do not represent curves or even ellipses in the common sense, but are points solving
the equation

y2 = x3 +ax+b.

Selecting an appropriate curve requires a good understanding of the mathematics of elliptic curves
and is troublesome to implement. Therefore, the NIST published recommended domain parameters
of elliptic curves to use [31]. The choice of a certain field is significant for overall performance,
so for implementation, finite fields of odd characteristic (Fp, where p > 3 is a large prime number)
and fields of characteristic two, F2m , are considered best [32].

42



To create a key pair, the domain parameters (q,FR,a,b,G,n,h) of the underlying curve E have to
be chosen:

• p specifies a prime power,

• FR describes the method of representing field elements ∈ Fq, with q = p or q = 2m,

• a,b are two field elements ∈ Fq specifying the equation of the curve,

• G is the base point G = (xG,yG) on E(Fq),

• n is a prime of the order of G,

• h is an integer, which is the cofactor h = #E(Fq)/n.

The private key is a random integer d ∈ [1,n−1] and the public key is Q = dG.
Alice signs a message m by selecting a random integer k ∈ [1,n−1] and calculating

r = x1 mod n, where (x1,y1) = kG,

s = k−1(H(m)+dr) mod n,

where H(m) is the hash value of m. If r = 0 or s = 0, she has to select another random number
and compute the signature again, otherwise, the signature is the pair (r,s).
For verification, Bob checks that r and s are integers in [1,n−1]. Then he hashes the message m
to obtain H(m) and calculates

w = s−1 mod n,

u1 = H(m)w mod n,

u2 = rw mod n,

(x1,y1) = u1G+u2QA.

The signature is valid if x1 = r mod n.
ECDSA over Fp is considered secure with key lengths of 192 bits, in contrast to DSA, which needs
key lengths up to 1024 bits or RSA with more than 1024 bits.
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G. Summary

The focus of these examinations is to provide an overview and a brief background as well as
evaluation of digital signature algorithms to be used for incremental contract signing. If possible,
encryption functionality by the use of these algorithms should also be available. It became clear
that only two algorithms, RSA and ECDSA, fulfil the prerequisites and can be used. Both are
also recommended by the German government organization BSI4 in their annual recommendation
on qualified electronic signatures [33]. Although ECDSA has been designed as a digital signature
algorithm, its use for encryption has already been proposed. But, no detailed information on an
successful employment are available. Both, RSA and ECDSA can be adapted within a certain range
by adjusting the key lengths to the needs imposed by the setting, e.g. the desired cryptographic
strength. While the key length of RSA can be changed easily, the adaption of the ECDSA key
length needs more profound knowledge on elliptic curve groups. Although recommendations which
parameters to use exist, the choice is limited. Especially the lower end of cryptographic strength,
which can be addressed by the use of RSA in an easy manner, is not covered.

The website keylength.com [34] is a project by BlueKrypt [35] providing recommendations on
cryptographic key lengths based on different sources – most of them are government agencies and
research groups. An easy to use comparison of the slightly varying recommendations and emphasis
is provided on their website together with links to surveys addressing laws and regulations on
cryptology. Other publications such as the NIST special publication SP800-57 part 1 addressing
computer security [36] and the NSA Suite B Cryptography [37] have a much broader scope, but
give similar recommendations on cryptographic algorithms and key lengths to be used for different
scenarios. The European IST research project ECRYPT releases their “Yearly Reports on Algorithms
and Keysizes” [38] covering a broad range of cryptographic algorithms and related topics. Table VIII
contains an excerpt of the relevant information, such as key length of comparable strength and
recommended usage scenario. Key lengths of symmetric cryptography algorithms of equivalent key
length are provided for comparison.

TABLE VIII
KEY LENGTHS [BIT] OF EQUIVALENT SECURITY

ALGORITHM RSA ECDSA Symmetric
STRENGTH 1024 160 - 223 80

2048 224 - 255 112
3072 256 - 383 128
7680 384 - 511 192

15360 512+ 256

A rough classification is given in [38] stating that RSA1024, which will later be recommended as
least demoninator, will provide “Very short-term protection against agencies, long term protection
against small organizations”, RSA768 in contrast only “Very short-term protection against small

4BSI: Bundesamt für Sicherheit in der Informationstechnik
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organisation” which we also consider secure enough for trading assets of small value by the
use of incremental contract signing. By the way, RSA15424(!) should be a good choice for the
“foreseeable future”, which means good protection against quantum computer. Due to the recent
involvement of massive parallel computations running on graphic cards, normally used for complex
scene calculations, further estimations on the time needed to break a key and its security are hard
to provide. The beginning of this development can be found in Table IX which has been derived
from RFC 4359 [39] during its specification process [40]. The RFC itself declares support for 1024
bit key length as mandatory, neither listing key lengths below 768 bits nor above 1024 bits. This
trend is even accelerating due to the availability of faster hardware and more sophisticated usage.
These information are also used by [38], but stating that they would already contain a 100-fold
security margin.

TABLE IX
RSA KEY LIFETIME RECOMMENDATIONS.

STRENGTH MAXIMUM LIFETIME RECOMMENDED

Key length [bit] in 11/2004 in 01/2006
496-512 1 hour -

576 10 hours -
640 4 days -
704 30 days -
768 - 1 week
796 8 months -
1024 1 year 1 year

Therefore it is reasonable to use key lengths of at least 768 bit. We recommend and will use
throughout our research key length of 1024 bit. Of course, it depends on the setting, such as the
time span and the number of times the key pairs should be used. If a usage of multiple years is
desired, much longer keys have to be used as for key pairs suitable for one-time usage. Another
factor is the expiration date of the contract, i.e. the time is span it can be submitted for processing.
We assume a maximal contract life-time, which is the time from signing the contract until its
submission, of at most a couple of weeks. Last but not least, the value of the traded assets are
also of importance, because if the contract addresses high priced assets, it might be worth an
huge effort. Although such adjustments are possible we will stick to RSA1024, as it turned out,
nowadays devices are capable of real-time calculations and key pair generation up to 1024 without
any restrictions. But more important it fits our proposed usage with respect to the application and
assets to be traded.
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VII. REAL WORLD

In this section we will first provide an overview of the mobile phones, platforms and libraries
that were employed. Then, the applications and scripts used to derive as well as to process the
measurements are introduced. Measurements, criteria for plausibility checks as well as observations
and finally an evaluation will be provided.

