
Attacks against Network Voting Systems

Masterarbeit
von

Alexander Schneider

aus
Krasnyj Jar, Kasachstan

vorgelegt am

Lehrstuhl für Rechnernetze und Kommunikationssysteme
Prof. Dr. Martin Mauve

Heinrich-Heine-Universität Düsseldorf

August 2015

Betreuer:
Philipp Hagemeister, M. Sc.

Abstract

The scientific community concentrates on formal or cryptographic safety regarding net-
work voting systems. While this is necessary and valuable work there are also real-world
threats to those systems that are not covered by this research. The results are several se-
curity issues with released voting systems discovered either during their pilot trials or
first runs [HT15, WWIH12, SFD+14].
Electronic network voting systems are potentially very vulnerable to mass manipulation
of votes and / or voters. Therefore the goal is to develop systems that are against said
mass manipulation while not imposing overly complicated cryptography on the voter.
We concentrate on historic attacks and universal goals for network voting systems to
learn a lesson and develop according guidelines that can be universally used to design
and implement network voting systems.
The guidelines are furthermore evaluated and applied to existing voting systems.

iii

Acknowledgments

A lot of people supported me during my work on this thesis to whom I wish to express
my gratitude. Thanks to all my friends, that had to endure my monologues about the
thesis. Also special thanks to Christian Meter for the discussions during the work-time,
Martin Mauve for providing the opportunity to write this thesis and of course Philipp
Hagemeister for a lot of advise and an open ear at all times.
The various rap play-lists on Spotify also helped a great deal in keeping me entertained
during the conception of the thesis. Can’t stop Hip-Hop running through these veins.

v

Contents

List of Figures xi

1 Introduction 1

1.1 Related Work . 2
1.2 Structure . 3

2 Preliminaries 5

2.1 Assumptions . 5
2.2 Definitions . 6

3 Historical Attacks on e-Voting Systems 9

4 Bad Examples 13

4.1 Theory Not Meeting the Real World 13
4.2 Insufficient Authentication . 15
4.3 Insufficient Security . 16

5 Goals of a securely implemented e-Voting system 17

5.1 Integrity . 17
5.1.1 Public auditing . 18
5.1.2 Cast-as-intended mechanisms 19
5.1.3 Securing the Application Code 19

5.2 Anonymity . 20
5.2.1 Everlasting Privacy . 20

5.3 Robustness / Reliability . 21
5.4 Secure Authentication . 21
5.5 Coercion Freeness . 22

vii

Contents

5.6 Usability . 23

6 Guidelines for Secure Internet Voting Systems 25

6.1 Measures towards Integrity . 25

6.1.1 Bulletin Board . 26

6.1.2 Tallying Instance . 28

6.1.3 Authentication Authority (AA) 30

6.1.4 Network Connection . 32

6.1.5 Voter Device . 33

6.1.6 Cast-as-intended . 35

6.2 Measures Towards Anonymity . 36

6.2.1 Distributed Election Keys . 37

6.2.2 Everlasting Privacy . 37

6.3 Measures Towards Robustness . 38

6.3.1 Invalid Input . 38

6.3.2 Risk of centralized Components 39

6.3.3 Application Layer (D)DoS . 39

6.3.4 Spam / Chaff . 40

6.4 Measures Towards Secure Authentication 40

6.4.1 Credential Types . 41

6.4.2 Credential Creation . 42

6.5 Measures Towards Coercion Freeness 42

6.5.1 Privacy Preserving Communication Medium 43

6.5.2 Receipt Freeness . 43

6.5.3 Alternative Measures . 44

6.6 Combination of Introduced Measures 45

6.6.1 Homomorphic Encryption + Code Voting 45

6.6.2 Blind Signatures + Re-Voting 45

6.7 General Security . 46

6.7.1 Formal Training . 46

6.7.2 Layering the Software . 47

6.7.3 Threat Modeling . 48

6.7.4 Further Analysis . 48

6.7.5 Further Resources . 49

viii

Contents

6.8 Summary . 49

7 Evaluation 53

7.1 Ranking Criteria . 53

7.1.1 Efficiency . 54

7.1.2 Usability . 54

7.1.3 Complexity of Implementation 55

7.2 Evaluating Parts . 55

7.2.1 Mandatory Bulletin Board . 55

7.2.2 Tallying Mix-Nets . 56

7.2.3 Homomorphic Encryption . 56

7.2.4 Threshold Encryption . 57

7.2.5 Offline Voter Registration . 57

7.2.6 Code Voting . 58

7.2.7 Re-voting . 58

7.2.8 Cryptographic Puzzles . 59

7.2.9 Expensive Credentials . 59

7.2.10 Confirmation Codes . 60

7.2.11 Test Audits . 60

8 Application 63

8.1 Civitas . 64

8.2 Helios . 65

8.3 Estonian I-Voting . 65

8.4 Washington DVBM . 66

8.5 Norwegian I-Voting Pilot . 67

8.6 Summary . 68

9 Blueprint for an Attack 69

9.1 Denial of Service . 69

9.2 Hijacking Votes . 71

9.3 Infiltrating the Vote Infrastructure . 72

10 Conclusion 73

ix

Contents

Bibliography 75

x

List of Figures

6.1 Template score-chart regarding the developed guidelines 50
6.2 A condensed form of the guidelines derived in Chapter 6. 51

7.1 An overview of the results of the evaluation chapter 7. 61

8.1 Civitas score-chart regarding the developed guidelines 64
8.2 Helios score-chart regarding the developed guidelines 65
8.3 Estonian I-Voting score-chart regarding the developed guidelines 66
8.4 Washington DVBM score-chart regarding the developed guidelines . . . 67
8.5 Norwegian I-Voting score-chart regarding the developed guidelines . . . 68

9.1 A schematic overview of the Estonian voting system. 70

xi

Chapter 1

Introduction

Voting systems are the foundation of every legitimate democracy. They serve to assert
the periodic delegation of power by the people. Network voting systems, especially
those using the Internet, have become the focus of a few pilot projects regarding political
elections around the world. The hope is to heighten participation among the technically
literate young generations. Furthermore, voting over the Internet enables citizens that
live out of state, for example soldiers and diplomats, to cast their vote during elections.
With Internet voting Disabled, sick and elderly people can vote without having to leave
their homes. Estonia is the prime example using their network voting system for munic-
ipal elections since 2005 and parliamentary elections since 2007.

Besides their advantages, Internet voting systems may have flaws that enable manipula-
tion of an election. It is hard to manipulate the votes of a lot of people at once during
a paper ballot election, but it is potentially easy to do during an online election as soon
as an attack vector is found. Because of that an Internet voting system needs to have
precautionary security measures to prevent a wide range of attacks.

This thesis concentrates on an attacker, that uses the networking and software compo-
nents as an attack vector as opposed to systematic and cryptographic flaws. Usually
voting systems are evaluated regarding their cryptographic components and not the final
product and its implementation in a real world scenario.

1

Chapter 1 Introduction

Furthermore, we state that the attacker considered by the usual work in the field is not
powerful enough. We argue that for instance a nationwide political election over the In-
ternet would likely attract the attention of malicious countries or political parties, which
have far more resources than the usual hacker trying to breach systems for profit and
sport. Political coups orchestrated by foreign countries happened frequently during the
last decade, e.g. in Venezuela in 2002, and therefore coups using Internet voting should
be considered at all times.
Thus we have to consider an attacker that has large monetary resources that can be spent
in order to facilitate an attack. The skill of the attacker should be considered very high
as well. Many countries employ some of the bests security experts in the field through
one agency or another. Many countries furthermore maintain countless zero day exploits
which they buy from freelance hackers and security experts, see [Mil07]. Motivation
should not be a limiting factor, as the attacker should have a very big interest in manipu-
lating the political landscape of a country.
Lastly this thesis also keeps an insider attacker in mind. An insider of the election can
be any election authority, an system administrator or a developer of the system, short:
everybody with potentially more power over the voting system than any common voter.

1.1 Related Work

To our knowledge ours is the first work to develop specific guidelines for network voting
systems regarding design and implementation. There is a handbook published by the
Council of Europe [Eur11] which gives legal operational and technical advice regarding
the introduction of electronic voting.
Our work differentiates by applying specifically to network voting systems, which are a
more strictly defined category of voting systems than electronic voting systems, which
also include e.g. DRE1 voting machines. Furthermore the Council of Europe recommen-
dations are a lot more general while our guidelines specifically target implementation and
technical design of the system.
The US Election Assistance Commission also published guidelines [Com15]. Those

1Direct-recording electronic

2

1.2 Structure

guidelines also concentrate on the setup, documentation and testing of physical elec-
tronic voting machines, rather than on general network voting devices like our guidelines
do.

1.2 Structure

Firstly, assumptions and definitions are presented in chapter 2. As an example chapter
3 showcases historical cases of vulnerable systems which were breached or shown to be
dangerous for use during real elections. In combination chapter 4 takes a look at systems
which are trivially flawed to demonstrate how easy a voting system can be unsuitable
for political elections. Both previously mentioned chapters are relevant for developing
an intuition for the kinds of security flaws we are researching. Following is chapter 5 in
which the security goals an Internet voting system should aspire to are defined together
with rough sketches of solutions. Following up on the goals guidelines how to achieve
those goals are developed in detail in chapter 6. Since the guidelines are of a theoretical
nature they need to be legitimized, which is done trough evaluation and application. The
evaluation is performed in chapter 7 followed by the application to existing systems in
chapter 8. With the application specifically we show that the guidelines can be used
predictively as well. Tying up the thesis, the guidelines are used to develop a blueprint
for an attack on the Estonian voting system in chapter 9 to demonstrate the practical
relevance. Lastly, chapter 10 is concluding the thesis with a summary and future work
suggestions.

3

Chapter 2

Preliminaries

This chapter helps to understand the upcoming work, which uses definitions and assump-
tions made in the following sections. The definitions are equipped with accompanying
examples if needed to deepen the understanding.

2.1 Assumptions

To restrict the thesis to a limited scope some assumptions are necessary. The guidelines
introduced in chapter 6 need those assumptions and definitions to function safely.

Assumption 1. The election organizer is not malicious
The election organizer is the political instance that organizes the election before its start,
e.g. accepting candidates, creating lists of eligible voters, determining election dates,
overseeing the correct implementation of the election, etc. Note that the organizer is not
a technical instance like an administrator or any of the instances during the election.
The need for this assumption is best explained by counter-assumption. Assume the elec-
tion organizer is corrupt. Now the election organizer can manipulate the election in
several ways without the technology we are discussing in following chapters having any
impact. The organizer can exclude rightful candidates or eligible voters or design the

5

Chapter 2 Preliminaries

election procedures in a way that excludes certain parties from voting.
Thus the election organizer must be assumed non-malicious.

Assumption 2. There exists at least one trustworthy off-line registrar
To prevent potential leaking of election credentials every voter must have the opportunity
to obtain the credentials off-line through a registrar before the election begins. If that
is not possible, a multitude of things can be done to prevent the user from obtaining
credentials, e.g. the inhibiting of a voter connectivity during the registration period.

Assumption 3. No two different types of election authority described in chapter 6
are malicious at the same time and cooperate with one another.
Some of the safety properties of several voting systems are based on the fact that no
two authorities are malicious and cooperate. This assumption may sound like it is very
unlikely but consider that there are potentially only three different instances in total, with
some being distributed (and therefore needed to be compromised together).

Assumption 4. At least one person uses public audits
If there is an option to publicly audit (parts of) the election we assume that there is at least
one person doing so correctly. If not one single person audits the election if possible, the
public auditing measures show no effect. When the system is publicly auditable, even
people that are not participating in the election can audit the system and make sure all
functionality is as intended.

2.2 Definitions

This section introduces and defines voting system properties and cryptographic proce-
dures needed to understand the following chapters. Definitions are accompanied by ex-
amples for better comprehension if required.

Definition 1. Unlinkable Channel
A channel ensuring that there is no possible way of detecting who is communicating with
whom. Onion-proxies like Tor do not provide unlinkable channels, since timing attacks
are possible, see [LRWW04], which provide a link between sender and receiver.

6

2.2 Definitions

Definition 2. End-to-End verification
An end-to-end verifiable system provides stringent (cryptographic) proof for every step
it takes. Everybody getting a hold of this proof can mathematically ascertain that the
system behaved correctly during the steps.

Definition 3. Zero-Knowledge-Proof
A zero-knowledge-proof (ZKP) is a protocol that can be used by one entity, Alice, to
cryptographically reliably prove to another entity, Bob, that a certain information is true.
Alice does not reveal anything more to Bob with the ZKP than the information being
true.
Some ZKPs can be remade to be non-interactive, meaning that the protocol does not
require input from Alice and Bob together, but only Bob during the verification.

Definition 4. Homomorphic Encryption
Homomorphic encryption allows certain operations, typically addition and few multi-
plications, to be performed on the data while encrypted. As an example: Let ε be an
encryption, α , β be arbitrary data and ∗ some mathematical operation. ε is called homo-
morphic regarding ∗ when ε(α)∗ ε(β) = ε(α ∗β).

Definition 5. Threshold Encryption
A threshold encryption scheme splits the private key needed for decryption between n

participants. The message encrypted with the corresponding public key can only be
decrypted if at least k of the n participants cooperate and contribute their share. Such a
scheme is also often called a (k,n)-threshold encryption.

Definition 6. Re-Encryption Mix-Net
A re-encryption mix-network typically has n parties cooperating. Every party re-encrypts
the entries of an input-list, permutes its order and hands in the output as input for the next
party. The output of the final party is the result of the mix-network.

7

Chapter 3

Historical Attacks on e-Voting Systems

This chapter highlights weaknesses that were found and possibly exploited in existing
electronic voting systems. It is important to have a thorough understanding of those at-
tacks to effectively implement guidelines to prevent them in future applications.

Washington Digital Vote-by-Mail, U.S.A

One popular example of how an Internet voting system can be vulnerable to network
attacks, is the Washington D.C. project "Digital Vote-by-Mail (DVBM)".
Public trials were held prior to live deployment of the system, during which a team of
scientists used a row of vulnerabilities to gain access to all sensitive information regard-
ing the test-election - see [WWIH12].
The scientists used a simple injection attack which allowed them to execute file-extension
names as shell code on the elections web-server. Furthermore, the Intrusion Detection
System (IDS), which was monitoring the traffic to and from the web-server, was not con-
figured to monitor TLS-encrypted traffic which the scientists used to get data out of the
server. In the end, the scientists were able to retrieve several cryptographic secrets, insert
forged ballots and change the outcome of the whole election unnoticed.
This case alone showcases the severe implications that a simple bug in the election web-
server code can have.

