HEINRICH HEINE

UNIVERSITAT DUSSELDORF

Improving Dependency Resolution of

Python Packages

Bachelorarbeit

von

Alexander Schneider
aus
Krasnyj Jar
vorgelegt am

Lehrstuhl fiir Rechnernetze und Kommunikationssysteme
Prof. Dr. Martin Mauve

Heinrich-Heine-Universitidt Diisseldorf
Juli 2013

Betreuer:

Philipp Hagemeister M. Sc.

Acknowledgments

Firstly I want to thank gravity, because writing a thesis in midair would have been really
annoying.
Secondly I thank Stannis Baratheon, the First of his name, King of the Andals and the
Rhoynar, Lord of the three Kingdoms, Protector of the Realm and Champion of the one
true God.
Last but not least I want to thank my fellow students from the Fachschaft Informatik and

my advisor Philipp Hagemeister for their help.

il

Contents

||:ISt of Flguresl

1__Introduction

[2 Theoretical Background|

2.2 Dependency Resolution Problem|

n3

Pseudo Boolean Optimization|

3 Related Work

|4 Implementation|

4.1 Structuref.

“4.3.2 Dependency dictionary|

“4.3.3 Translation process| . .

i

Graphical Output]

©__Additional Work|

52

setup.py Analysis|

[5.2.1 Execution of the Analysis|

[5.2.2 Results of the Analysis|

Vii

whn B~ W W

10
11
12
12
12
14
14
15

17
17
18
18
20

Contents

[5.3 Solver comparison| 22
[5.4 Synthethic generation of pbo Instances|. 23
6 Conclusion| 25

o0
N
~

Vi

List of Figures

2.1 PBO Formula Example 5
[5.1 Barplot of setupfile Distribution| 21
[5.2 Top 10 calls causing invahid files| 21
[5.3 Cases solved and corresponding solver| 23
[5.4 Solver and points after tests|. oL, 23

vii

Chapter 1

Introduction

Every big software project usually needs a number of dependencies on external software
and packages. Despite the extensive built-in libraries of languages like Python the need

for external packages, from now on called modules, often arises.

However most modules have dependencies on external modules themselves. This intro-
duces the so called dependency resolution problem, which is defined defined by Burrows
in [BurO5[]. Current Python installation tools like buildout or pip can’t solve complex
conflicts between those dependencies and the modules already installed. For example
adhocracy version 1.1 has 24 direct dependencies and over 700 possible indirect caused
by the direct dependencies.

Furthermore there are no tools available which can perform a quick check whether a
newly introduced dependency to a module breaks the module because of conflicts with
other dependencies. For this thesis a Python module called PyDYN was designed and
implemented. PyDYN adapts existing generic solvers for pseudo boolean optimization
to compute solutions for the dependency resolution problem. For further research several
analyses of python installation files and their structure were made. In the context of de-
signing PyDYN several other needs for a metadata database or an automated downloader

for packages arose and were catered to in scope of the thesis.

The second chapter examines the theoretical background for the thesis. The following

chapters three and four describe the practical implementation of a tool to solve depen-

Chapter 1 Introduction

dencies and some additional work done in scope of this thesis; For example a downloader
tool and analysis of setupfiles. The fifth chapter shows related work and the last chapter

ends the thesis with a conclusion.

The second chapter examines the theoretical background for the thesis. The following
chapter three discusses related work. Chapters four and five describe the practical im-
plementation of a tool to solve dependencies and some additional work done in scope of
this thesis; For example a downloader tool and analysis of setupfiles. The sixth chapter

ends the thesis with a conclusion.

Chapter 2

Theoretical Background

This chapter states some theoretical definitions needed to understand the methods used
for solving the dependency resolution problem. All given definitions are similar to the
definitions introduced by Trezentos et al. in [TLO10]] but specific to Python.

2.1 Definitions

1. Module: A module m is a tuple (id, v) where id is a simple name or identifier and
v is the version.
A 1is the finite set of all modules.

2. Dependency: A dependency d is a set of modules dy, ... ,d, with the possible ver-
sion constraints >, <, >, <,==, = for every d;. Every module has a finite number
of dependencies.

3. Conflict: A conflict is a function ¢ : .# x .# — {True, False}, that states if two
modules can not be used simultaneously. Typically two modules in Python only
conflict if they have the same id, because Python only allows unique module names
in its namespace. The Python aliases for imports are not a solution because only
the contents of Pythons sys.modules variable matter, which uses the original

module names.

Chapter 2 Theoretical Background

For example:
my = (adhocracy, 1.1), my = (pylons, 0.7.9), m3 = (adhocracy, 2.0)

c(my, my) = False, c(my,m3) = True

Furthermore two modules can conflict indirectly through their dependencies for
example: m, has dependency d| = "pylons>2" and m,; has dependency d> = "py-
lons=1.1" — ¢(my,mp) = True.