A. Devices

We were able to get hands on devices from several vendors equipped with different processors and
operating systems, but all of them are capable of our prerequisites: the CLDC 1.1, the MIDP 2.0 and
the JSR-82. A short overview and characterization is given in Table X. The cell phones are dedicated
to different segments of the market a) “usual” just-a-phone, b) phones with enhanced multi-media
and photo functionality and c) finally so called “smart-phones” with focus on office-functionality.

TABLE X
CONSIDERED MOBILE DEVICES.

Vendor and
Type

Classification at
time of release OS CPU RSA ECDSA

Sony Ericsson
K750i

Photo
Q2/2005 proprietary ? × ?

Siemens
S65

Business
Q3/2004 proprietary ? × ∅

Sony Ericsson
M600i

Smartphone
Q2/2006

Symbian 9.1
UIQ 3

ARM9 based,
208 MHz × ×

Nokia
E50

Smartphone
Q3/2006

Symbian 9.1
Series 60 3rd

ARM-926,
235 MHz × ×

Nokia
5800XM

Multimedia
Q4/2008

Symbian OS
Series S60 5th

ARM11,
369 MHz × ×

Nokia
6300

Usual Phone
Q1/2007

Symbian OS
Series S40 3rd

ARM9,
238MHz × ∅

The two older ones, K750i and S65, with their small displays and little multimedia functionality,
are already obsolete. Although RSA is possible on the K750i, the time needed is not acceptable.
While the K750i is not able to do ECDSA processing or does need too long without responding; the
S65, which was targeted at the business sector at that time performed RSA and ECDSA processing
despite its age quite well. Both devices are not included in the test series as they are not widespread
used any more and do not represent current classes of devices. The M600i and the E50 are two
smartphones with office as well as multimedia functionality released in 2006. Still, both are quite
performant. The 6300 is a consumer cell phone released in early 2007. Processing ECDSA fails
with an exception, but due to mandatory obfuscation of the code debugging has not taken place so
far. Its RSA performance is quite disappointing. Although the recently released 5800xm offers all
kinds of multimedia, GPS and communication ability, its performance is similar to the smartphones
that have been released about 30 months ago. This set of devices covers a large range of similar
devices already in use and provide a good estimation of the available potential waiting to be used.
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B. Libraries and Software

This report focuses on the mobile side of the digital ownership framework, as computational
power and libraries providing access to cryptography are available at the PC. The aim is to
enable mobile usage of strong cryptography on widespread used and inexpensive devices. We
have chosen the freely available openssl library together with its ruby-binding libopenssl-ruby for
the implementation of the central server. The web front-end and API itself is realized by the use of
Ruby on Rails. All necessary software is available for Linux – we use kubuntu, debian and Mac OS
X for our development. Only cell phones that provide the necessary prerequisites without enabling
cryptography itself have been chosen. The entire support for cryptography and other convenient
functionality such as easy usage of persistent storage and communication had to be realized by
own libraries.

A library called CryptoToolkit has been implemented, making use of the recent version of the
Bouncy Castle libraries [8]. The entire cryptographic functionality, needed by the MIDlet employed
for these tests and our other implementations within the digital ownership research, have made
accessible by its APIs. Such high-level functionality includes key pair generation, signature creation
and verification as well as hashing. Besides this library, MEmFiS (short for Mobile Emulated File
System) has been used to store any kind of data, especially measurements, persistently. Its add-on
MEmFTP enables the access to the data files stored within MEmFiS from the PC via Bluetooth in
an FTP-like manner. The ability to access the “normal” file system inside the phone and memory
cards is subject of ongoing work. Convenient discovery and communication functionality between
multiple mobile devices and personal computer has been implemented in the BtCom library.

The applications for the performance measurements of cryptographic operations and the commu-
nication using Bluetooth have been designed in a straight forward manner by the use of JavaME’s
high-level API. The different algorithms and key lengths, e.g. RSA512 with SHA-1, to be tested can
be selected and the number of iterations as well as a description can be set. A test is a combination
of a hash-function and a digital signature algorithm or a hash-function with a certain payload size.
Then, the tests run interleaved, i.e. each test once per iteration to even out short, timely limited
disturbances. Additional tests of the communication between two devices have been implemented
in a separate application. Both applications store the test results in a dedicated directory with a
timestamp as name inside the persistant memory.

C. Test-Setting

All devices, except the two obsolete and not further considered ones, were equipped with a valid
SIM card of the same GSM-network, the one of the German provider ePlus. During the test all
devices were located side by side within an area of about 0.25sqm, i.e. the network coverage and
the climatic conditions should have been the same. First of all we were curious as devices of
different generations and market segments were involved. During our early tests the following two
important factors have been identified: 1) the current computational load and 2) the availability
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of an external power supply. Besides this, the influence of the communication modules (such as
GSM, Bluetooth and wireless LAN) should also be evaluated. To avoid any further disturbance
the screen saver has been disabled, but reduction of the backlight’s brightness remained enabled
to save battery power. Unfortunately, no information about the precision of the built-in clocks are
available and no correction will take place. Normally, temperature has an impact on two important
sources of disturbance, the quartz driven clock and the accumulator. As precaution, the mobile
phones where kept at approximately the same temperature avoiding exposure to cold air and direct
sunshine. Also, no information on the power saving strategies, i.e. if and how does the device react
if running on battery and what happens if the remaining battery capacity decreases, are available.

As a consequence of these considerations and the first test runs, the following factors have been
identified:

1) the availability of an external power supply,
2) the status of the communication modules (turned off or being idle) and
3) the current computational load imposed on the device.

Their potential influence will be examined and rated later on. While the first two ones are clearly
defined for each mobile, the third one, the computational load, is quite device specific: from idle
except the speed-test MIDlet running to the device specific full-load. The latter one ranges from
the load produced by simple playback of audio files in the background (lack of real multitasking
functionality) to simultaneous WLAN access, audio playback, and finally GPS running in the
foreground. It turned out, that no generic multitasking functionality is available on all devices,
e.g. the music player is the only application on the 6300 able to run in the background.

The following scenarios have been examined with different intensity:

TABLE XI
FIVE SCENARIOS TO ADDRESS DIFFERENT FACTORS OF INFLUENCE.

No. power load status communication primary issue
supply except measurement modules of this scenario

1 external idle online basic setting
2 external idle offline influence of (idle) communication modules
3 battery idle online scenario 1 w/o power supply
4 external full-load online influence of massive computational load
5 battery full-load online scenario 4 w/o power supply

The powered idle online [1] setting has been chosen as reference. It allows precise measurements of
the device’s performance when processing the cryptographic operations within a realistic scenario,
but with as little disturbance as possible. No user triggered communication takes place. Then the
tests were run in the offline mode to estimate the influence of the communication modules [2] and
unpowered to figure out if there are any power-supply [3] related changes. In case of out-of-time
operations which can happen during nighttime – such as key generation or certificate creation whose
results can be held on stack – the powered online idle scenario [1] is not unlikely. So far, the device
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had been dedicated to our measurements, which means “doing nothing else”. Two more scenarios
are examined where a device specific full-load is imposed – online with and without external power
supply. If possible, our calculations were not the focused application in the full-load scenarios.