9

Chapter 3 Historical Attacks on e-Voting Systems

i-Vote, Estonia

Another case of insecure Internet-voting is presented in [SFD+14]. A team of scientists
is invited to inspect the Estonian Internet-voting system during the municipal elections
in 2013. During their observations, they find several potential flaws during the execution
of the system such as insecure devices being used to prepare the election software or
transfer votes, passwords input in front of publicly accessible cameras and errors that
could indicate tampering with the systems that are completely ignored.
The scientists also inspected the publicly available code of the server-side part of the
application. They reconstructed the client-side and were able to propose attacks which
would lead to vote manipulation without detection.
The main issue of the Estonian voting system is that an air-gapped machine is used to
count the votes that does not provide any audit trails whatsoever. In theory, if an attacker
would somehow compromise the machine, i.e. though corruption of basic soft- or hard-
ware, the outcome of the election could be changed without a hint of foul-play.
This particular case shows that the soft- and hardware of Internet-voting systems has to
be designed to be fault-tolerant against administration errors. Even if a voting system is
administrated by trained individuals, errors can not be ruled out entirely. Additionally,
all systems should possess some form of audit-ability since manipulation is theoretically
always possible and should be detectable.

Gujarat Internet-Voting, India

Khare [Kha14] inspects the voting system of the Indian state Gujarat as used in municipal
elections in 2011. The Indian system undertook several steps to guard against malicious
attacks, such as DoS Protection, IDS, SSL Encryption, etc. However, manipulation of the
voting client was not mitigated at all. Furthermore, Man-in-the-Middle attacks through
preinstalled, fake certificates are in theory still possible and would be undetected. Issues
like vote-selling or coercion mitigation were not heeded to at all. This case shows that it

10

is not sufficient to concentrate on certain areas of security.

Norwegian I-Voting

Norwegians Electoral Management Body (EMB) conducted remote electronic voting tri-
als in 2011, which are described by Stenerud and Bull [SB12]. The Norwegian system is
an end-to-end verifiable system which uses return codes delivered out of band (via SMS)
for the cast as intended verification on the voters end. Return codes are unique numbers
representing candidates, which can be used by the voter to verify if her vote is stored by
the voting system as it was cast. The most obvious hurdle such a system has to take is
the printing of the return code cards without allowing any one entity to deduce the link
between the unique return code sheet and the corresponding voter. The EMB solves this
problem by partitioning the printing and linking process into physically and logically
separated steps operated by different personnel.
The trials had a largely positive outcome and the return codes seem to improve the voters
trust in the voting system. The System nonetheless has open issues, which could theoret-
ically be abused to manipulate the election. There is for example no way to prove that the
received return code SMS is sent by the election authorities. This could be used to send
out large numbers of fake return codes, triggering an investigation and termination of the
possibility to vote electronically during the election as intended per protocol. Another
team of researchers was able to replicate the voting homepage to trick people into en-
tering their return code sheets, thus being able to steal their votes. When the credentials
are stolen as well the attacker is even able to re-vote on the voters behalf while possibly
tricking them into ignoring the fact that they received multiple return code SMS. This in-
dicates that the voting protocol is not clear enough for all voters to follow safely through,
even though such attacks were not encountered during the official trials.

11

Chapter 3 Historical Attacks on e-Voting Systems

New South Wales iVote, Australia

Recently Halderman and Teague [HT15] published an article describing a Man-in-the-
Middle attack on the Internet voting system of New South Wales, Australia. This shows
that, while adding protocols, like TLS, may improve security to a degree, it does by no
means imply that the connection is completely secure as shown by several discovered
attacks on TLS implementations. One instance being the FREAK attack on TLS which
was also used in this case1. Before the flaw was fixed, it was possible to intercept com-
munication between the voter and the voting server through the use of external Javascript
code. The flaw enabled an attacker to steal the voter PIN, which is used for certification
purposes and her return code, which is used to confirm that the cast vote was stored cor-
rectly. An attacker furthermore could insert arbitrary code into the voter website. This
naturally gave the attacker the possibility to manipulate votes at will. Researchers fur-
thermore point out flaws in the verification system. The exploit was possible for almost a
week after the election went live. This case illustrates again that it is not trivial to secure
an election against network-attacks. A big problem is that we currently do not have a set
scientific way to deal with partially compromised voting systems in live use. The admin-
istration of the New South Wales voting system chose to keep the system running after
fixing the exploit, although potentially about 66000 votes could have been compromised.
This is not acceptable and should not set a precedent.

1Another TLS-flaw being Heartbleed [hea15], which was possible for several years before discovery and
would have been a good potential attack point on election-services if available.

12

Chapter 4

Bad Examples

A lot of proposed systems or ideas have conspicuous fundamental flaws when they would
be implemented. The goal of this chapter is to have a categorization of flaws. This helps
to see with a quick glance if a system even needs further investigation or is flat out
flawed.

4.1 Theory Not Meeting the Real World

To elaborate how cryptographically safe systems are not meeting safety standards once
implemented, we analyze a voting system based on the Discrete Logarithm Problem by
Chen et. al. [CCJC14].
Firstly, the voter contacts a Certificate Authority (CA) to authenticate and acquire a cer-
tificate, which gets embedded in the voters browser. Next the voter contacts the Authen-
tication Center (AC), which is only possible with a valid certificate from the CA. The AC
issues a voter-pseudonym signature to the voter. This signature has to be used to validate
a vote. As the last step the voter sends her vote including the voter-pseudonym signature
to the tallying center. The voter uses a public proxy center for anonymity. A Supervision
Authority consisting of all political parties supervises the tallying center.
As shown in previous work [SMHM15], a channel usually considered anonymous is of-
ten not sufficient for electronic voting. From now on we will use the phrase unlinkable

13

Chapter 4 Bad Examples

channel when we want to describe a channel, which not only provides the anonymity of
e.g. a mix-net, but also has the property that timing attacks and other kinds of attacks
can not reveal a link between packets used to cast a ballot and a voter.
The above voting system utilizes a public proxy center to anonymize the IP address in-
side the packets used to cast a vote by sending them through a series of proxy servers.
This only obfuscates the IP of the true sender and does not provide an unlinkable chan-
nel, since this system is a weaker version of a onion mix-network like Tor, which also
does not provide an unlinkable channel for voting purposes.
The whole system is furthermore fragile against Distributed Denial of Service (DDoS)
attacks. Three out of the five components, namely the Certificate Authority, the Authen-
tication Center and the Tally Center, are Single Points of Failure. If one of those three
authorities is attacked by a DDoS attack, no voting can take place while the attack is
ongoing.
An even more severe possible attack is a permanent Denial of Service (DoS) made
possible by the Authentication Center. The system allows every voter only one single
chance to ask the AC for its voter-pseudonym signature during the so-called authentica-
tion phase. One can easily imagine malware which is activated during the authentication
phase and causes the voter-machine to not obey the authentication protocol correctly.
This would lead to the voter not receiving a correct voter-pseudonym signature. Since
every voter only has one chance at receiving one, the voter is now barred from participat-
ing in the election. Alternatively, malware can just steal the signature and use it to vote
for a certain candidate. Since re-voting is not allowed, the vote can not be changed1. This
could even be done unnoticed by pretending to the user that the vote was sent according
to her wishes. Since the system does not provide an end-to-end verification for the user,
this is entirely probable.
As with DDoS, insider-attacks where someone like an administrator has (legal) access
to vital components of a system, can be quite devastating. Insider-attacks on the Certifi-
cate Authority could entail the handing out of certificates which authorize fake voting-
websites which are used for fishing purposes. Since there is no end-to-end verification
of the vote, the voter can not know if she voted correctly. An insider in the Authentica-
tion Center could collude with an insider of the Tally Center to provide a link between
voter-pseudonym signature and ballot, which undoubtedly links a voter to her cast ballot,

1As introduced in section 6.1.5 it is possible to let the voter cast her vote securely, despite malware being
active on the device in other systems.

14

4.2 Insufficient Authentication

completely destroying anonymity. The public proxy center should not be trusted in either
case, since there is no guarantee who controls the proxies and whether the route taken
through the proxies and its contents are stored somewhere.

This section demonstrates how systems can be theoretically safe part for part, but are
vulnerable as soon as network-attacks are possible. Theoretically safe design and cryp-
tography are not sufficient for the implementation of a network voting system without
testing it against real world attacks.

4.2 Insufficient Authentication

If a system uses a form of authentication which can be easily intercepted or forged,
malicious parties can use the stolen or forged credentials to vote instead of the voter. Al-
though in some systems this would be detectable, it is nonetheless a major design flaw.

One example of this category is the "E-Vote" Software [DiP15]. The authentication con-
sists of a unique token sent via email to eligible voters. Since the email is not encrypted,
Man-in-the-Middle attacks can be executed and the identifier can be stolen. Hacking of
the E-Mail account is also a possible entry vector to gain the access token.

Another instance of this category is a voting scheme by Nikam et. al. [NRRK]. Their
system uses Near Field Communication (NFC) tags for authentication. Every voter sub-
mits some required information and gets an NFC tag. This NFC tag, when brought near
the voters Android-device, authenticates the user for casting a vote. The NFC tag only
checks some characteristic of the device to authenticate. Every unique trait of a mobile
phone, i.e. MAC adress, IMEI number, device ID, etc., can be spoofed and is therefore
not safe. This obviously enables the sale and theft of any voters NFC tags to cast votes
in their stead.

15

Chapter 4 Bad Examples

4.3 Insufficient Security

The Virginia Information Technologies Agency [Vir15] published an analysis of the Vir-
ginia voting machine WINVote. The technical report is a good example how easy it is to
corrupt an election if security (probably) is not involved during the design process of the
system. The WINVote system runs a wireless network with weak exploitable security
(WEP). The password can be easily extracted from the network flow and thus access to
the network is gained. Network-scans reveal a multitude of open ports and that the ma-
chines are running an outdated operating system (Windows XP Embedded 2002), which
is unpatched. A multitude of publicly available exploits can again be used to gain ad-
ministrative privileges on the machine. The database containing the votes has an access
password but is not encrypted, which allows to e.g. manipulate the database in memory.
Every system that is not using cutting edge security and the newest software2, can per
default not be considered secure.

The security of the deployed physical system, specifically its network ecosystem, is as
important as the security of the software that is deployed. Unsafe networks allow attack-
ers to compromise the elections structure, which is not acceptable. Flawed authentication
is furthermore a high danger for any voting system, since it allows manipulation of votes,
without regard to the security of the remaining system parts. Lastly, theoretically safe
concepts are not necessarily safe under real-world conditions, as shown by section 4.1,
and should therefore be extensively tested under those conditions before deployment.

2Regarding security updates.

16

Chapter 5

Goals of a securely implemented

e-Voting system

To accurately construct guidelines for the secure implementation of an Internet voting
system, we first must define clear goals and therefrom derive desirable properties the
system needs to posses and precautions the system needs to undertake. This chapter
does that by inspecting the typically desirable goals an electronic voting system should
meet when implemented. We list and explain different approaches, which can be used to
achieve every one of the listed goals. Note that not all methods listed are compatible to
each other - the implementation of one can mean the exclusion of another.

5.1 Integrity

Integrity is, together with anonymity, the greatest goal of a voting system. Constructing
a voting protocol without the property of integrity is meaningless in itself since it allows
unlimited corruption of the election rendering its outcome meaningless.
Protocols should be designed in a way that all actions that compromise the integrity, are
at least evident. For example: in the Estonian voting system an insider could corrupt the
tallying machine and thus change the outcome of the election without anyone noticing.
Understandably it is desirable to implement an on-line election in a way, which makes

17

Chapter 5 Goals of a securely implemented e-Voting system

this impossible. The voting system should at all times either guarantee integrity or the
following surrogate-definition which at least defines a mandatory detection of integrity
breaches.

Corruption-evidence: An on-line voting system should be implemented in a way which
presents some means to an unspecified instance to undoubtedly verify, if any for the elec-
tion crucial parts were manipulated or behaved against protocol guidelines.

Essentially this can be done by choosing a suitable voting protocol. Following are some
methods for ensuring integrity and exemplary systems using those methods. Note that
implementation of software can cause bugs, which void the integrity the protocol pro-
vides.

5.1.1 Public auditing

Public auditing, if implemented correctly, allows any interested party to verify if the in-
tegrity of the election was maintained. This is typically achieved by obligating every
participating instance to publish either the actions undertaken by that instance or a sur-
rogate cryptographic non-interactive zero knowledge proof, if publishing of the action
itself would void anonymity or some other crucial property of a voting system.
All auditors, either participating in the election or not, can then use the provided pub-
lic information to verify, if the election was held correctly and without manipulation.
Typically, one has to make sure that all published actions can not be forged, deleted or
altered after publishing. If any irregularity is encountered by an auditor, it can be re-
layed to the election organizer and mathematically proven. Many voting systems, like
Civitas [CCM07], are using a bulletin board to implement public auditing.

18

5.1 Integrity

5.1.2 Cast-as-intended mechanisms

If the ballots are not posted publicly, because they for instance contain information
that would disclose either if someone has voted or how someone has voted, a Cast-

as-Intended proof should be implemented to ensure that the voter can verify whether
her vote was cast and that it was cast as she intended and not altered in the procedure.
Such a mechanism also helps in case of a compromised voter device, where the attacker
would have the power to alter votes before/during the casting-stage unnoticed. If Cast-as-
Intended mechanisms are available the attacker can not perform those attacks unnoticed,
and the voter can initiate steps to cancel the faulty vote or inform election officials. Nat-
urally, because of those dangers, the confirmation has to be obtainable in a way which
works even with a compromised device. Since a compromised device instantly creates
an integrity breach when no detection or prevention measures are in place, a Cast-as-
Intended, or equivalent, measure is mandatory.

5.1.3 Securing the Application Code

If the voting software needs to be installed by the voter, one has to make sure that the pro-
vided software can be retrieved securely and unaltered. It is not an easy task to achieve,
since the typical voter does not know how to check the correctness of software with a
checksum or even what a checksum is. Possible solutions could be to create authenti-
cated downloads and secure connections via e.g. TLS/SSL, which has been proven to be
exploitable in many instances; see [DAM+15, hea15]. Another possibility would be to
distribute the election software physically via postal mail on a CD, which brings its own
host of problems like voter using devices without a CD drive, faulty CDs, etc. Therefore,
the software should be available as an Internet application to permit access to a wide
range of devices and to circumvent the above mentioned problems. This does not add
any extra constraints to the system, since the problem of a secure transmission medium
has to be tackled either way to enable Internet voting.

19

Chapter 5 Goals of a securely implemented e-Voting system

5.2 Anonymity

Anonymity of the ballot is one of the most important properties of a voting system. Gain-
ing anonymity by commonly used cryptography is in most cases not possible, because
the use of encryption often does not allow for universal verifiability and integrity of the
election. A simple example can be made if every voter uses a designated election key,
known to the tallying instance, to encrypt her ballot. Now the ballot is anonymous, since
only the tally authority can decrypt her, but there is no way for an outside auditor to
verify, that the tallying authority is correctly doing its job.
Implementing a voting system with a protocol which guarantees theoretical anonymity,
can produce flaws which void said guarantee in reality. Widespread malware on voter
devices, for example, would be able to record the vote of every user whose device is
infected, no matter if the protocol guarantees anonymity or not. One of the goals is to
provide anonymity to the voter while preventing any authority from having the power to
introduce non-eligible voters or votes.
Another challenge is building anonymous authentication without allowing to sell creden-
tials. If a voter gets the possibility to anonymously authenticate with the election system,
then it is most likely possible for the voter to sell her credentials to a third party, since
the authorities can not determine if the credentials are used by the rightful owner. This is
unacceptable in a democratic election and should be prevented or at least made unlikely
to occur.