4. Installation: An installation .# is a typically small subset of .#. An installation
is consistent if Vm;, #m; € 7 : c(m;,m;) = False, where i,j € Nym; € A .
In simpler terms an installation is consistent if all modules of the installation do

not conflict with each other pairwise.

2.2 Dependency Resolution Problem

The dependency resolution problem is defined using a definition alike that of Burrows
in [Bur05]:

Given an installation iy that is not consistent, we want to find a similar installation i,
that is consistent. In other words, all ids corresponding to modules contained in iy have
to be present in i.. This problem is NP-complete as burrows shows in [Bur(O5] using a
reduction from CNF-SAT.

Although the problem is NP-complete, a pseudo boolean optimization formula can be
contrived for a given dependency problem. The PBO formula in turn can be used to

solve the problem heuristically for different optimization criteria.

2.3 Pseudo Boolean Optimization

2.3 Pseudo Boolean Optimization

Pseudo boolean functions are of the form

f(X],...,Xn) = ZCi < Xi

where i € N, x; € {0,1}, ¢; € Z is a constant.
For the problem at hand integer constraints are added to the formula as seen in [TLO10].

The formula then has the generic form

Zci ‘X; >n, n€Z.
i

The constraint is not limited to the > operator. The operator can be replaced by <, >
, <, =. A generic PBO formula can also have an optimization formula, for example
min(f1), or max(f>). While the constraints are mandatory the optimization formula is
not. A PBO formula without the optimization part is alike to a SAT problem, where all

solutions are equally good.

Figure 2.1: PBO Formula Example

min:20-x; + 15-x0 + 25-x3
l-x;1 +2-x >1

l-x3 4+ 1-xp <1

Chapter 3

Related Work

Other researchers tried to solve the dependency resolution problem before.

[BurO5]] proposed a best First Search in combination with techniques to reduce the
branching factor. However this solution was not evaluated in practice.

[LBRO9Y] introduced an metadata format and a corresponding constraints encoding for
dependency relationships to resolve upgradeability problems with Eclipse plugins.

A similar approach was made by [ABL"10]. The paper proposed using boolean op-
timization and SAT to resolve the upgradeability problem in Linux distributions. The
corresponding implementation of a tool used Sat4J-PB and P2CUDF, which did not al-
ways perform at the top level compared to other solvers.

Finally Trezentos et al. [TLO10] used an component based approach in combination
with pseudo boolean encoding. The main contribution was showing that every step of
the dependency resolution (pbo translation, resolving the pbo formula, fetching the files)

is interchangeable if encapsulated.

Chapter 4

Implementation

The main work of this thesis was the creation of a Python dependency resolver tool
called PyDYN. PyDYN and its corresponding API and implementation are described in
this chapter. When standard installation tools for Python, like pip or buildout, use PyDYN
they can potentially experience a big speedup of execution. PyDYN calculates all needed
packages beforehand so the installation tool can use concurrent downloads. Without
PyDYN the installation tool downloads one module then calculates its dependencies and
downloads those sequentially. Then the procedure is repeated for the newly downloaded

modules until all dependencies are resolved.

4.1 Structure

PyDYN was structured in three modules. The modules are responsible for metadata
generation, PBO translation, graphical output and provide an API. Every part is described
in detail in the following sections. For the correct use of PyDYN a PBO solver and the

metadata file meta.json is needed.

Chapter 4 Implementation

4.2 Dependency Database

For a complete calculation of an optimal installation, a powerset of all dependencies of
the to be installed module must be examined. For example adhocracy version 1.1 has 24
dependencies. If the recursive possible dependencies are considered the number rises to
over 700. Far too much packages to be downloaded for every calculation.

Because the Python Package Index (PyPI) provided no means to obtain metadata, a
database was constructed which holds all parseable dependencies for modules which
were available on PyPI at 2013-05-03. For the construction 112,600 modules were
downloaded with a tool created for this purpose. The downloader is described further
in chapter 5.1.

A Python tool parses all modules heuristically for the creation of the database. All mod-
ules on PyPI are required to have a setup.py file which typically uses a sefup() function.
The setup() function then provides a list of all dependencies needed for the installation

of mentioned module. Three different database formats were considered for the task at
hand.

1. A .rar.gz file which holds directories corresponding to module names, which in
turn hold .json files corresponding to versions of that module, with the metadata as

content.
2. A SQLite database where every row in a table holds the metadata.

3. A single .json file which represents a dictionary with the module names as keys
and another dictionary as value. This second dictionary has the module versions

as key and the corresponding dependencies as value.

For every of the three formats benchmarks were obtained to measure performance. Using
the dependency resolution calculation for adhocracy v. 1.1 the time needed for execution

was measured.