A single test consists of a combination of a hash function (SHA-1, SHA-256, SHA-384 or SHA-
512) in combination with a digital signature algorithm, a choice of RSA (with key lengths of 512,
768, 1024, or 2048 bits) or ECDSA (with key lengths of 192, 239 or 256 bits). During each test,
1) one key pair and 2) one hash sum to be signed have to be created. Then, 3) the signature is
calculated for the hash sum by the use of the just generated keypair and 4) thereafter verified.

The runtime for each of the above mentioned operations are measured in milliseconds and stored.
Due to very short execution times of hashing and verification, multiple repetitions of each operation
are carried out inside the chronometry to achieve more reliable measurements. During an iteration
each of the above mentioned algorithm/keylength combination can be run zero or one time. A test
series itself consists of a number of iterations, which has to be chosen according to the scenario,
especially if running on battery. While powered runs are not restricted to a certain number of
iterations, the maximum number of iterations in the unpowered test series depends on the imposed
load and the capacity of the battery which lasts between 7 and 15 iterations. Figure 13 shows a
sketch of these dependencies.

Fig. 13. Cryptographic Measurements: Test, Iterations and Series

Test results are kept in the RAM until the end of the test series and stored as comma separated
values. This leads to an increasing memory consumption with each test. The measurements are
stored inside the record store after each iteration in case of a device failure – most likely an empty
battery or on the M600i a self-triggered reboot due to the video player running for a while. The
transfer to the PC takes place by the use of Bluetooth. The device has to be restarted before each
test series.

D. Processing and Quality control

A number of scripts have been written to allow automatic processing of the measurements and
the derivation of the most important statistics once the test results have been stored on the PC.
Below the project directory, a subdirectory for each device is mandatory as some device specific
configurations have to take place on the one hand and on the other hand to clearly separate the
findings. The following steps have to take place:
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1) The results of each test series are stored in a separate file whose name indicates its time
of execution, the device, the number of iterations, the algorithms and most important the
scenario it took place.
E.g. 1239056923655 5800xm 025ers online powered.csv.

2) Multiple test series are merged to a device specific scenario file, e.g. online powered,
fullload unpowered, etc..

3) Scenario files are analyzed and relevant information are extracted and stored for further
processing, i.e. statistics and histogram data are generated and plotted.

4) Temporary data files are merged to allow for inner and outer ratio estimation.
5) Based on these information further manual analysis, such as the examination of the timely

development of single series or even algorithm and key length combinations can take place.

Steps 1-4) have been automated to gather the measurements to derive the ratios and statistical
information. Histograms and cumulative distribution function have been generated to rate and to
compare the single scenarios with others. Further statistics such as error bars are also processed.
Plotting individual runs is possible by the manual usage of the same command-line scripts. Besides
this, the measurements of a single test series can be plotted in a chronological order.

As the cell phones are more or less black boxes, the quality of the measurements can only
be guaranteed by thoroughly observations and precise definition of the setting. First of all, our
measurements were derived from restarted devices to get rid of reduced random access memory
due to memory leaks and further influence that might arise from long uptime and applications that
have run before. Then, only a defined set of applications runs under the same conditions.

Quality control refers on the one hand to detecting problems with the setup itself or during
interaction with the devices, e.g. power supply is still attached or a media player has been paused
due to task switches, and on the other hand to figure out if there are any obvious disturbances
resulting from running the measurements. This could be odd behaviors such as increasing execution
times during test series, completely different results of “similar” set up test series, etc.. No further
countermeasures can be taken, with the limited insight in the device internals, besides: restart,
thoroughly configuration and providing similar conditions for each test run. After the transfer of
the test results, automatic processing will take place. Besides this, an individual examination of
each test series is necessary to understand plots such as shown in Figure 14(d). Otherwise it can
not be distinguished between two peaks arising during a single test series or two independent peaks,
each one from a different test series.

In Section III-E the runtimes of the shortest key for each algorithm, RSA512 and ECDSA192
were provided. These information have been derived from our set of measurements. The statistical
information are available for all devices and scenarios as error bars providing minimal, maximal,
average, median as well as the standard deviation. Due to the vast amount of plots, only the
two extreme scenarios discussed before are contained in Appendix A. The histograms of the
execution times for every operation, device, algorithm and key length combination can be found
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in Appendix B.1 and B.2. They are grouped by device, scenario and algorithm. Based on these
histograms the distribution of the runtimes can be estimated to allow prediction of the runtimes for
specific settings. A third type of measurement presentation are the cumulative distribution function
provided in this section for two exemplary combinations of algorithms, but all devices. They allow
a much better insight into the distribution and enables an easier comparison of the five scenarios.

Our expectations were that a single, precise and symmetric peak in the histogram, such as shown
in Figure 14(a), would exist for the deterministic operations (all except RSA key generation). In
case of full-load scenarios blurry, but almost symmetric “peaks” seemed to be reasonable. This is
an indication for a higher standard deviation due to multiple tasks handled in parallel. An example
for this effect can be be found in Figure 14(b). In offline scenarios, where less load has to be
handled, and in the online unpowered, where processor speed might be reduced, the expected
peaks could have an offset to either side, due to shorter resp. longer execution times. Due to the
indeterministic nature of prime number search, RSA key generation does not result in a symmetric
distribution, visualized as a peak, but in a maximum with a descending slope to its right – as shown
in Figure 14(c). Our expections became true and we derived these patterns in various settings and
for different devices.

 0

 50

 100

 150

 200

 250

 0  0.1  0.2  0.3  0.4  0.5  0.6

c
o
u
n
t

time sec

RSA 1024 powered online

valSign (3,7,11,15) 1353 runs

(a) precise, single peak.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  2  4  6  8  10  12

c
o
u
n
t

time sec

ECDSA 256 powered fullload

valSign (19,22,25,28) 288 runs

(b) blurred, single hill.

 0

 10

 20

 30

 40

 50

 60

 0  200  400  600  800  1000  1200  1400

c
o
u
n
t

time sec

RSA 2048 powered online

valCreate (4,8,12,16) 1349 runs

(c) slopy hill.

 0

 10

 20

 30

 40

 50

 60

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

c
o
u
n
t

time sec

RSA 1024 unpowered fullload

valSign (3,7,11,15) 533 runs

(d) multiple peaks.