5.2.1 Everlasting Privacy

One often overlooked problem with network voting is (the missing) appropriation of
everlasting privacy. The anonymity of the ballots in a typical Internet voting system
relies on the fact that they are protected by a contemporary encryption, because all data
is published, e.g. on a bulletin board, to ensure integrity and audit-ability. Since readily
available computational power is steadily rising, it is likely that after some time1 it will be
possible for a standard adversary to break the decryption. This very well may influence
people to not vote freely out of fear that their vote is publicly available after e.g. 20

1In the magnitude of years.

20

5.3 Robustness / Reliability

years. At the same time this opens the doors to long time coercion.
Moran et al. [MN06] explores receipt-free universally verifiable voting with everlasting
privacy in traditional paper ballot settings. Arapinis et al. [ACKR13] defines theoretical
everlasting privacy in the pi-calculus.
Unfortunately, there is no scientific work solving this problem fully for network based
voting systems. It poses an interesting opportunity for future work and should be kept in
mind during the design of future network voting systems.

5.3 Robustness / Reliability

A voting system has to be reliable during an election, meaning that it should not fail
or have an outage during the election times. Naturally, the servers running the system
should be connected to an emergency power grid and be monitored at all times. The
main goal here is to have a robust system that also withstands active attacks, the biggest
and foremost threat being Distributed Denial of Service (DDoS). DDoS can potentially
bring the system to a stand-still for large amounts of time during e.g. high traffic hours.
As long as traditional paper voting can still be used in parallel, this does not seem like a
big issue, but the voters needing the system the most, e.g. overseas citizens, handicapped
voters, etc. are potentially not capable of voting via paper ballot and are out of time to
request postal voting.
The system also has to be robust enough to work while potentially malicious partici-
pants produce unexpected inputs, or try to fill the ballot boxes with chaff if re-voting is
allowed.

5.4 Secure Authentication

The authentication of a voting system is an integral part which supports a lot of the above
mentioned goals. An abusable authentication would be equivalent to compromised in-
tegrity of the voting hard- and software, because invalid votes could be introduced at will
by the attacker.

21

Chapter 5 Goals of a securely implemented e-Voting system

Authentication credentials naturally have to remain secret, otherwise they have no value.
One problem is intentional sharing of authentication credentials. As soon as credentials
are constituted by some electronic data, e.g. passwords, cryptographic keys, etcetera,
they can be sold and used by everyone that is willing to buy the credentials. Therefore,
methods to deter voters from selling their authentication credentials need to exist. Fur-
thermore, the (undetected) theft of credentials may be a possibility and should thus be
considered.
Another goal is that an insider attacker shall not be capable of forging authentication
credentials or create fake eligible voters. The reason being again the power to introduce
arbitrary votes through the fake credentials / voters.

5.5 Coercion Freeness

A voting system is coercion free when a third party can not reliably influence the votes
of eligible voters. Receipt freeness goes hand in hand with this goal, since all systems
which produce any kind of receipt showing the voter choice, or giving the opportunity
to deduce the voters choice can be used as a proof for the coercer that the voter followed
her instructions.
If it is possible to deduce that a voter cast a vote, but not what she voted, it is exploitable
by a coercer as well. Consider the following: if some voters are well known for always
supporting party A the coercer which wants party B to succeed can coerce the supporters
of party A to not vote at all. Since the coercer has the ability to monitor which voters
followed her instructions, coercion is possible.
It is important to understand that systematic coercion is only possible if the coercer can
rely on the fact that her finite resources are spent coercing voters that follow her instruc-
tions. Coercion freeness is not as important a goal as anonymity, integrity or robust-
ness but is nonetheless a goal worth aiming for, since (automated) systematic coercion
is potentially easier to achieve with network voting systems than with traditional paper
ballots.

22

5.6 Usability

5.6 Usability

Usability is often overlooked when considering desirable properties for an Internet voting
system. Systems providing poor usability lead to frustration and erroneous operation of
the system as shown in [Eve07]. Typically, cryptography added after the design process
of the software results in poor usability. A wrongly used voting system in turn could
lead to lessened security properties, especially when the system needs some action by
the voter to operate correctly. An example would be the understanding of the audit
function of a Helios ballot. The user might not use it correctly and thus not notice any
manipulation by an attacker or not understand that the audit option does not cast her
vote. This is verified through a usability study of the Helios system by Karayumak et
al. [KOKV11].
Usability of Internet voting has of yet not been studied extensively to our knowledge. To
do so would be orthogonal to the goals of this thesis and has to remain for future work.
We still would like to point out the importance of cryptography with good usability in
voting systems and take a look at the impact of our proposed guidelines on usability
during the evaluation.

23

Chapter 6

Guidelines for Secure Internet Voting

Systems

This chapter offers guidelines on how to achieve the goals defined in Chapter 5.
The first and probably most important statement is that the aspect of network security
has to be present during the design process. It is often possible to add additional security
through several measures, e.g. adding cryptography, but it is more secure and desirable to
include network security in the design and very core foundation of the voting system.

6.1 Measures towards Integrity

The guidelines for integrity are structured analogous to the parts of a typical voting sys-
tem. It is not necessary that those parts are physically apart but highly encouraged to
exacerbate the risk of compromising the system through e.g. the hardware. Parts each
system fundamentally consists of are a bulletin board, a tallying instance and an au-
thentication authority. The reasoning for this partition is given implicitly throughout the
chapter.

25

Chapter 6 Guidelines for Secure Internet Voting Systems

6.1.1 Bulletin Board

As stated in the goals chapter, one needs public auditing or similar end-to-end verifia-
bility options to make sure the integrity of a system can not be endangered. For both
purposes, a bulletin board seems like an easy solution. An attacker should not be in
the position to add new messages to the bulletin board in behalf of other participants, to
delete already posted messages and to change already posted messages. Note that it is
possible for the bulletin board itself to be controlled by the attacker.

Structure

The bulletin board is an append-only storage which publicly displays all actions per-
formed by participants of the election. Actions which would void the anonymity of
participants can be revised to produce a cryptographic non-interactive zero-knowledge
proof which can be displayed instead of the action itself. Additionally, the bulletin board
can and should also be built in a distributed fashion. Distributed Denial of Service attacks
are harder to execute on a multitude of instances than on one. Lastly, the bulletin board
can be implemented through a forward-secure append-only persistent authenticated data
structure like Balloon [PP] or similar.

Security

Now we consider the possible attacks on the integrity of the bulletin board. An attacker
could try to forge messages on behalf of participants of the election. When all messages
posted to the bulletin board have to be signed by the instance appending them, this attack
is no longer possible. The attacker can only post messages signed with keys she has
control of and not forge messages. This measure prohibits the changing of the messages
as well. Data structures1 as outlined above do not allow for changing of the messages in
any way.

1Balloon, etc.

26

6.1 Measures towards Integrity

Balloon furthermore, prevents deletion of messages. Anyone can challenge the server to
proof that a commitment is consistent with all previous commitments. Furthermore, as
stated in the assumptions, there is at least one instance constantly auditing the bulletin
board and is thus privy to messages being deleted. Distributed bulletin boards should
also periodically exchange their contents which will make deletion even harder because
the message has to be deleted on several instances at once.

Ballot Box

A ballot box should not be able to change, drop or delete votes as stated before. All those
problems are already solved by the bulletin board.
The only possible attack vector left is the ballot box not accepting the votes. In this case
the ballot box is behaving maliciously and the user can try to cast the vote at one of the
other ballot boxes and alert official election authorities that monitor the election. It must
be said that this opens the gates for false allegations e.g. claiming ballot boxes to be mali-
cious to disturb the election. Solving this is possible by implementing a non-repudiation
scheme, e.g. by Coffey et al. [CSB03], which typically produces a proof of receipt and
a proof of origin. If the ballot box has to produce the proof of receipt before it receives
personalized information, e.g. during the connection buildup, the ballot box can not deny
having received a message without denying the receiving to random participants, which
can be detected.
We point out, that the implementation of ballot boxes can be skipped if the non-repudiation
scheme is implemented for the bulletin board, since then both instances have the same
properties and the bulletin board can simultaneously be used as a ballot box. It still might
be advisable to have physically separate ballot boxes, since the bulletin board is the part
of the system that has to bear the most network traffic load2.

2Since every part of the system constantly posts to it.

27

Chapter 6 Guidelines for Secure Internet Voting Systems

6.1.2 Tallying Instance

A voting system, be it digital or traditional, needs an instance to count the votes and
announce the results of the election. The tallying instance must provide verifiability in a
manner that even insider can not change the votes or the result. Otherwise it would be an
easy task to manipulate the election by simply manipulating the tallying instance. There
are two possible ways to verifiably implement the tallying instance. Either by the use of
homomorphic encryption, where the sum of all votes is produced in encrypted form or a
trough a mix-net before the tallying process itself.

Homomorphic Encryption

If homomorphic encryption like multiplicative Elgamal is used, all the encrypted votes
have to be anonymously posted on the bulletin board before the election closes. The
tallying instance then simply adds all encrypted votes, and decrypts them non-publicly
while producing a zero knowledge proof of correct decryption.
Everyone can take the publicly posted (and encrypted) votes and add them herself. Any
auditor then can validate if the proof of correct decryption posted by the tallying instance
is for the result of the addition and if it is correct. The tallying instance can thus not
add superfluous or fake votes to the tally without an auditor noticing. This satisfies the
definition of Corruption-Evidence.
However, homomorphic encryption only works for elections where there is a definite
amount of candidates which can be marked with "yes" or "no"3. More complicated
ballot types, that allow weighted rankings of candidates or parties or write in candidates,
are currently not efficiently possible with homomorphic encryption. The structure of the
ballot has to be determined before the election and be the same for every voter to work
correctly with a homomorphic tally. Those types of ballots however are not needed for
every type of election, thus making homomorphic encryption a viable choice in some
legislatures.

3If "yes" is expressed as 1 the ballots can be added in cypher-text.

28

6.1 Measures towards Integrity

Mix-Nets

The other solution is to use re-encryption mix-nets to separate the identity of a voter
from the vote itself. Optimally several tallying instances are implemented, which each
perform a mix that re-encrypts all ballots, and a corresponding zero-knowledge proof of
a correct mix. If all proofs are in order and posted on the bulletin board the final instance
publicly decrypts all the votes and posts them to the bulletin board together with the fi-
nal result. A corrupt tallying instance can try to manipulate the tally by swapping out
votes before applying a mix or by mixing in a certain way which makes it possible to
reverse the mix4. Everyone can validate the posted zero-knowledge-proofs of the corrupt
tallier and report him to the election authorities. Mix-Nets thus satisfy the definition of
corruption-evidence.
An article by Ribarski and Antovski [RA12] benchmarks the performance of different
mix-nets and can be used as one of several directives.

Homomorphic Encryption vs. Mix-Nets

Both homomorphic encryption and mix-nets before the tally serve the same purpose of
keeping the anonymity of the ballot. The homomorphic encryption has the disadvantage
of not being able to support elections where more than a yes and no for certain prede-
termined candidates is needed. Write-ins or vote-rankings of parties and candidates are
only supported by the mix-net approach.
While the homomorphic method can be implemented side by side with threshold encryp-
tion to achieve a distributed design and multiple tallying instances, the mix-net approach
needs to have multiple tallying instances to produce a secure shuffle. We highly recom-
mend using a distributed implementation regardless of which method is chosen. When
the tallying instance is distributed, the trust is also distributed amongst all tally authori-
ties and no single authority has the power to deanonymize a ballot.
The mix-net approach produces a zero-knowledge-proof and a new re-encryption of all
votes for every shuffle-step while the homomorphic encryption route only produces a sin-

4Thus opening a door to break anonymity.

29

Chapter 6 Guidelines for Secure Internet Voting Systems

gle zero-knowledge-proof of correct decryption and a decrypted sum of all votes. This
means that for n shuffles, the storage space for the mix-net is n times as much as for the
homomorphic approach.
Since there are a magnitude of re-encryption mix-nets and partially homomorphic algo-
rithms, an objective speed-comparison can not be done easily and mainly depends on the
kind of election held, ballot being used and several other parameters like the number of
tallying authorities and voters. This lends itself to future work in a separate thesis.

6.1.3 Authentication Authority (AA)

Making sure that a voter is eligible to partake in the election and relaying this information
to the other parts of the voting system is the task of the authentication authority.

Registration

The main threat from a malicious authentication authority is the registration of non-
eligible voters. Unfortunately, there is no sure way to prevent this during an on-line elec-
tion when the authentication authority is corrupt. Until this problem can be solved, we
strongly advise to use off-line or postal registration, to at least make sure, that the fraud
potential is not higher than in traditional elections. The perfect solution is an already in
place public key infrastructure like in Estonia, although this is a more fundamental prob-
lem which supersedes the design of a secure Internet voting system. This is discussed
more closely in section 6.4.1.

Vote-Signing

If the system is designed in such a way that the user authenticates herself to the parts of
the system5, then the only job of the authentication authority is to sign the users votes;

5This can be the case when voting registration is done off-line before the election and at the start of the
election a list with eligible voter credentials or their identifier respectively is published.

30

6.1 Measures towards Integrity

otherwise it also authenticates the voter to the other parts of the system. A voter-signed
ballot can not be enough to legitimize a cast vote because the bulletin board would have
to posses knowledge of all voters and their signatures, which can be used for coercion
practices. Letting the authentication authority sign the ballots reduces the knowledge the
bulletin board possesses6.
This in turn allows for the authentication authority to sign ineligible votes, since there
is no publicly verifiable way to prove that the signed ballot is eligible. A solution is to
publish the public credentials of all eligible voters, but not the link between a voter and
her credential at the beginning of the election on the bulletin board. Any authentication
authority has now the job of checking if the ballot fulfills all formal standards and can
sign it accordingly. Auditors can check any cast and signed ballot for corresponding
published credentials. The auditors are not gaining any sensitive information, because
they do not posses the link between credentials and the corresponding voter.

Blind Signatures

There exist paper which propose the use of blind signatures signed by an authentication
authority to authorize ballots, e.g. [Oka98,OMA+99]. We argue that blind signatures do
not satisfy the property of Corruption Evidence. To ensure Corruption Evidence it should
be possible to detect irregularities during the signing process even if the authentication
authority is corrupt and e.g. signs ineligible votes. A set-membership-proof would be
the weakest form of cryptographic proof the authority can provide to satisfy corruption
evidence7. There are two cases which allow us to construct a set membership proof:

Case 1: The set, i.e. a list of all eligible voters, or their credentials respectively, is pub-

lic.

If a list of all voters is publicly known, the situation does not differ from the case de-
scribed in subsection Vote-Signing 6.1.3, where the voter can sign her own ballots and

6The voter also has to only authorize to the Authentication authority in this case and to no other authority
during the election, which is also beneficial.

7Since it would be comprehensible if the authority signed the ballot of an ineligible voter, with the set
being all eligible voters and the credentials of the ballots owner the element for which membership is
to be proven.

31

Chapter 6 Guidelines for Secure Internet Voting Systems

signing by the authentication authority is not needed.