10

4.3 OPB Translation

1. .tar.gz-file: 79 sec
2. SQLite database: 50 sec

3. Single .json file: < 1 sec

The .tar.gz file performed poorly because .tar is designed for sequential access and the
algorithm utilizes a lot of random access.

The fact that select-statements with string comparisons are fairly slow in SQL explains
the bad performance of the SQLite database. Furthermore an index was not defined at the
time of the database creation, which probably slowed it down further. Other databases
like PostgreSQL could potentially be a lot faster because of advanced features ,like the
definition of own field types, not available in SQLite. They were however not tested for
the sake of simplicity and because the .json file was fast enough at the time of implemen-
tation.

Because of the good performance of the .json file it was chosen as the database format in
the final version of PyDYN. The file has a size of 5 MB for 112000 packages, so concerns
that the program may slow down if the file gets too big to load in RAM are unwarranted.
Currently the developers of Python are working on a metadata format which will provide
online metadata for all packages on PyPI in the future. The metadata format is described
further in PEP 426 [CHS13]]. A proof of concept implementation of the online metadata
for PyPI has been made by the red-dove.com developers [Teal3].

To demonstrate compatibility with the new format PyDYN has a new meta mode where it
uses the red-dove.com database to retrieve metadata. This mode is just a proof of concept
and is very slow at the moment, because every dependency request results in one HTTP

request.

4.3 OPB Translation

The solver.py module is part of PyDYN and mainly responsible for generation of meta-
data and translation from dependencies to OPB and back. solver.py was designed as the
core of PyDYN.

11

Chapter 4 Implementation

4.3.1 OPB file format

PyDYN utilizes modern PBO solvers for the resolution of dependencies. PyDYN is com-
patible to all solvers that were part of the Pseudo Boolean Competition [RM13b]. These
solvers were supported because they all have to comply to the OPB file format, which is
described in [RM13al].

The OPB format describes how a PBO formula can be represented in a machine-readable

fashion.

4.3.2 Dependency dictionary

The main part of the solver.py is the OPBTranslator class which is responsible for the
generation of metadata, the translation of a dependency dictionary to OPB and the trans-
lation from the output of a PBO solver back to a human or machine-readable format.
OPBTranslator is instantiated with a module name and optionally a version of the
module that should be installed.

generateMetadata () is then called to generate a dependency dictionary. The algo-
rithm uses the module name to retrieve the dependencies for that module. If those were
not already processed their dependencies are retrieved as well. This step is iterated until
no new dependencies can be retrieved.

If more than one module has to be installed the process is slightly different. For every

module addDependency () then generateMetadata () has to be called.

4.3.3 Translation process

generateOPB () is used after a dependency dictionary was created and translates the
resolution problem at hand into a PBO formula in OPB format.

First the minimization function is created for which the problem has to be optimized.
Modules already installed get a big negative coefficient, because optimally they should
not get uninstalled during the installation of a new module if possible.

All possible new modules get a small positive coefficient, so the solution is optimized for

12

4.3 OPB Translation

the least number of newly installed modules. Installing the newest version of each mod-
ule would be another optimization criteria which conflicts with the least number of new

packages criteria and is not implemented in the current PyDYN version. For example:

Current installation: foo 3, bar 1
Module to be installed: ~ baz 5
Dependency Dictionary: {baz 5: [pyrate 3, pyrate 2], pyrate 3: [], ...}

The optimization formula then is:

min: —100- (foo,3) —100- (bar,1) +20-(baz,5) +20- (pyrate,3) +20- (pyrate,2)
The to be installed module is translated to a formula with a > constraint. According to
the first example: (baz,0.5) > 1

All conflicts caused by the same name in the dependency dictionary are translated to
formulas with similar constraints.

For example —1 - (pyrate,3) — 1-(pyrate,2) > —1 is a conflict between two versions of
the module pyrate

The dependencies for a module translate into several formulas, because every depen-
dency d; of one module and all possible valid candidates to satisfy d; are translated into
one formula. The procedure ensures that every dependency gets satisfied if possible. For
example if the previous example had another dependency for baz v. 0.5: pygments v.
1.3alpha

—1-(baz,0.5) +1-(pyrate,3) +1-(pyrate,2) >0

—1-(baz,0.5) +1-(pygments,1.3alpha) >0

An OPBTranslator object maintains a symbol table which maps modules to vari-
ables, because the PBO format only allows variable names € xj...x,

OPBTranslator also parses the output of a PBO-solver and uses the symbol table
to generate two lists: one list which contains the elements that should be installed or
should be kept installed and one list with elements that should not be installed or should

be uninstalled.