Fig. 14. Examples for Histograms.
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Histograms are good to get a first idea of the situation on the one hand and on the other hand they
allow for the comparison of single test series to learn about (self) similarities. This has been used to
analyze the situation shown in Figure 14(d) as these two peaks can a) exist in any test series or b)
it is composed of two single peaks appearing in different test series, but with an offset. It turned out
that the vast majority of our test series contained two peaks, a few had only a single peak. It was not
possible to determine the reason. The self similarity has also to be checked, i.e. if a blurred “peak”
in a scenario files emerged from multiple test series results from multiple narrow but slightly shifted
peaks or from several identical blurred peaks. The aim was to get an impression of the devices
behavior and of the test series to rate the reliability of the findings and recommendations.

E. Observations and Findings

There are several approaches to compare entire scenarios as well as single test series and the timely
development of a certain test during an entire series. As mentioned before, histograms have been
generated to visually analyze the distribution of the runtimes and compare different test series of
the same scenario. Four exemplary histograms are shown in Figure 14.

Now, we will describe the observations we have made. Later on, they will be rated according to
their severity. Three basic plot types have been used and examined to figure out any oddities: 1)
histograms of the RTTs have been generated for each test series and their aggregate according to
device, algorithm and key length, 2) certain series have been plotted according to their timeline
and finally 3) the cumulative distribution function to allow for better comparability between single
scenarios. While the first two ones are primarily used to assure the quality of the measurements
and to learn about potential pitfalls, the last one, the cumulative function, can be used for
direct comparison of the five scenarios according to the three identified factors, power supply,
communication modules and the load imposed on the devices. We will refer to the cumulative
functions of RSA1024, representative for RSA, shown Figure 15 and ECDSA192 in case of ECDSA
as presented in Figure 16. Each row of plots is dedicated to a device, the columns represent the
three cryptographic operations: key pair creation, signature creation and its verification. Key pair
generation is measured in seconds, signature creation and verification in milliseconds.

Now, it is possible to directly compare the five different settings by the use of the provided
cumulative curves for RSA and ECDSA. Although our main focus is clearly on RSA the findings in
this section will also consider ECDSA. The three main factors that influenced the scenario creation
are discussed in the following.

power supply. Obviously, cell phones are designed for mobile usage without being connected
to a(n external) power supply. Because of this, the main functionality – telephony – should
not be affected if running on batteries. In contrast, notebooks suffer the problem, that as
soon as they run on batteries, either the available computational power or the lifetime of the
battery decreases significantly. Modern mobile devices are trying to combine the functionality
of both sides. Fortunately, the observed influences are less dramatic – but also surprising.
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The M600i is the only device where a significant effect can be observed. It is faster in every
unpowered scenario regardless of processing RSA or ECDSA. The E50 also behaves quite
strange as only RSA key pair generation is speed up by running on batteries, no difference
can be detected for the other RSA operations. In case of ECDSA it is not that explicit, as
there is an insignificant shift. It seems that the unpowered devices have a smaller variance of
the runtimes. The behavior of the 5800xm is consistent across both algorithms, because the
device is faster in the unpowered full-load than in the powered scenarios. Due to the inability
to do ECDSA, only RSA measurements can be evaluated for the 6300. It turned out that
the variance is small compared to the other devices for every scenario. Furthermore, for both
extremes of computational load, idle and full-load, the curves representing scenarios with and
without external power supply can not be distinguished.
Unfortunately, we do not have an explanation for all these different behaviors. Our expectation
was that running on batteries would result in a worse performance, but in some cases the
opposite turned out to be true.
⇒ Not being connected to a power supply cannot be considered to cause any performance
reductions. Instead a slight speed-up has been be detected for some devices.

computational load. The device specific full-load is of interest as it is most likely that the device
will not be entirely dedicated to our calculations during interaction with others. Showing off
the belongings, play back of content, as well as communication will take place. The impact
of additional computational load is clearly visualized in Figure 15. The respective scenarios
are clustered. Table III provides some numbers for the two most extreme settings representing
these clusters and the algorithm and keylengths combination that have been chosen as unit.
Two completely different curves appeared in the RSA full-load scenarios: 1) in case of the E50
and the 6300 an almost vertical and point-symmetric one with no difference between powered
and unpowered and 2) in case of the M600i and the 5800xm two convoluted curves, partially
with steps and obvious difference between unpowered and powered. The individual full-load
was for the E50 and the 6300 playing back music, while the M600i played back a video in
the foreground and the 5800xm was mainly busy with GPS and playback of music. Things are
quite different if ECDSA is used as only the idle scenarios of the 5800xm provide almost point
symmetric curves, i.e. little variance. Again, the scenarios are grouped by the computational
load and except the just mentioned exception almost identical for each of the three operations.
Unfortunately we can not provide an explanation for the higher variance even in idle settings.
⇒ Additional computational load has a strong impact on the performance of our application,
i.e. the runtimes for the cryptographic operations, ranging from additional 30% to about 80%.

communication modules. There was only one out of five scenarios where the communication
modules were turned off. Based on the measurements we could not find a significant difference
between idle and turned off communication modules in our measurements. Unfortunately, we
were not able to carry out tests with data massive data transfer imposed on the communications
modules.
⇒ No influence of (idle) communication module has been detected.
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Fig. 15. Cumulative, RSA1024, Key Pair Creation, Signature Creation and Verification.
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Fig. 16. Cumulative, ECDSA192, Key Pair Creation, Signature Creation and Verification.

The severity rating of the three examined factors is straight forward. Obviously, the computational
load has the biggest impact on the performance of every user installed application. Telephony, other
services and media playback seem not to be affected by the high computational load. It is most
likely that the build-in task scheduler is employed with a priority ranking of the applications. Our
measurements revealed that the performance loss for our third party application will be at least
30%, depending on the device. In the worst case a runtime increase of 80% has been experienced.
Therefore, it is strongly recommended to integrate performance measurements into every application
to learn about this very device to be able to adjust the own settings and expectations.

The remaining two factors have a slight positive or no detectable impact on the performace.
Surprisingly, the absence of an external power supply caused a slight performace gain for some
scenarios and devices. Indeed, this is quite odd and we do not have an explanation, but there is no
other solution than to charge the own device from time to time. Therefore it is not regarded as a
problem.
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In case of the communication modules being idle or turned off, no difference has been detected.
Massive data transfer might have an impact as the transfered data has to be processed by some
application. Then, the performance reduction will at least result from the application, which is
comparable to the full-load scenarios. Therefore, only the computational load imposed on the device
can be named as a performance reducer.