Case 2: The set of all eligible voters is not public

If the set of all eligible voters is not public the element for which membership has to be
shown, i.e. the credential of the potential voter has to be known to construct a member-
ship proof, see the methods such as [CC+08]. A zero-knowledge-proof showing that the
credential is in the set of eligible voters can be constructed if the authentication author-
ity makes a statistical commitment to the set of eligible voters8. This approach has two
problems: Firstly, the authentication authority can introduce ineligible voters to the set
of eligible voters before the election begins, thus being able to produce zero knowledge
proofs for ineligible voters. Thus not satisfying the Coercion-Evidence requirement.
Secondly, because of the need to post the credentials of the voter together with her ballot
and the zero knowledge proof of authentication certain coercion attacks may be possi-
ble9.

6.1.4 Network Connection

By controlling (parts of) or exploiting the network connection, an adversary may be in
the position to manipulate traffic, or attack communications of an election. Following,
we consider security of the internal network and the general Internet traffic.

Internal Voting Authority Network

A closed network separating each part of the voting system should be used to secure the
system. Every part of the system can be hosted on machines separated by firewalls and
commonplace practices like an intrusion detection system, etc. should be deployed inside
the network. Without these measures, an attacker can use a compromised machine to
attack other devices inside the network. An example would be an attacker compromising

8Without proof, since it is analogous to showing a Hamiltonian cycle zero knowledge proof for a large
graph.

9A coercer can supervise the voter while she casts her vote according to the coercer, afterwards the co-
ercer can automatically check if any re-votes where made using the same credentials, thus not following
the coercers instructions.

32

6.1 Measures towards Integrity

a bulletin board server which is then used to compromise the tallying servers. If the
servers are strictly separated by protective measures and the firewalls only let certain
protocols pass, these kinds of attacks naturally becomes harder.
Only the authentication authority and the bulletin board need a connection to the Internet.
The tallying server for instance only needs to communicate with the bulletin boards. An
Internet connection would only pose unnecessary risk. Encrypted traffic between the
election servers should be mandatory to thwart Man-in-the-Middle attacks.

General Internet Traffic

Internet-communication is generally hard to secure, since a typical connection is routed
through several ISPs where each hop is possibly compromised by a Man-in-the-Middle.
This warrants encryption of all communication between voter and any voting authority.
Besides Man-in-the-Middle attacks, there are newly discovered Man-by-the-Side attacks
like Quantum Insert10 where the attacker is embedded in the router software and tries to
beat the response of any web-server with its malicious packets. A detection for quantum
insert attacks is already made public by Fox-IT [IT15].

6.1.5 Voter Device

A voting-system that is secure on the server-side can still have one major flaw: the voter’s
device is probably one of the easiest attack vectors regarding network voting. This par-
ticular problem has been termed Secure Platform Problem [Opp02].
Most voters are not technically adept and use computers that are infested with different
kinds of malware, which can be an attack vector for an attacker seeking to manipulate an
election. An attacker typically has three different kinds of attack she can perform on the
voters device:

• The attacker can change the ballot before it is sent.

10Since the attack is relatively new there are no scientific publications as of yet. One of many good articles
about the function of Quantum can be found on-line by e.g. Bruce Schneier [Sch13]

33

Chapter 6 Guidelines for Secure Internet Voting Systems

• The attacker can delete the vote while pretending to send it.

• The attacker can send her own ballot instead of the voters.

Note: not sending the vote altogether is not possible in a system that employs some mea-
sure of public auditing like bulletin boards, since the voter can take notice if her vote is
not published. That leaves us with the other two attack types.

Code Voting

The usual solution for changed votes / fake votes is the employment of code voting such
as proposed by Kutylowski and Zagorski [KZ07]. Code Voting is a process where every
voter receives unique coding tables out of band and uses them to communicate with the
election servers without having to trust the device they are using.
For example consider an election authority that generates a coding card for every user,
where every candidate in the election gets a unique pseudo-random code. Coding cards
can be marked with serial numbers or in another way, so the candidate can be deduced
from the code by the election authority. Authorities send the cards to the voter out-of-
band by e.g. postal mail. The voter proceeds to vote using her serial number and voting
code for her preferred candidate. In consequence, the device, even if malicious, is now
unable to deduce which candidate has been chosen as long as the election authority does
not collude with the malicious device. If the device tries to change the vote it has to guess
the correct code out of a multitude of possibilities, which is not feasible for an attacker
to do undetected.
The "Scratch, Click and Vote" Internet voting system [KZ10] uses a similar procedure
to the one described. It is noteworthy that code voting in itself could be hard to use for
some voters and should be designed with that thought in mind.
A problem with this approach is that it enables the possibility of vote selling, since it is
easy to just sell coding cards. Discussions how to stop vote-selling and coercion are held
in Section 6.5.

34

6.1 Measures towards Integrity

6.1.6 Cast-as-intended

As pointed out in the goals chapter, a cast-as-intended mechanism can be beneficial
in raising trust and security, especially in systems that do not have a public auditing
mechanism.

Confirmation codes

One possible method for a cast-as-intended mechanism is to deliver an unique crypto-
graphic code out-of-band to the voter after the vote is cast. The Norwegian e-voting
pilot [Gjø10] generates a unique code per voter per candidate, which is delivered to the
voter on a sheet via postal mail. After the voter casts her ballot normally, a code con-
firmation is received via SMS. If a malicious program or a Man-in-the-Middle changes
the ballot, the voter can see this in her confirmation code and re-vote or report it to the
authorities. Since it is theoretically possible that both the machine used to vote and the
voter’s mobile phone are infected with cooperating malware, this does not provide a
completely secure solution.

Test-audits

Another possibility is to give the voter the option to audit "test-ballots" after they are
encrypted by the voter’s device, like used in the Helios system [Adi08]. In principle test-
audits work as follows: The voter fills out a ballot and lets her device encrypt it. Only
after the encryption, the voter chooses if she wants to cast the ballot or if she wants to
audit it. In case the voter chooses the audit option, the device has to reveal the crypto-
graphic secret and randomness used to encrypt the ballot. Following, the voter can then
verify if the correct ballot was encrypted. This method can only be used securely when
all encrypted ballots are publicly available. If this is not the case the following can hap-
pen: a voter audits multiple ballots and decides to finally cast one after all audits were
successful. Subsequently, the device pretends to cast the ballot, but in reality generates
another ballot instead, which is being cast. When all cast ballots are publicly available,

35

Chapter 6 Guidelines for Secure Internet Voting Systems

the voter has the guarantee that the device encrypts correctly and that the correctly en-
crypted ballot was sent to the ballot box.
A device can not know beforehand if the ballot gets audited or not and has therefore to
commit to change the vote or not if it is malicious. Since it is statistically unlikely that the
device can guess reliably if the ballot gets audited, the device is unlikely to commit fraud
undetected. In principle this method is similar to commitments during cryptographic
zero knowledge proofs. This method is an adequate cast-as-intended mechanism.

Confirmation Codes vs. Test-audits

Since both practices allow for a cast-as-intended verification, there is no need to deploy
both. Confirmation codes have the drawback of being prone to vote selling, since they
produce a receipt together with the code-sheet. Confirmation codes also need additional
infrastructure in form of servers in charge of code delivery and creation and (physical)
dispatch of code sheets. Test-audits on the other hand are possibly to complicated for the
average voter, since she has to understand what they do and how they deliver a cast-as-
intended proof for them to be effective. A usability study by Karayumak et al. [KOKV11]
found that most voters where unfamiliar with the technical procedure of auditing the
ballot and were unable to cast the ballot correctly.
This implies that the choice of implementing test-audits or confirmation codes is a trade-
off between coerce-ability and usability which should be thoroughly evaluated before
choosing one.

6.2 Measures Towards Anonymity

Usually, ballots are encrypted in some way to protect the link between vote and voter,
thus enforcing anonymity11. The possibility of deanonymization exists during the tally-
ing phase and decryption of the votes for the purpose of tallying.

11Although this does not anonymize whether someone voted, just what her choice was.

36

6.2 Measures Towards Anonymity

6.2.1 Distributed Election Keys

Typically, ballots are encrypted with an election key, where the private part is known
by the tallying instance and used to decrypt the ballots for the final tally12. If the de-
cryption keys to the ballots lie in the hand of a single authority, it poses a risk to the
election. Imagine said authority is compromised, e.g. the tallying server is hacked, then
the anonymity is lifted and all voters can be linked to their votes, because usually the
ballots can be traced to certain credentials to guarantee auditability. The anonymity is
only protected by the encryption of the ballot, but since a malicious entity now has the
power to decrypt said ballots without adhering to any anonymity-preserving procedures,
the anonymity is voided.
The problem in this scenario is the centralized trust. It is possible to decentralize trust
by using threshold encryption as shown by different schemes like [BF97,CDN01]. If the
trust is decentralized, a threshold of parties has to be compromised in order to void the
anonymity of the voter.
To be more specific: the parties holding the trust-shares should be separated as much as
possible to harden attempts to compromise them.

6.2.2 Everlasting Privacy

Everlasting privacy is not being implemented in contemporary systems, but nonetheless
should be if the possibility is given. Some recent work shows that there is the possibility
to guarantee everlasting privacy with the trade-off of achieving computational correct-
ness instead of unconditional correctness. This should in theory be no problem.

Everlasting Privacy for Homomorphic Encryption

Demirel et al. [DVDGA12] propose the use of Pederson commitments. They show how
the commitments guarantee everlasting privacy as long as the discrete log problem can-
not be solved. Briefly worded: During the casting of the ballot, the voter generates a

12Regardless of how the specifics of the tally-process are designed.

37

Chapter 6 Guidelines for Secure Internet Voting Systems

Pederson commitment of the form αs ×β t and sends s and t over an encrypted channel
to the tallying server. Since Pederson commitments are homomorphic themselves, they
can be added up and the result can be used to uncommit the homomorphic sum of all
votes. Everyone can reproduce the tally since the homomorphically added commitment
factors are publicly posted.
One major problem of this method is, that if an attacker can somehow intercept the pri-
vate channel between voter and server, she can still decrypt the ballot in the future as
soon as the encryption used for the ballot is broken. Thus, it may be advisable to search
for a better solution to the everlasting privacy problem.

Everlasting Privacy for Mix-Nets

Demirel et al. [DVDGA12] also developed a similar approach that works with mix-nets
through re-encryption of the commitment values, which can be revealed after the mix
without revealing the link between ballot and voter. The major flaw is again the needed
private channel as with the homomorphic encryption approach.

6.3 Measures Towards Robustness

A voting system has to be built robust enough to withstand active attacks and not produce
failures during unexpected events. The following sections take a look at how to realize
robustness.

6.3.1 Invalid Input

A fairly minor threat regarding robustness is invalid input. The system must deal with all
invalid input without failure. Simple routines checking all input for validity should filter
out all injection attacks. SQL-injections for example are a fairly common threat for web
applications, which could be exploited in a web based voting system to gain access to or

38

6.3 Measures Towards Robustness

manipulate a database.
Other injections or malformed input can damage the system as well if for instance ballot
parsers can be made to produce errors or behave unexpectedly. The solution is a rigorous
check of all system parts that interact with any input made to the system. Even a missing
file-ending check can compromise the whole voting system as shown by Wolchok et
al. [WWIH12].

6.3.2 Risk of centralized Components

In this section we concentrate more on the robustness of the system’s implementation.
Internet voting systems typically rely on heavily centralized components, e.g. [CCM07,
Adi08, SFD+14, WWIH12].
A large-scale DDoS-attack can disturb one of the centralized components long enough
to prohibit a certain part of the constituents from voting. Network-level DDoS can be
combated by pre-filtering traffic and deflecting obvious attacks like SYN floods or am-
plification attacks. Note that those deflective measures can naturally be overwelmed
themselves, if the attacker has enough resources. Several types of network-layer DDoS
and possible mitigations are described by Zargar et al. [ZJT13].
An obvious, although not trivial, solution would be to decentralize the voting system
as much as possible. It becomes exponentially more difficult for the attacker to flood
several targets at once. Unfortunately, a completely decentralized voting system has not
been developed as of yet13. Future work in this regard would yield high improvements
regarding Internet-voting when successful.

6.3.3 Application Layer (D)DoS

Another matter entirely and potentially more easily preventable is application-layer DDoS.
Typically, the voting infrastructure has to perform a lot of work for every cast vote, since
ballots typically have to be validated for their correct cryptographic signatures, check
credentials and maybe form a proof of correct storage. This asymmetry can be used as

13Civitas is in that regard the most advanced, but is still only highly decentralized and not completely.

39

Chapter 6 Guidelines for Secure Internet Voting Systems

an attack vector, because the process of casting a vote costs considerably less computa-
tional power then validating, storing and tallying the vote. Such an asymmetric workload
is the typical flaw abused by DoS attacks.
A solution would be to require the voter to compute some proof of work, which has to
accompany the cast ballot and which would eliminate the asymmetry in turn stem appli-
cation layer DDoS. This methodology is e.g. used by the Hashcash procedure [B+02]
for E-mail.

6.3.4 Spam / Chaff

Even if straight up DoS is not possible, other similar attacks have to be considered. Civi-
tas e.g. accepts votes encrypted with faux keys to prevent coercion and as a consequence
has to filter out those votes before the tally. It is an easy and cheap task to generate a
lot of faux votes which bloat up the time it takes to tally. While not rendering the elec-
tion useless, it can lengthen the election process as a whole and thus heighten the voters
dissatisfaction with the system, which in turn lowers the acceptance rates. Since we
also considered re-voting earlier in this chapter, the possibility of deliberately introduced
chaff is quite likely. Faux votes blow up the time to tally because there is no way to sort
them out before the tallying process without allowing certain coercion practices.
Same as with application level DDoS, it would be beneficial for the voting system to force
the voters machine to solve cryptographic puzzles. This would also remove the majority
of chaff votes. Voters with older or mobile devices would have to wait longer for the vote
to be cast, since a cryptographic puzzle needs some amount of computational power to
be solved quickly. This may be an undesirable side effect. Other solutions against chaff
are not properly researched and remain for future work.

6.4 Measures Towards Secure Authentication

Every voting system faces two major tasks. Firstly, how to securely authenticate the voter
and secondly how to do so without allowing for vote selling by vending the credentials.
The following subsections take a look at different solutions to those challenges.

40

6.4 Measures Towards Secure Authentication

6.4.1 Credential Types

Two types of credentials can be used for authentication during an election. The following
sections take a look at their suitability.

Expensive Credentials

One method to prevent the selling of credentials is using "expensive credentials". Ex-
pensive credentials hold a certain power for the owner and or a penalty for the loss of the
credentials. The prime example for expensive credentials is the Estonian electronic ID
(eID). The eID is used for nearly all everyday transactions with authorities and govern-
mental agencies. The eID also provides legally binding electronic signatures and is used
for voting in the Estonian I-Voting system.
Every voter selling her ID-Card, and the corresponding PIN, gives the buyer the power to
sign documents in her stead; from credit loans to tax reports. This disincentivizes voters
from selling their credentials since the drawbacks are significant and in the case of the
Estonian system are equivalent to almost selling an identity.
Note that expensive credentials typically can not be manufactured on demand with the
sole purpose to be used for an election, if the jurisdiction, where the election is held, does
not have a credential infrastructure already in place. Most countries, such as Germany
or USA, have no legally binding electronic identification and authentication structure in
place.