F. Quantity of Measurements

This section will provide information about the quantity of tests that have been accomplished. Due
to the different number of devices capable of the two different algorithms and different number of
keylength to chose from, about 44.000 RSA and 27.000 ECDSA runs took place. The distribution
across devices is depicted in Figure 17(a) and 17(b). The main focus and was on idle online scenario
to get a solid set of reference data. Because of this, the majority of the test runs has been dedicated
to this scenario. By comparing the merged scenarios with the single test series it became clear
that, due to their similarity, a sufficient number of test series have taken place. Besides the number
of runs used to derive our findings, the number of failures are also of interest. During the test
runs, only the final result of the signature verification, i.e. success or failure, is also recorded. As
no intermediate results such as key pair, hash sum and signature are stored, none of the single
operations can be identified as the source of the failure. The following causes of failures can be
named: hardware fault, operating system or transmission failure, malicious implementation of the
application and in case of RSA key pair creation.

Although ECDSA key generation should never fail, we experienced two runs (on different devices)
where signature verification was not successful. If this is set in relation to the overall number of
test, our implementation achieved a probability of 1:13500 for a failure. Unfortunately, the point of
failure can not be identified as no intermediate results between each operation are stored. Because
the source code of the Bouncy Castle libraries are freely available and the project itself is widespread
in use, an erroneous implementation should be considered very very unlikely.

In contrast, RSA key pair generation relies on finding of a real prime number, i.e. failures have to
be considered. Prime numbers are created using the Bouncy Castle library with a prime number
certainty of 25. This certainty means that there is a probability of (1−(1

2)25) or ≈ 0.9999999702 that
the number selected is truly prime. The propability of a failure is according to the parameterization
about 1 : 3 ·10−8. It turned out that this probability has never been met for any keylength on any
device. Figure 17(c), which is quite cumbersome to read, shows the probabilities. The point type
indicates the key length; the scenarios (1-5, see Table XI) are plotted within a device from left
to right. In some settings up to 1.5% of the runs at least one of the following operations failed
somehow: creation of a keypair, signature creation and verification as well as persistent storage and
transfer. The failures occurred among several test series. Due to the limited number of tests, it is
hard tell what went wrong. As all devices are affected in a similar manner, except the 6300 where
the failure rates of the different combinations are closer together, it seems to be not a device specific
issue. If the application and the device is considered as correctly functional, the desired propability
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that the chosen prime number is definitely prime does not hold. A thoroughly examination of this
aspect was done in [4]. Due to this much higher rate of invalid key pairs, our library checks each
key pair by the use of a similar process as used for our measurements before it is released to
the public. This is, according to additional costs for signature creation and verification, absolutely
feasible. As key pair generation is not likely to happen just-in-time, this high fraction of broken
key pairs can be accepted.
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G. Odd Observations

As mentioned before, we examined several test series with respect to the timely development of
the measurements, i.e. we want to detect if former test runs influence the later ones. Fortunately
we did not detect any indicators for self-influence of the test series in case of the cryptographic
operations. But we noticed an increasing runtime of the hash functions within a single test run,
which can be seen in Figure 18. For two series are shown runtimes for RSA signature creation, its
verification and hashing is shown: The M600i offline powered scenario plots in Figure 18(a), 18(b)
and 18(c), the 6300i offline powered signature plots in Figure 18(d), 18(e) and 18(f).
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Fig. 18. Execution Times of a Single Test Series, RSA, Offline Powered.

In contrast to the runtimes of signature creation in both settings, the runtimes measured for hashing
result in unexpected plots. In case of the M600i the runtimes increase linearly after a few higher
values in the beginning. Both facts are surprising, first of all the obviously increasing runtime and
the first few higher values for each algorithm in the beginning. We don’t have an explanation for
either of the phenomenons. The latter one might be due to initial class loading. Hashing in the
6300 scenario results in a quite different plot. Instead of linear increments each hash algorithm has
two “preferred” runtimes. After these effects had been discovered a thoroughly examination of the
measurements took place. Such effects where only found for the hash functions, which might be
due to the short runtimes compared to the cryptographic operations. Because of the small amount
of data to be hashed, dedicated test series for hashing bigger chunks of data had been carried out.
While the 5800XM did not show any oddities, the 6300 produced strange and hard to interpret
measurements, which can be found in Figure 19. Each of the six subfigures 19(a) to 19(f) is
dedicated to a certain payload, but each of the four hash algorithms has been carried out for every
payload size. During each iteration, each hash function was run for every payload, i.e. both hash
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functions and different payload sizes were interleaved. Because of this, longer lasting or severe
changes should appear in all six plots during the same iteration – which was not the case. The
plots turned out to be quite surprising. We identified constant periods, slow as well as fast linear
increases as well as fall-backs – even within the same test. Clearly, the runtime of the hash function
depends linearly on the amount of data to be hashed, which can be verified by comparing the range
of the subfigures y-axis. The runtimes vary by a factor of 6 for the majority of the tests. This can
become an issue if bigger amounts of data have to be hashed. Unfortunately we don’t have an
idea what caused this strange behavior. But, as this has only a minor impact on the feasibility of
incremental contract signing we postpone further examinations.
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VIII. CONCLUSION

This technical report provided the evidence that incremental contract signing is possible on
nowadays mobile devices by the use of strong cryptography and short range communication. A
set of various widespread available mobile devices has been used to derive a sufficient number of
test runs to allow for sound predictions of the mandatory runtime and to identify potential pitfalls.
Based on these findings, the inner ratio as well as the outer ratio have been introduced, motivated
and derived for various settings. The first one expresses the ratio between operations of the same
algorithm and keylength, in our case signature creation and verification. The scalability of a given
algorithm with respect to the number of users can be expressed by the use of the inner ratio.
Furthermore the suitability of the different signing schemas and communication patterns, that have
been discussed, can be calculated by the use of the inner ratio. The later one, the outer ratio allows
for a direct comparison between different key lengths of the same algorithm, such as RSA512 and
RSA1024. Two more ratios, inter-algorithm and the inter-device ratio have been mentioned, but not
consolidated.

Besides the intuitive parallelized signing schema a more sophisticted one, the semi-sequential which
makes use of the users knowledge, has been introduced and evaluated. It is optimal with respect
to the number of signatures necessary. Different communication patters have been examined for
both schemas. The existing tradeoff between the advantage of smaller computational costs on the
one hand and on the other hand the problem of increased time consumption has been pointed out.
Additionally, the mandatory communication has been examined. Although communication costs
both, energy and time, only the timely aspect has been considered. The inner ratio has been identified
as an important indicator, as it allows to rate the scalability depending on the number of users
involved. It can also be used to rate the suitability of the different schedules as some of them rely
stronger on sequential verifications. This is especially important if ECDSA with its high inner ratio
is involved. It allows to determine the time needed for incremental contract signing, to choose the
maximum possible security and to set up the best schedule under the given circumstands considering
the interaction with the communication.