Election Specific Credentials

Election specific credentials are credentials which are created for every eligible voter
with the specific purpose to be used in an upcoming election. The first challenge is
to transfer those credentials to the voter securely. All digital communication between
the voter and the authority issuing the credentials can be potentially infiltrated at sev-
eral points, e.g. the voter device or any point of the connection, and thus should be

41

Chapter 6 Guidelines for Secure Internet Voting Systems

avoided for the purpose of sending credentials over the network14. As shown previously
in [HT15], Man-in-the-Middle attacks can be used to steal authentication credentials
transferred through a network connection. The logical consequence is that credentials
should not be transfered over the network, because there is the inherent risk of a man in
the middle stealing them.
The solution is to use an out of band channel like postal mail to achieve the, imperfect,
security level of traditional postal voting.

6.4.2 Credential Creation

It must not be possible for a malicious entity to reproduce voter credentials. If a system
for instance uses coding cards for code voting, those cards have to be printed as they
are usually delivered via postal mail. The printing services should not have the potential
link between voter codes and voters. One can prevent this by separating the process
of printing the cards and preparing them for sending by applying a real world double
envelope procedure.
We emphasize that not only the authentication credentials have to be kept secret but also
all steps and procedures that could lead to reproduction of credentials. Alternatively the
procedures have to be designed in a way that makes them non-replicable.

6.5 Measures Towards Coercion Freeness

To design a coercion-free system, one needs to make sure the system does not produce
any kind of receipt of how one voted, i.e. there is no way, optimally even with the help
of the voter herself, to deduce how anyone voted. Systematic coercion only works if
the coercer can be sure that the voter followed her instructions with a reasonably high
chance, since otherwise the coercer would have spent her resources without effect.

14Consider that we can not assume there is already some authentication in place, as it is during the election,
so we can not reliably encrypt the communication at this point.

42

6.5 Measures Towards Coercion Freeness

6.5.1 Privacy Preserving Communication Medium

To preserve all aspects of coercion freeness, the voter needs to communicate over a
medium that is privacy preserving and anonymous. The guidelines developed in section
6.2 do not apply to this section, since they only help preserve the anonymity of the ballot,
but not any other information, which may help a coercer.
Some work done regarding a privacy preserving communication medium suggests us-
ing low-latency networks like Tor during ballot transmission to solve this requirement.
However, as shown in [SMHM15], low latency networks are not enough for use during
an election. A powerful attacker can use pattern matching to deduct if and when a voter
cast a ballot, despite the use of the low-latency network. This clearly breaks parts of the
coercion freeness definition. For example, the coercer can check that voters, who were
instructed to abstain15, voted against her instructions.
A solution could be to use high-latency networks, since they possibly deny patten-
matching attacks. Please note, that there is no scientific work extensively studying this
claim and thus future work regarding privacy preserving communication during ballot
casting is needed.

6.5.2 Receipt Freeness

Other aspects of coercion freeness include properties such as receipt freeness. Receipt
freeness defines that the use of end-to-end verifiability measures, should not allow the
voter to use the measure as a receipt.
The possibility of re-voting should introduce enough uncertainty for the coercer to not
know if she is paying resources for canceled votes. If the voter has the ability to re-vote,
the following situation is likely even when the system is not receipt free.

• Voter votes according to the coercers instructions

• Voter obtains receipt and shows it to the coercer

15Either to prevent voters of a certain party from voting, or after handing the credentials to the coercer and
not being allowed to re-vote.

43

Chapter 6 Guidelines for Secure Internet Voting Systems

• Voter uses re-voting to change vote to personal preference after some time during
the election

The coercer can not be sure that the voter did not re-vote and thus has no real means of
enforcing the coercion.
For this to hold true the system needs to not give away which votes belong to the same
voter or credentials. This should be kept in mind when implementing re-voting. The
benefits of re-voting should thus be strongly considered when designing a voting system.
Another possibility explored by Oppliger et al. [OSH08] is to provide multiple code
sheets with only one being the code sheet which is able to cast valid votes that are counted
at the end of the election. There are even more complex variants of this scheme explored
in the same paper. We argue that multiple code sheets with different credentials would
be too complex for the typical voter and are thus not realistically applicable.
The possibility of re-voting seems to be the easiest way to solve this problem and should
be applied. However, the complete elimination of coercion is an open problem not only
in network voting systems.

6.5.3 Alternative Measures

One detrimental approach is to allow coercion but make it evident as coined by the
Caveat Coercitor voting system [GRBR13]. The approach is to use the amount of re-
votes to estimate an upper bound on coercion and not count votes which re-vote for
different candidates, because this indicates possible coercion. If the estimated margin is
bigger than the margin between two candidates in the election, the election can be de-
clared invalid. This disincentivizes coercion, since the coercer can only cancel votes and
not change the outcome of an election.
One should keep in mind that this exact procedure can be abused as well by deliberately
heighten the upper bound with re-votes to sabotage the election every time.
Although the Caveat Coercitor approach is not a perfect solution, the general concept
should be researched further. Coercion does not necessarily has to be prevented if it can
be detected, similar to integrity and corruption-evidence.

44

6.6 Combination of Introduced Measures

6.6 Combination of Introduced Measures

Now that we discussed measures that should be undertaken separately from each other,
a look at the synergies or lack thereof is in order.

6.6.1 Homomorphic Encryption + Code Voting

During the guidelines homomorphic encryption is proposed as well as code voting to
solve different problems. These properties clash together, since homomorphic ballots
need to be designed in a way where the vote for a candidate is always a well defined
numerical value, which allows for the addition of votes in cyphertext. A ballot prepared
for homomorphic voting is a vector where each entry represents a candidate and where
the voter puts a one for the chosen candidate and a zero for everyone else.
Code voting uses a separate code per voter per candidate, which obviously can not be
used to add ballots in encryption. Code voting codes can not follow any pattern, since
they would be vulnerable to reconstruction, which defeats the purpose of the codes as
explained in 6.1.5. Because the codes are practically random it does nothing to add the
codes. With code voting every vote has to be decrypted individually and then matched to
a candidate before tallying.
The alternative for homomorphic encryption is the use of several mix-nets performed by
the tallying authorities before the tallying process and is thus the only option which does
not clash with other security guidelines16. The form of the ballot does not matter for a
tallying implementation which uses mix-nets.

6.6.2 Blind Signatures + Re-Voting

Blind signatures used to sign ballots clash with the ability to re-vote. When blind signa-
tures are used the authentication authority signs blinded ballots after checking the cre-
dentials of the voter. The vote itself is unblinded, stripped of the credentials and posted.

16Mix-Nets also allow for ballots which are not used for single candidate elections but other forms like
multiplicity rankings, etc.

45

Chapter 6 Guidelines for Secure Internet Voting Systems

This way the tallying authority has no possibility to detect re-votes, since only the au-
thentication authority would know if someone voted multiple times. There is no way
to determine which votes in the ballot box were casted by the same person, since the
purpose of blind signatures is removing the link between voter and ballot. We can not
let the authentication authority check for re-votes, because there would be no way to find
the previous casted vote and mark it invalid.
A possible solution would be to let the authentication authority derive a random token
for every user which is attached to the ballot before signing. This would potentially
make the ballot vulnerable to coercion. The coercer could remember the token used
to cast the coerced vote and monitor the bulletin board for another vote with the same
token, which would tell the coercer that her instructions were ignored by the coerced
voter. Thus, blind signatures can not be used together with the other proposed guidelines
and we recommend using threshold encryption of the ballot to preserve ballot anonymity.

All other proposed building blocks should be implementable side by side without any
problems. A table showing all proposed measures in short is shown in figure 6.2.

6.7 General Security

Apart from special precautions, voting systems should share a few general measures with
other software in need of security. A few of the most important practices are described
in the following section.

6.7.1 Formal Training

Security is only effective if all parties concerned with the development and execution
understand its meaning. Formal training for all personnel, from system administrator to
developer and election officials, should be mandatory and extensive. The best security

46

6.7 General Security

practices will only function sub-par as long as the person handling it has no full un-
derstanding of what is going on. A negative example is the Estonian voting system. As
already mentioned a study by Springall et al. [SFD+14] shows that the Estonian adminis-
trators behaved in a way that suggests they were not aware of the security risks they were
imposing on the voting system. One instance is staff using private, previously used USB
drives to transfer votes to the air-gapped tallying server or updating the voting servers
ad-hoc during the election without testing and knowledge whether the update will break
election software.
An attacker can use this human failure as an attack vector. Uploading manipulated soft-
ware packages into the repositories that are used by the election officials or compromis-
ing the private devices of the administrators in a targeted attack is not an impossible task.

Another possible attack vector leveraging the lack of knowledge would be the following:
If election officials are to generate a distributed threshold election key, with which all
ballots are encrypted, there is the possibility that the officials chose a faulty generation
method17 which would allow to an attacker to reconstruct the private key.

6.7.2 Layering the Software

Another commonplace practice is the layering of software. Every part of the voting sys-
tem should be encapsulated in an abstract layer which can only access functions strictly
needed for its functioning. A layer always depends on the functions of the "lower" layers
but never the other way around. Typically, only the highest layer has an interface to the
user. An attacker trying to compromise the system by abusing programming flaws can
get access to the highest layer and can not cause more damage without further attacks.
Would the software not be layered getting access through any flaw would mean that the
attacker has full control over all components of said software.

17By e.g. choosing broken algorithms, key-length which are too short or too small prime numbers, which
can speed up the factoring of the key.

47

Chapter 6 Guidelines for Secure Internet Voting Systems

6.7.3 Threat Modeling

During the design phase continuous threat models should be created and evaluated for
each iteration of the system design. Early threat models highlight possible attack vectors
during a design stage where they can be eliminated intrinsically rather than hot-fixed
during or after the implementation. Threat models can be conducted with a multitude of
techniques, e.g. with attack trees [Sch99].
A threat model can be used to create security requirements as shown by Myagmar et al.
[MLY05]. The threat model helps to identify and methodically weigh the risks a system
faces to create requirements, which should be adhered to during the implementation.
Microsoft, for instance, uses threat modeling as an inherent part of its software design
process. A threat modeling guide by Torr [Tor05] has been published in the past.

6.7.4 Further Analysis

After the design is complete, the implementation can begin. During the implementation
static code analysis tools, that search for possible threat vectors should be used fre-
quently to find programming errors which open up attack vectors. Static analysis tools
help sift out all common security issues without much overhead work.
It may be worth considering incorporating model checking or data-flow analysis into the
implementation process. Unfortunately, there is currently no work analyzing possible
advantages and downsides of using those methods during the design of voting systems
and would be a good subject for further work.

Penetration Testing

When the system implementation nears completion, public and private penetration test-
ing should be conducted. Although penetration testing will most likely not find all se-
curity flaws, it will most certainly find issues that would otherwise not come up. A
penetration test that comes up without any findings does not mean that the system is
secure; it simply means no flaws where found during the test. The test is rather represen-

48

6.8 Summary

tative instead of confirmational. As pointed out in an article by Arkin et al. [ASM05],
penetration testing helps develop mitigation techniques which in turn help securing the
software.

Fuzzing

Simultaneously to penetration testing, fuzzing can be used to find rare security flaws, that
would not come up organically. During fuzzing, automated tools use invalid data for all
inputs of the system and observe the systems reaction to it. The data is either generated
by the fuzzing tool, if the syntax of the input is known, or valid data is permuted. The
goal of fuzzing is to generate input-data that is valid enough to pass some of the parsing
of the test system to observe if the invalid parts cause problems. Fuzzing can be seen
as a tool to test border-cases. Its benefits are illustrated comprehensively in an article
by Oehlert [Oeh05]. A use case in voting systems would be for example generating
filled out ballots through fuzzing, to test whether there is any possibility that malformed
submitted ballots can cause a disruption in the system.

6.7.5 Further Resources

A lot of the above methodology is well-tried by different organizations with security
backgrounds and summarized in several documents like the Microsoft Security Develop-

ment Lifecycle [Lip04], Methodology for Secure Software Design by Fernandez [Fer04]
and SAFECode Security Development Practices [SHR+11].

6.8 Summary

The above defined guidelines can be found in tabular form in figure 6.2. Furthermore,
a score-chart has been developed which can be used during development or rating of a
system by marking guidelines that have been fulfilled. By taking a look which categories

49

Chapter 6 Guidelines for Secure Internet Voting Systems

have the most unfulfilled criteria, the main flaws of the system become apparent. This is
tested further in chapter 8. The score-chart template can be found in figure 6.1.

Verifiability Anonymity Secure Implementa-
tion

Coercion DDoS / Chaff

� Bulletin Board � Mix-Nets � Network Security � Re-Voting � Crypto-puzzles
� Offline-Registration � Homomorphic En-

cryption
� Code-Voting � Expensive Creden-

tials
� Heavily decentral-
ized components

� Public Voter-List � Threshold Encryp-
tion

� Coercion Detection

� Confirmation Codes
� Test-Audits

Figure 6.1: Template score-chart regarding the developed guidelines

50

6.8 Summary

Measure Description Gained Property
Mandatory Bulletin Board. See 6.1.1 All parties of the election post messages

to the bulletin board. All parties sign
their messages. May be distributed.

Public audit-ability, may be used for
end-to-end verification.

Ballot mix-net before tally. See 6.1.2 Tallying authority mixes ballots before
decrypting and tallying. Zero Knowl-
edge Proof is generated. Tallying au-
thorities should be distributed.

Link between voter and ballot is ob-
scured during tally.

Homomorphic encryption of ballots.
See 6.1.2

Ballots are encrypted with a homomor-
phic encryption, enabling calculating
the tally in cypher-text and decrypting
the final result.

Link between voter and ballot is ob-
scured during tally.

Threshold Encryption for ballots. See
6.2.1

The elections private key for ballots is
distributed among n authorities. at least
k out of n needed to decrypt ballots.

Harder deanonymization by corrupted
tallying authorities.

Offline Voter registration. See 6.1.3 If no authentication structure in place,
the registration of voters and obtaining
of credentials should be done offline.

Reduced chance of credential theft.

Publication of eligible credentials. See
6.1.3

Publish credentials of eligible candi-
dates on bulletin board.

Impossible to add faux voters during
election.

Regulate Network of Servers. See 6.1.4 Use IDS, Firewalls, restricted access
to the Internet, layered network, etc.
for the network containing the election
servers.

Secured authority network.

Code Voting. See 6.1.5 Coding cards or similar mechanisms
work around the secure platform prob-
lem.

Voters may vote securely despite cor-
rupt devices.

Ability to re-vote. See 6.1.5 To disincentivize vote selling re-voting
should be possible.

Less coercion.

Cryptographic Puzzles. See 6.3 To prevent voter from conducting DoS
attacks and generating chaff.

DDoS protection.

Expensive Credentials. See 6.4 If authentication structure in place make
the credentials expensive to contain
vote selling.

Less coercion.

Coercion Detection Capabilities. See
6.5

Caveat Coercitor or similar measures to
determine level of coercion in the elec-
tion.

Coercion Detection. Less coercion.

Confirmation Codes. See 6.1.6 Codes representing candidates are sent
out of band as cast-as-intended proof to
the voter after casting the ballot.

Cast-as-intended. Heightened trust in
system.

Test Audits. See 6.1.6 The Voter has the ability to audit a bal-
lot after the device has committed to the
encryption.

Cast-as-intended.

Decentralize components. See 6.3.2 Every component of the voting system
should be as decentralized as possible.

Better (D)DoS protection.

Figure 6.2: A condensed form of the guidelines derived in Chapter 6.

51

Chapter 7

Evaluation

In the previous chapter we introduced several guidelines which should be used to attain
security properties or mitigate flaws a network-voting system might experience. This
chapter evaluates those guidelines in a self-reflective manner. Following, we assess the
complexity of implementation, efficiency and usability of the proposed measures. Be-
cause of the theoretical nature of the thesis, we are restrained to a theoretical evaluation.
Some guidelines depend on the specific implementation and are therefore not analyzed
in this chapter, but considered in the coming chapter 8. An overview of the results from
this chapter is given in the figure 7.1. Future work would consist in implementing a
prototype and evaluating the system in a real-world election or simulation.

7.1 Ranking Criteria

This section details how each of the criteria is assessed. Since there is no quantifiable
way to put numbers on the evaluated parts, we use gradations which are defined as well.
The gradations assist in displaying the evaluation clearly arranged. All gradations are
color-coded for visual clarity.

53

Chapter 7 Evaluation

7.1.1 Efficiency

Efficiency measures the effectiveness in combating the flaws a guideline is designed for.
The efficiency of a guideline can be rated as one of the following.

• perfect - A flaw is completely mitigated by the proposed method.

• mainly solved - A flaw is mainly mitigated and will statistically only appear
rarely after implementation of the proposed method.

• appeasing - The appearance rate of severity of a flaw is strictly less than before
the implementation of the proposed method.

• ineffective - The flaw was not or only slightly mitigated by the proposed method.

7.1.2 Usability

The best guidelines will not be beneficial to a voting system if they eliminate a flaw but in
the same turn complicate the usability of a system in a manner which impairs the typical
voter. The usability is rated in one of the following categories.

• enhanced - The usability of the system is enhanced after implementing the pro-
posed method.

• unchanged - The usability of the system was not affected by the proposed method.

• worsened - The usability of the system is impaired after implementation of the
proposed method.

• disruptive - The usability of the system is strongly impaired by the implementa-
tion of the proposed method.

54

7.2 Evaluating Parts

7.1.3 Complexity of Implementation

A heightened complexity of implementation entails harder maintenance and the potential
for more bugs in the source code. It is therefore desirable to keep the complexity of the
source code as low as possible. We rate the increase of complexity in one of the following
categories.

• substantial - Major substantial parts have to be added to the system or reworked
for the proposed method. Should be avoided if possible.

• minor - Some new modules, procedures or code has to be added to the system.

• unchanged - The complexity does not change, happens when e.g. some part of
the system is replaced by another equivalent complex part.

• improved - The proposed method leads to a lowered complexity. Very desirable.

7.2 Evaluating Parts

Now we evaluate the guidelines in reference to the defined evaluation criteria. The sum-
mary of the evaluation is appended in tabular form at the end of the section.

7.2.1 Mandatory Bulletin Board

Complexity: substantial

Adding a bulletin board (section 6.1.1) to a network voting system requires completely
new server-side parts. Furthermore, all other existing parts of the system have to be
adapted to continuously communicate with the bulletin board, which has to be done
through adjustments in the voting protocol as well as the software.
Efficiency: perfect

The bulletin board is a prerequisite for most public auditing schemes, as well as other

55

Chapter 7 Evaluation

guidelines proposed in the previous chapter. The purpose of enabling public auditing
techniques is completely satisfied.
Usability: unchanged

The existence of the bulletin board demands no special actions or other adaptation from
the voter. One could even argue, that the added ability to voluntarily use the bulletin
board and audit the election is an usability improvement.

7.2.2 Tallying Mix-Nets

Complexity: minor

Implementation takes several modifications of the tallying authorities protocol, including
implementing a mix-net algorithm and the creation of a zero knowledge proof, which are
fairly common methods.
Efficiency: mainly solved

The goal of tallying mix-nets (section 6.1.2) is to guarantee anonymity of the ballot by
breaking the link between a voter and her ballot. Correctly executed mixes completely
achieve this goal, however there is still the possibility for all mixes to be corrupt, which
would allow deanonymization. This possibility is small but nonetheless exists.
Usability: unchanged

Mix-nets are implemented as a protocol change for the tallying authorities and no changes
on the user end have to be made.

7.2.3 Homomorphic Encryption

Complexity: minor

To implement the homomorphic encryption (section 6.1.2) the voter client needs to be
able to encrypt the ballots using a homomorphic algorithm. This should be a fairly stan-
dard task. Apart from that only minor changes, like switching the decryption algorithm,
need to be made to the tallying protocol.
Efficiency: appeasing

Homomorphic encryption has the goal to provide public auditability without forfeiting

56

7.2 Evaluating Parts

the anonymity of the ballot. This is achieved as long as the tallying authority is honest.
Since only one authority has to be compromised, an attack seems not impossible. Either
way the audit-ability is never forfeit, only the anonymity.
Usability: unchanged

It does not make any difference to the end-user whether homomorphic or conventional
cryptography is used, since it only affects the tallying method.

7.2.4 Threshold Encryption

Complexity: minor

The election key generation algorithm needs to be replaced for this method. Furthermore,
a few minor changes in the tallying protocol, i.e. the step where the tallying authorities
assemble the key.
Efficiency: mainly solved

Threshold encryption (section 6.2.1) tries to mitigate the fact, that a single tallying
authority possibly can posses the link between voter and ballot, which breaks ballot
anonymity. As long as at least k out of n tallying authorities are honest this works as in-
tended for a (k,n)-homomorphic algorithm. For a well chosen k and n it is very unlikely
that k instances are corrupt at the same time, but still theoretically possible.
Usability: unchanged

No changes are made for the voter.

7.2.5 Offline Voter Registration

Complexity: improved

An online registration feature that otherwise is implemented does potentially not have to
be realized.
Efficiency: perfect

Offline voter registration (section 6.1.3) tries to circumvent the theft of credentials that
is possible during online registration. Since the credentials are handed to the registrant
in person, no theft is possible.

57

Chapter 7 Evaluation

Usability: disruptive

An Internet voting systems aims to be a complete on-line substitute to traditional paper
ballots, which is disrupted by the off-line procedure of registering for the election.

7.2.6 Code Voting

Complexity: substanial

The codes have to be generated and delivered out of band to the user. The tallying
instance has to be adapted to decipher the codes uniquely for each ballot before tallying
as well.
Efficiency: mainly solved

Code voting (section 6.1.5) tries to mitigate the secure platform problem. By giving
the voter the chance to communicate through code, the voter’s device does not have the
chance to manipulate the votes or to eavesdrop as long as the authority holding the link
between the code and its meaning is not malicious.
Usability: disruptive

Code voting requires the entry of multiple codes, which can be mixed up, and is prone to
error.

7.2.7 Re-voting

Complexity: minor

Server-side changes have to be made to accept only the last valid vote from each user.
This should not take too much work since it is only the collection of all votes and dis-
missing every vote that is not the most recent.
Efficiency: appeasing

Re-Voting (section 6.5.2) is meant to provide disincentives to coercers as they can not
be sure if their resources are well spent, because the voter can disobey at every point of
the vote-process by voiding previous votes. If voters would really use the possibility to
re-vote and whether the coercer would abstain from coercion when re-voting is possible,
has not been scientifically shown yet. The disincentive for coercion is provided, whether

58

7.2 Evaluating Parts

it is relevant to the process is unclear.
Usability: unchanged

The voter can just re-vote by casting a vote as she would do otherwise.

7.2.8 Cryptographic Puzzles

Complexity: minor

The implementation of cryptographic puzzles (section 6.3.4) needs changes on the server
side to only accept clients or ballots with solved puzzles and on the client side to accept
and solve puzzles which was implemented many times for non voting systems.
Efficiency: appeasing

Preventing DDoS and chaff is well done by cryptographic puzzles. It however does not
prevent all kinds of DDoS.
Usability: unchanged

Usability should not be affected, since the voter casts her ballot as before. The crypto-
graphic operations are done unnoticed by the voter.

7.2.9 Expensive Credentials

Complexity: substantial

Expensive credentials (section 6.4.1) have to be deployed for the whole voter-base and
exceed the scope of every voting system. If expensive credentials are to be deployed spe-
cially for voting purposes, the implementation effort is huge, because more systems than
the voting system have to adapt to the credentials for them to be considered expensive
credentials.
Efficiency: mainly solved

It is very unlikely, but still possible for voters, to sell their expensive credentials.
Usability: enhanced

Voters can use the same credentials they are accustomed to using somewhere else in
contrast to special credentials they have to manage.

59

Chapter 7 Evaluation

7.2.10 Confirmation Codes

Complexity: substantial

Implementation of confirmation codes (section 6.1.6) needs a similar logistical effort as
code voting.
Efficiency: mainly solved

Confirmation codes strive to serve as a cast-as-intended-proof which is fulfilled, but can
be hijacked by e.g. compromising the medium which is used as the out-of-band channel
to deliver the codes as well as being in possession of the code sheets. The event that both
happens is very unlikely.
Usability: unchanged

Pilot projects of the Norwegian system [SB12] have shown that confirmation codes work
and possibly heighten the voters trust in the system. Voters participated voluntarily in the
confirmation process and did not lose trust even when the system acted incorrectly. The
codes are furthermore not mandatory for the voter.

7.2.11 Test Audits

Complexity: minor

The audit option (section 6.1.6) has to be implemented inside the voting client, whereby
the client reveals randomness factors and other information needed for decryption. This
is a fairly minor effort, since the client only has to store those values and wait for the
user to decide to challenge the encryption or to send the ballot.
Efficiency: mainly solved

Test-Audits serve as a cast-as-intended-proof and will statistically succeed if the voter
uses them a few times before casting her vote. The audits purpose can be defeated by
wrong use.
Usability: worsened

The Helios system uses test audits. Many users of Helios are unclear on how to correctly
use the audits and are sometimes confused by the option as shown by a usability study
by Karayumak et al. [KOKV11].

60

7.2 Evaluating Parts

Summary

The results from this chapter are compiled in figure 7.1 as an overview and for reference
purposes.

Method Efficiency Usability Complexity
Mandatory Bulletin Board perfect unchanged substantial
Tallying Mix-Nets mainly solved unchanged minor
Homomorphic Encryption appeasing unchanged minor
Threshold Encryption mainly solved unchanged minor
Off-line Voter Registration perfect disruptive improved
Code Voting mainly solved disruptive substantial
Re-Voting appeasing unchanged minor
Cryptographic Puzzles appeasing unchanged minor
Expensive Credentials mainly solved enhanced substantial
Confirmation Codes mainly solved unchanged substantial
Test Audits mainly solved worsened minor

Figure 7.1: An overview of the results of the evaluation chapter 7.

61

Chapter 8

Application

This chapter visits existing voting systems in the light of the developed guidelines. The
important issues are whether those systems take some of the proposed methods into ac-
count. If the guidelines were not followed, we research whether the systems are therefore
vulnerable for the corresponding issues. For this we take a look at Civitas, Helios, the
Estonian I-Voting system, Washington DVBM and the Norwegian I-Voting pilot.
The sections concentrate more on the unimplemented measures and its implications on
the system, since the effect of the guidelines when implemented already have been dis-
cussed in the guidelines chapter 6.
Every section is accompanied by a score-sheet, where the guidelines have been sorted
in one of the five groups: verifiability, anonymity, secure implementation, coercion and
DDoS / chaff. Every guideline is color-coded with either green, meaning that the guide-
line is implemented by the system, yellow, signifying either the explicitly stated possi-
bility to implement the guideline or a solution with a similar goal is already implemented
and red, meaning that the guideline has not been implemented. The purpose is to help
identify in which categories the system may be the most unsafe. In every section we try
to determine if the impression the score-chart is giving is accurate or rather is a good
estimation of the systems issues.
By pitting the score-chart against results from actual research on the system, we try to
determine if the score chart and guidelines posses any meaningful predictive power.

63

Chapter 8 Application

8.1 Civitas

Civitas is one of the most cited I-Voting systems implemented to date and is therefore
reviewed according to our guidelines. It implements five out of fifteen guidelines and
has similar systems or the option to upgrade to six guidelines.
Furthermore, Civitas does not use homomorphic encryption for the tally, but uses re-
encryption mix-nets instead, which serve the same purpose of preserving ballot anonymity
before tallying.
The issue of building a secure network between the election authority servers is not ad-
dressed by Civitas. This may be because Civitas was not deployed for any real elections.
Nevertheless at least a schematic of how to securely deploy Civitas in a real-world net-
work would help mitigate risks during deployment. As long as Civitas does not address
this, it keeps a potential security flaw as predicted by the chart.
A major pitfall is that Civitas does not use Code Voting or similar measures, because the
voter device is implicitly trusted. As shown by the score-chart this trust is misplaced and
can realistically not be assumed. Voter devices are highly susceptible to malware and are
thus potential attack vectors.
Civitas is also vulnerable to chaff votes since cryptographic puzzles or similar measures
are not implemented. Confirmation codes and test audits have not been implemented as
well, but are not necessary since the voter can check that her ballot was cast correctly
after it appears on the bulletin board.
Overall, Civitas is partly insecure against chaff votes, attacks on the voters end and has
no concept of how to deploy a secure instance in a network. This does correspond to the
issues made evident by the score-sheet in figure 8.1.

Verifiability Anonymity Secure Implementa-
tion

Coercion DDoS / Chaff

Bulletin Board Mix-Nets Network Security Re-Voting Crypto-puzzles
Offline-Registration Homomorphic

Encryption
Code-Voting Expensive Credentials Heavily decentralized

components
Public Voter-List Threshold Encryption Coercion Detection
Confirmation Codes
Test-Audits

Figure 8.1: Civitas score-chart regarding the developed guidelines

64

8.2 Helios

8.2 Helios

Helios scores fairly badly with only fulfilling three out of the fifteen guidelines and hav-
ing one additional mechanism that serves a similar purpose as another guideline.
The system is developed as a coercion-susceptible system that tries to be as simple as
possible while still at least achieving verifiability in the case of a system-compromise.
This is also shown by the score-chart, where Helios does not fulfill any of the guidelines
in the coercion category.
Furthermore, the score-chart indicates that Helios is vulnerable to DoS, which is accu-
rate, because Helios runs on a singular server, and does not use any protective measures
against DoS attacks. Several more flaws are indicated by the score-chart in the category
of secure implementation, which is the case since Helios does nothing to counter inse-
cure voter devices and has no concept regarding the deployment of the system.
All of those issues can be identified well with a glance at the Helios score-sheet, al-
though the sheet may also suggest that bad anonymity is provided, which is only the case
when the server is malicious. The score-chart in figure 8.2 for Helios thus seems a good
estimate of possible issues.