Although the emphasis was on the practical feasibility, the theoretical foundation have also been
evaluated. An overview of digital signature algorithms has been provided. Then, available libraries
have been rated according to their suitability for our project. Our main concerns were the free
availability and of course a on-going development and improvement as well as open-source to be
able to adapt the code to our needs if necessary. We also gave recommendations of the key length
to be used within incremental contract signing to allow for secure and efficient fair offline trading.
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APPENDIX

A. Statistics

This part of the appendix will first provide the statistics of the two scenarios, which have been
chosen in Section III as the two extremes to be evaluated, in Section A. For each of the scenarios
the statistical data in form of minimal, maximal and average value are provided as error bars.
Additional the median and the standard derivation is also integrated in the plots. In case of RSA,
where the execution times of the cryptographic operations, key pair creation, signature creation
and its verification differ that much, multiple plots are provided. A single plot to show all three
of them and two separate ones for key pair creation and signature creation in combination with
signature verification. The operations are abbreviated by letters, C for key pair creation, S for
signature creation and V for verification. It can be seen that the standard deviation is small enough
to allow for usage in productive systems. RSA key pair creation has due to its nature – checking
large numbers to be prime – the highest standard deviation, which is of minor impact as key pairs
can be created on fast devices or during times of no regular cell-phone usage. These findings can
be observed in the following Sections B.1 and B.2 where the individual histograms for the two
algorithms RSA and ECDSA are presented for each device and scenario.
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Fig. 20. M600i, RSA Error Bars, Online Powered and Full-load Unpowered.
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Fig. 21. 6300, RSA Error Bars, Online Powered and Full-load Unpowered.
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Fig. 22. 5800xm, RSA Error Bars, Online Powered and Full-load Unpowered.
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Fig. 23. E50, RSA Error Bars, Online Powered and Full-load Unpowered.
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Fig. 24. M600i, ECDSA Error Bars, Online Powered and Full-load Unpowered.
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Fig. 25. 5800xm, ECDSA Error Bars, Online Powered and Full-load Unpowered.
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Fig. 26. E50, ECDSA Error Bars, Online Powered and Full-load Unpowered.
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B. Histograms

1) RSA Histograms: The figures of the following section contain the histograms for the RSA
algorithm for all four considered key lengths: 512, 768, 1024 and 2048. They are ordered by
device (M600i, 6300, 5800xm, E50, S65, K750i) in the first place, then by setting (online powered,
offline powered, online unpowered, full-load powered, full-load unpowered). Within the figures each
operation (creation of the key pair, creation of the signature and signature verification) has its own
column. The key length increases from top to bottom (512, 768, 1024, 2048), while the last row
provides plots with all key length inside a single plot. These histograms have been derived from
the entire set of measurements.

The following figures contain the histograms for the respective devices:

• M600i. Figure 27(a) to 31(o),
• 6300. Figure 32(a) to 36(o),
• 5800XM. Figure 37(a) to 40(o),
• E50. Figure 42(a) to 46(o),
• S65. Figure 47(a) to 47(o),
• K750i. Figure 48(a) to 48(o).

2) ECDSA Histograms: The figures of the following section contain the histograms for the ECDSA
algorithm for three keylengths: 192, 239, 256. They are ordered by device (M600i, 5800XM, E50,
S65) in the first place, then by setting (online powered, offline powered, online unpowered, full-load
powered, full-load unpowered). Within the figures each operation (creation of the key pair, creation
of the signature and signature verification) has its own column. The key length increases from top
to bottom (192, 239, 256), while the last row provides plots with all key length inside a single plot.
These histograms are derived from the entire set of measurements.

The following figures contain the histograms for the respective devices:

• M600i. Figure 49(a) to 53(l)
• 5800XM. Figure 54(a) to 58(l)
• E50. Figure 59(a) to 63(l)
• S65. Figure 64(a) to 64(l).
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Fig. 27. M600i, Online Powered, RSA 512, 768, 1024, 2048.

66



 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  1  2  3  4  5  6  7  8

c
o

u
n

t

time sec

RSA 512 powered offline

valCreate (1,5,9) 372 runs

(a) RSA512, Key Pair Creation.

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.01  0.02  0.03  0.04  0.05  0.06

c
o

u
n

t

time sec

RSA 512 powered offline

valSign (1,5,9) 372 runs

(b) RSA512, Signature Creation.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  0.001  0.002  0.003  0.004  0.005  0.006  0.007  0.008  0.009

c
o

u
n

t

time sec

RSA 512 powered offline

valVerify (1,5,9) 372 runs

(c) RSA512, Signature Verification.

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25

c
o

u
n

t

time sec

RSA 768 powered offline

valCreate (2,6,10,14) 497 runs

(d) RSA768, Key Pair Creation.

 0

 5

 10

 15

 20

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

c
o

u
n

t

time sec

RSA 768 powered offline

valSign (2,6,10,14) 497 runs

(e) RSA768, Signature Creation.

 0

 5

 10

 15

 20

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014  0.016  0.018

c
o

u
n

t

time sec

RSA 768 powered offline

valVerify (2,6,10,14) 497 runs

(f) RSA768, Signature Verification.

 0

 5

 10

 15

 20

 0  10  20  30  40  50  60  70  80

c
o

u
n

t

time sec

RSA 1024 powered offline

valCreate (3,7,11,15) 498 runs

(g) RSA1024, Key Pair Creation.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

c
o

u
n

t

time sec

RSA 1024 powered offline

valSign (3,7,11,15) 498 runs

(h) RSA1024, Signature Creation.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  0.005  0.01  0.015  0.02  0.025  0.03

c
o

u
n

t

time sec

RSA 1024 powered offline

valVerify (3,7,11,15) 498 runs

(i) RSA1024, Signature Verification.

 0

 5

 10

 15

 20

 25

 0  200  400  600  800  1000  1200  1400  1600

c
o

u
n

t

time sec

RSA 2048 powered offline

valCreate (4,8,12,16) 494 runs

(j) RSA2048, Key Pair Creation.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  0.5  1  1.5  2  2.5  3

c
o

u
n

t

time sec

RSA 2048 powered offline

valSign (4,8,12,16) 494 runs

(k) RSA2048, Signature Creation.

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.02  0.04  0.06  0.08  0.1  0.12

c
o

u
n

t

time sec

RSA 2048 powered offline

valVerify (4,8,12,16) 494 runs

(l) RSA2048, Signature Verification.

 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50  60  70  80

c
o

u
n

t

time sec

RSA 512,768,1024 powered offline

valCreate (1,2,3,5,6,7,9,10,11,14,15) 1367 runs

(m) RSA -1024, Key Pair Creation.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

c
o

u
n

t

time sec

RSA 512,768,1024 powered offline

valSign (1,2,3,5,6,7,9,10,11,14,15) 1367 runs

(n) RSA -1024, Signature Creation.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

c
o

u
n

t

time sec

RSA 512,768,1024 powered offline

valSign (1,2,3,5,6,7,9,10,11,14,15) 1367 runs

(o) RSA -1024, Signature Verification.

Fig. 28. M600i, Offline Powered, RSA 512, 768, 1024, 2048.

67



 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  1  2  3  4  5  6  7  8

c
o

u
n

t

time sec

RSA 512 unpowered online

valCreate (1,5,9) 378 runs

(a) RSA512, Key Pair Creation.

 0

 5

 10

 15

 20

 25

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07

c
o

u
n

t

time sec

RSA 512 unpowered online

valSign (1,5,9) 378 runs

(b) RSA512, Signature Creation.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  0.001  0.002  0.003  0.004  0.005  0.006  0.007  0.008

c
o

u
n

t

time sec

RSA 512 unpowered online

valVerify (1,5,9) 378 runs

(c) RSA512, Signature Verification.

 0

 5

 10

 15

 20

 0  5  10  15  20  25  30

c
o

u
n

t

time sec

RSA 768 unpowered online

valCreate (2,6,10,14) 503 runs

(d) RSA768, Key Pair Creation.

 0

 5

 10

 15

 20

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

c
o

u
n

t

time sec

RSA 768 unpowered online

valSign (2,6,10,14) 503 runs

(e) RSA768, Signature Creation.

 0

 5

 10

 15

 20

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014  0.016  0.018

c
o

u
n

t

time sec

RSA 768 unpowered online

valVerify (2,6,10,14) 503 runs

(f) RSA768, Signature Verification.

 0

 5

 10

 15

 20

 0  10  20  30  40  50  60  70  80

c
o

u
n

t

time sec

RSA 1024 unpowered online

valCreate (3,7,11,15) 504 runs

(g) RSA1024, Key Pair Creation.

 0

 10

 20

 30

 40

 50

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

c
o

u
n

t

time sec

RSA 1024 unpowered online

valSign (3,7,11,15) 504 runs

(h) RSA1024, Signature Creation.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  0.005  0.01  0.015  0.02  0.025  0.03

c
o

u
n

t

time sec

RSA 1024 unpowered online

valVerify (3,7,11,15) 504 runs

(i) RSA1024, Signature Verification.

 0

 5

 10

 15

 20

 0  100  200  300  400  500  600  700  800  900

c
o

u
n

t

time sec

RSA 2048 unpowered online

valCreate (4,8,12,16) 504 runs

(j) RSA2048, Key Pair Creation.

 0

 5

 10

 15

 20

 0  0.5  1  1.5  2  2.5  3

c
o

u
n

t

time sec

RSA 2048 unpowered online

valSign (4,8,12,16) 504 runs

(k) RSA2048, Signature Creation.

 0

 5

 10

 15

 20

 0  0.02  0.04  0.06  0.08  0.1  0.12

c
o

u
n

t

time sec

RSA 2048 unpowered online

valVerify (4,8,12,16) 504 runs

(l) RSA2048, Signature Verification.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  10  20  30  40  50  60  70  80

c
o

u
n

t

time sec

RSA 512,768,1024 unpowered online

valCreate (1,2,3,5,6,7,9,10,11,14,15) 1385 runs

(m) RSA -1024, Key Pair Creation.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

c
o

u
n

t

time sec

RSA 512,768,1024 unpowered online

valSign (1,2,3,5,6,7,9,10,11,14,15) 1385 runs

(n) RSA -1024, Signature Creation.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

c
o

u
n

t

time sec

RSA 512,768,1024 unpowered online

valSign (1,2,3,5,6,7,9,10,11,14,15) 1385 runs

(o) RSA -1024, Signature Verification.

Fig. 29. M600i, Online Unpowered, RSA 512, 768, 1024, 2048.
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Fig. 30. M600i, Full-load Powered, RSA 512, 768, 1024, 2048.
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Fig. 31. M600i, Full-load Unpowered, RSA 512, 768, 1024, 2048.
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Fig. 32. 6300, Online Powered, RSA 512, 768, 1024, 2048.
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Fig. 33. 6300, Offline Powered, RSA 512, 768, 1024, 2048.
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Fig. 34. 6300, Online Unpowered, RSA 512, 768, 1024, 2048.
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Fig. 35. 6300, Fullload Powered, RSA 512, 768, 1024, 2048.
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Fig. 36. 6300, Full-load Unpowered, RSA 512, 768, 1024, 2048.
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Fig. 37. 5800xm, Online Powered, RSA 512, 768, 1024, 2048.
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Fig. 38. 5800xm, Offline Powered, RSA 512, 768, 1024, 2048.
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Fig. 39. 5800xm, Online Unpowered, RSA 512, 768, 1024, 2048.
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Fig. 40. 5800xm, Full-load Powered, RSA 512, 768, 1024, 2048.
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Fig. 41. 5800xm, Full-load Unpowered, RSA 512, 768, 1024, 2048
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Fig. 42. E50, Online Powered, RSA 512, 768, 1024, 2048.
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Fig. 43. E50, Online Unpowered, RSA 512, 768, 1024, 2048.
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Fig. 44. E50, Offline Powered, RSA 512, 768, 1024, 2048.
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Fig. 45. E50, Full-load Powered, RSA 512, 768, 1024, 2048.
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Fig. 46. E50, Full-load Unpowered, RSA 512, 768, 1024, 2048.
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Fig. 47. S65, InvalidSIM Powered, RSA 512, 768, 1024, 2048.
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Fig. 48. K750i, InvalidSIM Powered, RSA 512, 768, 1024, 2048.