Verifiability Anonymity Secure Implementa-
tion

Coercion DDoS / Chaff

Bulletin Board Mix-Nets Network Security Re-Voting Crypto-puzzles
Offline-Registration Homomorphic

Encryption
Code-Voting Expensive Credentials Heavily decentralized

components
Public Voter-List Threshold Encryption Coercion Detection
Confirmation Codes
Test-Audits

Figure 8.2: Helios score-chart regarding the developed guidelines

8.3 Estonian I-Voting

The Estonian I-Voting system is widely used in national elections for several years. It
fulfills three guidelines to the fullest extent and has two measures similar to guidelines
provided by us. A glance at the score-chart 8.3 suggests that the system has massive po-
tential vulnerabilities in every category with exception of coercion and to a lesser degree
verifiability.

65

Chapter 8 Application

A security analysis by Springall et al. [SFD+14] confirms that possible attacks on anonymity
and verifiability can be conceived at least in a lab environment. In the analysis Springall
et al. make it evident that the Estonian system can have a complete breach of anonymity
trough a singular insider attacker, which is also shown by the score-chart where none of
the guidelines in the anonymity category is fulfilled.
The Estonian system has no precautions whatsoever against Denial-of-Service attacks
which is also highlighted by the score-chart. It is unknown how and if the system
deals with possible chaff-votes, made possible through re-voting. Moreover, the sys-
tems seems to be operated in an insecure manner, which is mentioned in the security
report by Springall et al., where e.g. singular administrators are updating the system ad-
hoc without the presence of another administrator.
The one positive aspect is the ability to re-vote and the Estonian ID system being an
exemplary case for expensive credentials, which are great for reducing coercion.
Again, the score-chart is a good starting point for locating possible threats in the system
and highlights the main flaws which also surfaced in real-world studies.

Verifiability Anonymity Secure Implementa-
tion

Coercion DDoS / Chaff

Bulletin Board Mix-Nets Network Security Re-Voting Crypto-puzzles
Offline-Registration Homomorphic

Encryption
Code-Voting Expensive Credentials Heavily decentralized

components
Public Voter-List Threshold Encryption Coercion Detection
Confirmation Codes
Test-Audits

Figure 8.3: Estonian I-Voting score-chart regarding the developed guidelines

8.4 Washington DVBM

The Washington Digital-Vote-By-Mail (DVBM) system was one of the first to conduct
a public trial before launch. In their paper, Wolchok et al. [WWIH12] describe several
severe flaws which made it possible for them to compromise the system and the outcome
of the mock-election.
The system only fulfills one out of fifteen guidelines. One glance at the score-chart in
figure 8.4 shows that the system is unfit for any type of integrity-preserving election.
The system has no concept of a secure network during deployment. In the previously

66

8.5 Norwegian I-Voting Pilot

cited paper Wolchock et al. use a security flaw to compromise the election web server
and use it as a starting point to compromise the rest of the election network. They can
furthermore read and manipulate votes at will, which is a huge integrity and anonymity
breach. They did not perform coercion or DoS attacks, but those would have been easily
possible as well. All of the above mentioned flaws are clearly visible in the score-chart.
It does not make sense to further speak of the singular flaws of the system, since the only
guideline it does fulfill is an optional off-line registration. This is another example of the
predictive nature of the score-chart by lack of accompanying guidelines.

Verifiability Anonymity Secure Implementa-
tion

Coercion DDoS / Chaff

Bulletin Board Mix-Nets Network Security Re-Voting Crypto-puzzles
Offline-Registration Homomorphic

Encryption
Code-Voting Expensive Credentials Heavily decentralized

components
Public Voter-List Threshold Encryption Coercion Detection
Confirmation Codes
Test-Audits

Figure 8.4: Washington DVBM score-chart regarding the developed guidelines

8.5 Norwegian I-Voting Pilot

The system fulfills two guidelines completely and three guidelines either partially or has
an equivalent solution in place.
A look at the score chart in figure 8.5 suggests that the system probably has problems
in the areas of anonymity, DDoS-vulnerability and potentially coercion. The system
ran multiple ballot box servers but was otherwise relatively centralized. Furthermore it
had no protection against vote-spam, since re-voting was allowed and could have been
abused. Both facts suggest that the system indeed is prone to be target of successful
DoS-attacks as predicted.
The only measure implemented against coercion is re-voting, which goes a long way in
coercion-prevention but would work better in tandem with other measures like the use
of expensive credentials and coercion detection. This again is correctly indicated by the
score-chart.
The provided anonymity of the ballot seems fine at first sight, since the votes are not pub-
licly published. But since the power of the authorities is fairly centralized in the system,

67

Chapter 8 Application

they themselves have the capability to void the anonymity of the ballot and gain knowl-
edge about the voters choices. Any insider attacker can void the anonymity as clearly
shown by the score-chart.
Lastly, the system does not follow a lot of the guidelines regarding verifiability but has
nonetheless enough equivalent solutions1 for the system to be considered verifiable,
which is reflected by the score chart with its two yellow and one green entry in the
verifiability section.

Verifiability Anonymity Secure Implementa-
tion

Coercion DDoS / Chaff

Bulletin Board Mix-Nets Network Security Re-Voting Crypto-puzzles
Offline-Registration Homomorphic

Encryption
Code-Voting Expensive Credentials Heavily decentralized

components
Public Voter-List Threshold Encryption Coercion Detection
Confirmation Codes
Test-Audits

Figure 8.5: Norwegian I-Voting score-chart regarding the developed guidelines

8.6 Summary

This chapter applied the guidelines score-chart from figure 6.1 to five in the real world
relevant systems. The results are consistent in that the score-chart is successfully pre-
dicting open security threats the systems possess. No to date known vulnerabilities of
the system were omitted by the score chart.

1The system uses several cryptographic proofs which can be conducted by the election authorities chained
together to produce a verifiable tally.

68

Chapter 9

Blueprint for an Attack

This chapter serves as an illustration of a hypothetical attack based on flaws highlighted
by the guidelines and the resulting score-chart. As the target we chose the Estonian
voting system because it is the currently most relevant network-voting system. A corre-
sponding score-chart can be seen in figure 8.3.
The attack-concept is multi-pronged and tries to present multiple threats at once. Attacker-
types and needed resources are described ad-hoc when needed. For better understanding
we created the figure 9.1, which is a schematic overview of the Estonian system.

9.1 Denial of Service

Since the system is fairly centralized the threat of (distributed) denial of service is present
and can be abused. Just a raw attack with enough attacker controlled machines on the
vote forwarding server could be successful, since all votes have to pass through this
server. This however is an attack that needs a lot of resources on the attacker side, since
it is symmetrical.
For a better attack we abuse asymmetry in the system. The Estonian systems allows
unlimited re-voting, but does not require the solving of cryptographic puzzles or simi-
lar measures. The attacker needs Estonian ID-cards and the corresponding PINs from a

69

Chapter 9 Blueprint for an Attack

Figure 9.1: A schematic overview of the Estonian voting system.

number of eligible voters1; not an impossible feat for a criminal organization or intelli-
gence agency. Now the cards can be used to generate valid ballots, that are sent as fast
and as many as possible to the vote forwarding server. For every ballot generated by the
attacker the vote forwarding server checks the ballot’s credentials, creates and forwards
log-messages to the log-server and signs the ballot before forwarding it to the vote stor-
age server.
The attack now requires considerably less resources than a brute-force distributed DoS
attack to overload the vote forwarding server. Since the vote forwarding server is the
chocke-point which all votes must pass, legitimate voters are forced to wait for the attack
to be over to cast their vote electronically.
The attack can be continuous or executed periodically, during times which are the most
probable for the main chunk of eligible voters to cast their vote. While this attack, de-
pending on length, would prevent electronic voting, the voters could still opt to cast their
vote at a physical ballot box. It does therefore not prevent the election, but rather turns

1The hardware-specifications of the Estonian system are not known, but assuming that they use common
hardware for their servers, a few hundred simultaneous ballots sent repeatedly should suffice. Keep in
mind, that a single eID and PIN can produce several votes, since unlimited re-voting is allowed.

70

9.2 Hijacking Votes

the network voting structure into a non-functioning money and power sink.

9.2 Hijacking Votes

Another attack vector is hijacking the voters device coupled with manipulation of the
vote. The Estonian voting system uses confirmation codes, which are displayed as a
QR code, which in turn can be scanned with a special mobile phone application for 30
minutes after the vote is cast. This does not hinder an attacker in manipulating a vote
on the voter device. Especially since code-voting is not implemented, an attacker can
use this to her advantage. Prerequisite for any attack is that the voters device needs to
be infected with any attacker controlled malware, which can be achieved by specially
tailored malware or by for example renting existing botnets located in Estonia.
Springall et al. published a paper [SFD+14], where they propose two attacks that defeat
the QR code confirmation and are based on a compromised voter device. The first attack
is termed Ghost Click attack, where the malware sniffs the PIN-code of the Estonian ID-
card and then re-votes either after 30 minutes are over or if the voter closes the window
with the verification code. As long as the ID-card is then still present in the machine, the
malware can revote without the possibility for detection.
The other method from the same paper was termed Bad Verify Attack and requires
the mobile phone to be compromised in tandem with the voters device. This is not
unlikely since the mobile phone is usually often connected to a person’s computer and
/ or synchronized through different online services. The malware on the mobile phone
manipulates the verification app to display a predetermined vote instead of the voter’s
choice, which is encoded in the QR-code. That allows the malware on the device to
change the vote during the casting-stage without detection.
A less severe, but still intolerable, attack would be the sole sniffing of voters choice. The
voting app requires the entry of the PIN-code for the ID-card, which displays at least the
voters full name2. The malware can now sniff which candidate is chosen by which voter
and thus void the anonymity of the ballot by sending the aquired data to the attacker.
Automated coercion can be easily carried out if the lastly described attack is possible.

2The client-side application is not fully open source and only screenshots are available for study.

71

Chapter 9 Blueprint for an Attack

9.3 Infiltrating the Vote Infrastructure

A detrimental approach to the above would be compromising the server side. This how-
ever requires some kind of insider-attacker. More precisely, this means either one of the
administrators is corrupt, or hard- or software is in advance; which is not impossible, but
could be hard to achieve. Malware hidden in e.g. the firmware of hard drives has been
used for targeted attacks by, allegedly, intelligence agencies as discovered in February
2015 [Men15].
A corrupt administrator can also be enough to compromise the servers; as Springall et al.
report [SFD+14] administrators were sometimes alone, while performing updates and
other maintenance tasks, leaving the security of the system to their discretion.
The easiest attack would be attained by deploying code inside the log and storage server.
Malicious code would then selectively remove votes, effectively manipulating the elec-
tion, since the log server seems to be the only form of audit trail. This attack however,
could be discovered if the total number of all cast votes can be counted and compared
to the tally total. Note that there is no information if there are other logs besides the log
storage which would allow for detection of this attack.
Another possible attack would be to deploy malware on to the tallying server. During
the tally phase, the server does not seem to produce any form of audit trail, which can be
abused. The malware infiltrates the system on an OS-level, thus being able to change the
result of any decryption performed on the server, effectively changing all votes without
a trace. Conclusively, the server then counts the counterfeit votes normally and outputs
a wrong tally.
This is a serious problem and shows, that without universal audit-trails or public verifia-
bility the election integrity can depend on a singular election worker, which should never
be the case.

72

Chapter 10

Conclusion

This thesis examines attacks against network voting systems and proposes design and
implementation guidelines to mitigate said attacks as much as possible.
For an advanced insight on possible attacks, we investigated obviously flawed voting
systems and took a look at historical attacks against electronic voting systems. Follow-
ing the results, goals were defined, that should be fulfilled by any secure network voting
system. Subsequently, the goals were used as a template to construct guidelines, which
help designers and developers of network voting systems during the inception and im-
plementation phase. Conclusively, the main contribution was identifying the appropriate
methods needed for well designed guidelines. Guidelines were compressed into a check-
list which can be used during development as a quick reference. They were furthermore
evaluated for different criteria like usability change or added complexity during imple-
mentation.
In addition to the evaluation, the guidelines-checklist was applied to existing systems.
During the application chapter, one could see that most issues predicted by the score-
chart did indeed surface historically within the systems examined. There were no pre-
viously found flaws of the examined systems that the score-chart did not hint at. Thus,
the checklist works in a predictive manner as well, strongly implying that the checklist
can be used effectively during design and implementation to mitigate the most common
flaws of a network voting system by trying to fulfill as many items on the checklist as
possible.
Lastly we developed a blueprint for an attack on the Estonian voting system, which is

73

Chapter 10 Conclusion

based loosely on the potential faults found by the checklist. Three possible attack vectors
were described, of whom two severely endanger the election integrity.

Future Work

Since the subject of the thesis is fairly broad, there is a lot of possible future work to be
done. The evaluation of the guidelines can be re-executed by implementing the guide-
lines in open-source voting systems and then comparing efficiency, usability change and
complexity of implementation of the modified and original system.
Another field of improvement could be research that examines if certain programming
languages / frameworks are inherently better suited in implementing network voting sys-
tems. It would also be interesting to study if types of programming languages, like
functional or logical, have any edge over traditional iterative languages.
A bigger next step would be the development of framework-software, inspired by the
developed guidelines, which aids in the development of network voting systems.
The maybe most obvious and ambitious extension would be to implement a working
network voting system, while following the guidelines in hopes of creating a new stan-
dardized, secure, open source network voting system.
More future work was suggested in section 5.6 regarding usability in Internet voting sys-
tem and section 5.2.1 touching on everlasting privacy. Furthermore there is the possibility
to study the effects of different kinds of mix-nets on electronic elections as suggested in
section 6.1.2.
More future work was already suggested in the sections 6.3.2, 6.3.4 and 6.5.1.

74

Bibliography

[ACKR13] ARAPINIS, Myrto; CORTIER, Véronique; KREMER, Steve; RYAN, Mark:
Practical everlasting privacy. In: Principles of Security and Trust.
Springer, 2013, pp. 21–40.

[Adi08] ADIDA, Ben: Helios: Web-based Open-Audit Voting. In: USENIX Secu-

rity Symposium Bd. 17, 2008, pp. 335–348.

[ASM05] ARKIN, Brad; STENDER, Scott; MCGRAW, Gary: Software penetration
testing. In: IEEE Security & Privacy 3 (2005), Nr. 1, pp. 84–87.

[B+02] BACK, Adam u. a.: Hashcash-a denial of service counter-measure. 2002.

[BF97] BONEH, Dan; FRANKLIN, Matthew: Efficient generation of shared RSA
keys. In: Advances in Cryptology—CRYPTO’97. Springer, 1997, pp. 425–
439.

[CC+08] CAMENISCH, Jan; CHAABOUNI, Rafik u. a.: Efficient protocols for set
membership and range proofs. In: Advances in Cryptology-ASIACRYPT

2008. Springer, 2008, pp. 234–252.

[CCJC14] CHEN, Chin-Ling; CHEN, Yu-Yi; JAN, Jinn-Ke; CHEN, Chih-Cheng: A
Secure Anonymous E-Voting System based on Discrete Logarithm Prob-
lem. In: Appl. Math 8 (2014), Nr. 5, pp. 2571–2578.

[CCM07] CLARKSON, Michael R.; CHONG, Stephen; MYERS, Andrew C.: Civitas:
A secure voting system / Cornell University. 2007. Technical Report.