87



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  0.5  1  1.5  2  2.5  3  3.5  4

c
o

u
n

t

time sec

ECDSA 192 powered online

valCreate (17,20,23,26) 1360 runs

(a) ECDSA192, Key Pair Creation.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  0.5  1  1.5  2  2.5  3  3.5  4

c
o

u
n

t

time sec

ECDSA 192 powered online

valSign (17,20,23,26) 1360 runs

(b) ECDSA192, Signature Creation.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  1  2  3  4  5

c
o

u
n

t

time sec

ECDSA 192 powered online

valVerify (17,20,23,26) 1360 runs

(c) ECDSA192, Signature Verification.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  1  2  3  4  5  6  7

c
o

u
n

t

time sec

ECDSA 239 powered online

valCreate (18,21,24,27) 1360 runs

(d) ECDSA239, Key Pair Creation.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  1  2  3  4  5  6

c
o

u
n

t

time sec

ECDSA 239 powered online

valSign (18,21,24,27) 1360 runs

(e) ECDSA239, Signature Creation.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  1  2  3  4  5  6  7  8

c
o

u
n

t

time sec

ECDSA 239 powered online

valVerify (18,21,24,27) 1360 runs

(f) ECDSA239, Signature Verification.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  1  2  3  4  5  6  7  8

c
o

u
n

t

time sec

ECDSA 256 powered online

valCreate (19,22,25,28) 1360 runs

(g) ECDSA256, Key Pair Creation.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  1  2  3  4  5  6  7  8

c
o

u
n

t

time sec

ECDSA 256 powered online

valSign (19,22,25,28) 1360 runs

(h) ECDSA256, Signature Creation.

 0

 50

 100

 150

 200

 0  5  10  15  20

c
o

u
n

t

time sec

ECDSA 256 powered online

valVerify (19,22,25,28) 1360 runs

(i) ECDSA256, Signature Verification.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  1  2  3  4  5  6  7  8

c
o

u
n

t

time sec

ECDSA powered online

valCreate (17,18,19,20,21,22,23,24,25,26,27,28) 4080 runs

(j) ECDSA, Key Pair Creation.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  1  2  3  4  5  6  7  8

c
o

u
n

t

time sec

ECDSA powered online

valSign (17,18,19,20,21,22,23,24,25,26,27,28) 4080 runs

(k) ECDSA, Signature Creation.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  5  10  15  20

c
o

u
n

t

time sec

ECDSA powered online

valVerify (17,18,19,20,21,22,23,24,25,26,27,28) 4080 runs

(l) ECDSA, Signature Verification.

Fig. 49. M600i, Online Powered, ECDSA 192, 239 and 256.
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Fig. 50. M600i, Offline Powered, ECDSA 192, 239, 256.
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Fig. 51. M600i, Online Unpowered, ECDSA 192, 239, 256.
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Fig. 52. M600i, Full-load Powered, ECDSA 192,239,256.
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Fig. 53. M600i, Full-load Unpowered, ECDSA 192, 239, 256.
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Fig. 54. 5800xm, Online Powered, ECDSA 192, 239, 256.
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Fig. 55. 5800xm, Offline Powered, ECDSA 192, 239, 256.
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Fig. 56. 5800xm, Online Unpowered, ECDSA 192, 239, 256.
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Fig. 57. 5800xm, Fullload Powered, ECDSA 192, 239, 256.
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Fig. 58. 5800xm, Full-load Unpowered, ECDSA 192, 239, 256.
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Fig. 59. E50, Online Powered, ECDSA 192, 239, 256.

98



 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  1  2  3  4  5  6  7  8

c
o

u
n

t

time sec

ECDSA 192 powered offline

valCreate (17,20,23,26) 400 runs

(a) ECDSA192, Key Pair Creation.

 0

 5

 10

 15

 20

 25

 0  0.5  1  1.5  2  2.5  3  3.5

c
o

u
n

t

time sec

ECDSA 192 powered offline

valSign (17,20,23,26) 400 runs

(b) ECDSA192, Signature Creation.

 0

 5

 10

 15

 20

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

c
o

u
n

t

time sec

ECDSA 192 powered offline

valVerify (17,20,23,26) 400 runs

(c) ECDSA192, Signature Verification.

 0

 5

 10

 15

 20

 25

 0  1  2  3  4  5  6  7

c
o

u
n

t

time sec

ECDSA 239 powered offline

valCreate (18,21,24,27) 400 runs

(d) ECDSA239, Key Pair Creation.

 0

 5

 10

 15

 20

 25

 0  1  2  3  4  5

c
o

u
n

t

time sec

ECDSA 239 powered offline

valSign (18,21,24,27) 400 runs

(e) ECDSA239, Signature Creation.

 0

 5

 10

 15

 20

 25

 0  1  2  3  4  5  6  7

c
o

u
n

t

time sec

ECDSA 239 powered offline

valVerify (18,21,24,27) 400 runs

(f) ECDSA239, Signature Verification.

 0

 5

 10

 15

 20

 25

 0  1  2  3  4  5  6  7  8  9

c
o

u
n

t

time sec

ECDSA 256 powered offline

valCreate (19,22,25,28) 400 runs

(g) ECDSA256, Key Pair Creation.

 0

 5

 10

 15

 20

 25

 0  1  2  3  4  5  6

c
o

u
n

t

time sec

ECDSA 256 powered offline

valSign (19,22,25,28) 400 runs

(h) ECDSA256, Signature Creation.

 0

 5

 10

 15

 20

 0  1  2  3  4  5  6  7  8

c
o

u
n

t

time sec

ECDSA 256 powered offline

valVerify (19,22,25,28) 400 runs

(i) ECDSA256, Signature Verification.

 0

 5

 10

 15

 20

 25

 30

 0  1  2  3  4  5  6  7  8  9

c
o

u
n

t

time sec

ECDSA powered offline

valCreate (17,18,19,20,21,22,23,24,25,26,27,28) 1200 runs

(j) ECDSA, Key Pair Creation.

 0

 5

 10

 15

 20

 25

 0  1  2  3  4  5  6

c
o

u
n

t

time sec

ECDSA powered offline

valSign (17,18,19,20,21,22,23,24,25,26,27,28) 1200 runs

(k) ECDSA, Signature Creation.

 0

 5

 10

 15

 20

 25

 0  1  2  3  4  5  6  7  8

c
o

u
n

t

time sec

ECDSA powered offline

valVerify (17,18,19,20,21,22,23,24,25,26,27,28) 1200 runs

(l) ECDSA, Signature Verification.

Fig. 60. E50, Offline Powered, ECDSA 192, 239, 256.
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Fig. 61. E50, Online Unpowered, ECDSA 192, 239, 256.
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Fig. 62. E50, Full-load Powered, ECDSA 192, 239, 256.
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Fig. 63. E50, Full-load Unpowered, ECDSA 192, 239, 256.
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Fig. 64. S65, InvalidSIM Powered, ECDSA 192, 239, 256.
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