75

Bibliography

[CDN01] CRAMER, Ronald; DAMGÅRD, Ivan; NIELSEN, Jesper B.: Multiparty

computation from threshold homomorphic encryption. Springer, 2001

[Com15] COMMISION, United States Election A.: TGDC Recommended Guide-

lines. http://www.eac.gov/vvsg/, 2015.

[CSB03] COFFEY, Tom; SAIDHA, Puneet; BURROWS, Peter: Analysing the secu-
rity of a non-repudiation communication protocol with mandatory proof
of receipt. In: Proceedings of the 1st international symposium on In-

formation and communication technologies Trinity College Dublin, 2003,
pp. 351–356.

[DAM+15] DURUMERIC, Zakir; ADRIAN, David; MIRIAN, Ariana; BAILEY,
Michael; HALDERMAN, J. A.: FREAK Vulerability. https://

freakattack.com/, 2015.

[DiP15] DIPIERRO, Massimo: E-Vote. https:

//github.com/mdipierro/evote/commit/

8b48a6d449bbc1f10f34e94aafee660bf9197435, 2015.

[DVDGA12] DEMIREL, Denise; VAN DE GRAAF, Jeroen; ARAÚJO, Roberto: Improv-
ing helios with everlasting privacy towards the public. In: EVT/WOTE

(2012).

[Eur11] EUROPE, Council of: Electoral assistance and Census. http:

//www.coe.int/t/dgap/democracy/activities/ggis/

E-voting/E-voting%202010/Biennial_Nov_meeting/

ID10322%20GBR%206948%20Evoting%20handbook%20A5%

20HD.pdf, 2011.

[Eve07] EVERETT, Sarah P.: The usability of electronic voting machines and how

votes can be changed without detection, RICE UNIVERSITY, Diss., 2007

[Fer04] FERNANDEZ, Eduardo B.: A Methodology for Secure Software Design.
In: Software Engineering Research and Practice, 2004, pp. 130–136.

76

http://www.eac.gov/vvsg/
https://freakattack.com/
https://freakattack.com/
https://github.com/mdipierro/evote/commit/8b48a6d449bbc1f10f34e94aafee660bf9197435
https://github.com/mdipierro/evote/commit/8b48a6d449bbc1f10f34e94aafee660bf9197435
https://github.com/mdipierro/evote/commit/8b48a6d449bbc1f10f34e94aafee660bf9197435
http://www.coe.int/t/dgap/democracy/activities/ggis/E-voting/E-voting%202010/Biennial_Nov_meeting/ID10322%20GBR%206948%20Evoting%20handbook%20A5%20HD.pdf
http://www.coe.int/t/dgap/democracy/activities/ggis/E-voting/E-voting%202010/Biennial_Nov_meeting/ID10322%20GBR%206948%20Evoting%20handbook%20A5%20HD.pdf
http://www.coe.int/t/dgap/democracy/activities/ggis/E-voting/E-voting%202010/Biennial_Nov_meeting/ID10322%20GBR%206948%20Evoting%20handbook%20A5%20HD.pdf
http://www.coe.int/t/dgap/democracy/activities/ggis/E-voting/E-voting%202010/Biennial_Nov_meeting/ID10322%20GBR%206948%20Evoting%20handbook%20A5%20HD.pdf
http://www.coe.int/t/dgap/democracy/activities/ggis/E-voting/E-voting%202010/Biennial_Nov_meeting/ID10322%20GBR%206948%20Evoting%20handbook%20A5%20HD.pdf

Bibliography

[Gjø10] GJØSTEEN, Kristian: Analysis of an internet voting protocol. In: IACR

Cryptology ePrint Archive 2010 (2010), pp. 380.

[GRBR13] GREWAL, Gurchetan S.; RYAN, Mark D.; BURSUC, Sergiu; RYAN, Pe-
ter Y.: Caveat coercitor: Coercion-evidence in electronic voting. In: Se-

curity and Privacy (SP), 2013 IEEE Symposium on IEEE, 2013, pp. 367–
381.

[hea15] HEARTBLEED.COM: Heartbleed SSL Vulerability. http://

heartbleed.com/, 2015.

[HT15] HALDERMAN, J A.; TEAGUE, Vanessa: The New South Wales iVote Sys-
tem: Security Failures and Verification Flaws in a Live Online Election.
In: arXiv preprint arXiv:1504.05646 (2015).

[IT15] IT, Fox: Quantum Insert detection for Snort. https://github.com/
fox-it/quantuminsert/tree/master/detection/snort,
2015.

[Kha14] KHARE, Aparna: Scrutiny of the Indian attempt to Internet Voting. In:
International Journal of Engineering 3 (2014), Nr. 4.

[KOKV11] KARAYUMAK, Fatih; OLEMBO, Maina M.; KAUER, Michaela; VOLKA-
MER, Melanie: Usability analysis of helios-an open source verifiable re-
mote electronic voting system. In: Proceedings of the 2011 USENIX Elec-

tronic Voting Technology Workshop/Workshop on Trustworthy Elections.

USENIX, 2011.

[KZ07] KUTYŁOWSKI, Mirosław; ZAGÓRSKI, Filip: Verifiable internet voting
solving secure platform problem. In: Advances in Information and Com-

puter Security. Springer, 2007, pp. 199–213.

[KZ10] KUTYŁOWSKI, Mirosław; ZAGÓRSKI, Filip: Scratch, click & vote: E2E
voting over the Internet. In: Towards trustworthy elections. Springer,
2010, pp. 343–356.

77

http://heartbleed.com/
http://heartbleed.com/
https://github.com/fox-it/quantuminsert/tree/master/detection/snort
https://github.com/fox-it/quantuminsert/tree/master/detection/snort

Bibliography

[Lip04] LIPNER, Steve: The trustworthy computing security development lifecy-
cle. In: Computer Security Applications Conference, 2004. 20th Annual

IEEE, 2004, pp. 2–13.

[LRWW04] LEVINE, Brian N.; REITER, Michael K.; WANG, Chenxi; WRIGHT,
Matthew: Timing attacks in low-latency mix systems. In: Financial cryp-

tography Springer, 2004, pp. 251–265.

[Men15] MENN, Joseph: Russian researchers expose breakthrough in U.S. spying

program. http://www.reuters.com/article/2015/02/17/

us-usa-cyberspying-idUSKBN0LK1QV20150217, 2015.

[Mil07] MILLER, Charlie: The legitimate vulnerability market: Inside the secre-
tive world of 0-day exploit sales. In: In Sixth Workshop on the Economics

of Information Security Citeseer, 2007.

[MLY05] MYAGMAR, Suvda; LEE, Adam J.; YURCIK, William: Threat model-
ing as a basis for security requirements. In: Symposium on requirements

engineering for information security (SREIS) Bd. 2005, 2005, pp. 1–8.

[MN06] MORAN, Tal; NAOR, Moni: Receipt-free universally-verifiable voting
with everlasting privacy. In: Advances in Cryptology-CRYPTO 2006.
Springer, 2006, pp. 373–392.

[NRRK] NIKAM, Rutuja; RANKHAMBE, Monika; RAIKWAR, Diksha; KASHYAP,
Atharv: Secured E-Voting Using NFC Technology.

[Oeh05] OEHLERT, Peter: Violating assumptions with fuzzing. In: Security &

Privacy, IEEE 3 (2005), Nr. 2, pp. 58–62.

[Oka98] OKAMOTO, Tatsuaki: Receipt-free electronic voting schemes for large
scale elections. In: Security Protocols Springer, 1998, pp. 25–35.

[OMA+99] OHKUBO, Miyako; MIURA, Fumiaki; ABE, Masayuki; FUJIOKA, At-

78

http://www.reuters.com/article/2015/02/17/us-usa-cyberspying-idUSKBN0LK1QV20150217
http://www.reuters.com/article/2015/02/17/us-usa-cyberspying-idUSKBN0LK1QV20150217

Bibliography

sushi; OKAMOTO, Tatsuaki: An improvement on a practical secret voting
scheme. In: Information Security. Springer, 1999, pp. 225–234.

[Opp02] OPPLIGER, Rolf: How to address the secure platform problem for remote
internet voting. In: Sis 2 (2002), pp. 153–173.

[OSH08] OPPLIGER, Rolf; SCHWENK, Jörg; HELBACH, Jörg: Protecting Code Vot-
ing Against Vote Selling. In: Sicherheit Bd. 128 Citeseer, 2008, pp. 193–
204.

[PP] PULLS, Tobias; PEETERS, Roel: Balloon: A Forward-Secure Append-
Only Persistent Authenticated Data Structure.

[RA12] RIBARSKI, Pance; ANTOVSKI, Ljupcho: Mixnets: Implementation and
performance evaluation of decryption and re-encryption types. In: CIT.

Journal of Computing and Information Technology 20 (2012), Nr. 3,
pp. 225–231.

[SB12] STENERUD, Ida Sofie G.; BULL, Christian: When reality comes knocking
Norwegian experiences with verifiable electronic voting. In: Electronic

Voting 205 (2012), pp. 21–33.

[Sch99] SCHNEIER, Bruce: Attack trees. In: Dr. Dobb’s journal 24 (1999), Nr.
12, pp. 21–29.

[Sch13] SCHNEIER, Bruce: How the NSA Attacks Tor/Firefox Users With

QUANTUM and FOXACID. https://www.schneier.com/blog/
archives/2013/10/how_the_nsa_att.html, 2013.

[SFD+14] SPRINGALL, Drew; FINKENAUER, Travis; DURUMERIC, Zakir; KITCAT,
Jason; HURSTI, Harri; MACALPINE, Margaret; HALDERMAN, J A.: Se-
curity Analysis of the Estonian Internet Voting System. In: Proceedings

of the 2014 ACM SIGSAC Conference on Computer and Communications

Security ACM, 2014, pp. 703–715.

79

https://www.schneier.com/blog/archives/2013/10/how_the_nsa_att.html
https://www.schneier.com/blog/archives/2013/10/how_the_nsa_att.html

Bibliography

[SHR+11] SIMPSON, Stacy; HOWARD, M; RANDOLPH, K; GOLDSCHMIDT, C;
COLES, M; BELK, M; SAARIO, M; SONDHI, R; TARANDACH, I;
YONCHEV, Y u. a.: Fundamental practices for secure Software Devel-
opment Software Assurance Forum for Excellence in Code, 2011.

[SMHM15] SCHNEIDER, Alexander; METER, Christian; HAGEMEISTER, Philipp;
MAUVE, Martin: Tor is not enough: Coercion in Remote Electronic Voting

Systems. 2015.

[Tor05] TORR, Peter: Demystifying the threat modeling process. In: Security &

Privacy, IEEE 3 (2005), Nr. 5, pp. 66–70.

[Vir15] VIRGINIA INFORMATION TECHNOLOGIES AGENCY: Security Asses-
ment of WINVote Voting Equipment for Department of Elections / Vir-
ginia Information Technologies Agency. 2015. Technical Report.

[WWIH12] WOLCHOK, Scott; WUSTROW, Eric; ISABEL, Dawn; HALDERMAN, J A.:
Attacking the Washington, DC Internet voting system. In: Financial Cryp-

tography and Data Security. Springer, 2012, pp. 114–128.

[ZJT13] ZARGAR, Saman T.; JOSHI, James; TIPPER, David: A survey of de-
fense mechanisms against distributed denial of service (DDoS) flooding
attacks. In: Communications Surveys & Tutorials, IEEE 15 (2013), Nr. 4,
pp. 2046–2069.

80

Ehrenwörtliche Erklärung

Hiermit versichere ich, die vorliegende Bachelorarbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt zu haben. Alle Stellen, die
aus den Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese
Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Düsseldorf, 06. August 2015 Alexander Schneider

81

Hier die Hülle

mit der CD/DVD einkleben

Diese CD enthält:

• eine pdf -Version der vorliegenden Bachelorarbeit

• die LATEX- und Grafik-Quelldateien der vorliegenden Bachelorarbeit samt aller ver-
wendeten Skripte

• die Websites der verwendeten Internetquellen

	Titelseite
	Abstract
	Danksagung
	Contents
	List of Figures
	1 Introduction
	1.1 Related Work
	1.2 Structure

	2 Preliminaries
	2.1 Assumptions
	2.2 Definitions

	3 Historical Attacks on e-Voting Systems
	4 Bad Examples
	4.1 Theory Not Meeting the Real World
	4.2 Insufficient Authentication
	4.3 Insufficient Security

	5 Goals of a securely implemented e-Voting system
	5.1 Integrity
	5.1.1 Public auditing
	5.1.2 Cast-as-intended mechanisms
	5.1.3 Securing the Application Code

	5.2 Anonymity
	5.2.1 Everlasting Privacy

	5.3 Robustness / Reliability
	5.4 Secure Authentication
	5.5 Coercion Freeness
	5.6 Usability

	6 Guidelines for Secure Internet Voting Systems
	6.1 Measures towards Integrity
	6.1.1 Bulletin Board
	6.1.2 Tallying Instance
	6.1.3 Authentication Authority (AA)
	6.1.4 Network Connection
	6.1.5 Voter Device
	6.1.6 Cast-as-intended

	6.2 Measures Towards Anonymity
	6.2.1 Distributed Election Keys
	6.2.2 Everlasting Privacy

	6.3 Measures Towards Robustness
	6.3.1 Invalid Input
	6.3.2 Risk of centralized Components
	6.3.3 Application Layer (D)DoS
	6.3.4 Spam / Chaff

	6.4 Measures Towards Secure Authentication
	6.4.1 Credential Types
	6.4.2 Credential Creation

	6.5 Measures Towards Coercion Freeness
	6.5.1 Privacy Preserving Communication Medium
	6.5.2 Receipt Freeness
	6.5.3 Alternative Measures

	6.6 Combination of Introduced Measures
	6.6.1 Homomorphic Encryption + Code Voting
	6.6.2 Blind Signatures + Re-Voting

	6.7 General Security
	6.7.1 Formal Training
	6.7.2 Layering the Software
	6.7.3 Threat Modeling
	6.7.4 Further Analysis
	6.7.5 Further Resources

	6.8 Summary

	7 Evaluation
	7.1 Ranking Criteria
	7.1.1 Efficiency
	7.1.2 Usability
	7.1.3 Complexity of Implementation

	7.2 Evaluating Parts
	7.2.1 Mandatory Bulletin Board
	7.2.2 Tallying Mix-Nets
	7.2.3 Homomorphic Encryption
	7.2.4 Threshold Encryption
	7.2.5 Offline Voter Registration
	7.2.6 Code Voting
	7.2.7 Re-voting
	7.2.8 Cryptographic Puzzles
	7.2.9 Expensive Credentials
	7.2.10 Confirmation Codes
	7.2.11 Test Audits

	8 Application
	8.1 Civitas
	8.2 Helios
	8.3 Estonian I-Voting
	8.4 Washington DVBM
	8.5 Norwegian I-Voting Pilot
	8.6 Summary

	9 Blueprint for an Attack
	9.1 Denial of Service
	9.2 Hijacking Votes
	9.3 Infiltrating the Vote Infrastructure

	10 Conclusion
	Bibliography