13

Chapter 4 Implementation

4.4 Graphical Output

The depgraph.py module is part of PyDYN and provides methods for the visualization of
dependency graphs.

depgraph.py generates dictionary objects from the current installation and uses those
dictionaries to generate .dot [gral 3| files. depgraph.py uses the graphviz package under
UNIX systems to convert the .dot files to PNG or SVG graphics. Furthermore a terminal
output can be generated.

depgraph.py can be used standalone from terminal or imported as a module.

4.5 API

The API provides two classes Problemand Solution.

A Problem object is instantiated with the name of the module to be installed. Option-
ally a solver and an installation path can be set. Problem provides solve () tosolve a
conventional dependency resolution problem or checkFutureDependency (), for
checking if one or more newly introduced dependencies break the module. For example:
If one wants to introduce communism as a new dependency to adhocracy
checkFutureDependency () verifies if all dependencies of adhocracy could still
get satisfied at the same time. If there is no possible consistent solution
checkFutureDependency () prints a maximal subset of dependencies that is con-
sistent. Continuing the previous example: If communism conflicts with three of adhoc-
racys old dependencies the returned solution will suggest to not use communism.

Either way, both solve () and checkFutureDependency () returna Solution
object.

Solution objects provide methods to draw a graph of the solution and get human read-
able strings or tuples of the modules which have to be installed for the consistent solution

found. Another output option are pip compatible requirements.txt files.

14

4.6 Integration in pip

4.6 Integration in pip

For demonstration purposes the API was integrated in the 1.3.X developer version of the
pip installation tool. The API hooks before pip starts to download the needed modules.
Before the hook pip only adds the module that should be installed to its download queue.
At this point PyDYN calculates the dependencies and passes the result as fixed depen-
dencies (for example pyrate==0.1) to pip. This method extends pips own dependency
resolution, because the user still can add custom dependencies with a requirements.txt
file or per command line parameter. pip then proceeds to download and install the pack-
ages. Because PyDYN heeds the, at the moment of the installation, current python library
path it will not simply install conflicting versions or abort like standard pip does, but in-
stead calculate an optimal solution for the configuration at hand if possible.

A pull request for the modded version against the master branch of pip was not made,
because PyDYN needs a metadata database to work (for example meta.json, described
earlier) and the efforts to construct a metadata-format and a database for python just
have been started by the developers. For further information see PEP 426 [[CHS13|.

15

Chapter 5

Additional Work

This chapter describes additional work that was either necessary for the completion of

the thesis or improved the quality of PyDYN.

5.1 Downloader Tool

For a fast analysis of all packages on the Python Package Index (PyPI) the packages need
to be downloaded. A Python script which was written for this purpose is described in
this section.

The script uses five threads to execute the downloads simultaneously. The number of
threads can be adjusted in the source code in the get_files () method. A hashing
method is responsible for the management of finished downloads. Every thread that is
not busy requests a new download URL from a generator. The generator parses PyPI for
available modules. If it encounters a new module it generates a hash /4 from the name of
the module and crates a h.part file in the cache directory. The generator then parses all
download links for the versions of the given module and saves them into A.part.

The links are returned to the threads. The thread hashes the link and checks if the hash
is present in the cache directory. If not it creates a hash.part for the link and starts the
download. If the download is ready the hash.part file gets renamed to hash. When

all downloads for a module are ready h.part becomes h. This way every version of a

17

Chapter 5 Additional Work

module only has to be downloaded exactly once. The .part files are used to prevent cor-
rupted files. If network connectivity is interrupted during the download the tool repeats
all downloads whose hash is still a .part file.

The downloader can be started in update-mode. Update-mode is slower, because it ig-

nores the existing index-hashes and this way scans for new versions of all packages.

5.2 setup.py Analysis

PyDYN 1n its current state faces the problem, that an up-to-date metadata database is
needed for the calculation of a solution. Furthermore the database file has to be present
on the system for every calculation. Another problem of the Python installation routine
is that currently a sefup.py file has to be run for the installation of a Python module. The
code in the setup.py file is potentially harmful and is not limited to a subset of the python
language; For example see the python-nation module on PyPI [KM13]].

Those problems would be obsolete if an online database that stores metadata, similar to
the repositories of Linux distributions, would be provided. It is not realistic that every of
the 112000 modules would be updated to the new metadata format by their maintainers.
So an analysis of the setup.py had to be made to investigate if the code of the setup.py

files is simple enough to be replaced by metadata.

5.2.1 Execution of the Analysis

The Analysis was done using a script written in Python. The algorithm iterates over
all in chapter 5.1 previously downloaded modules. For every module the setup.py file
is extracted and parsed into an Abstract Syntax Tree (AST). For further analysis an An-
alyzer object is created for the given AST. The Analyzer object iterates over the trees
body, which is constituted by all nodes that are direct children of the root. Figuratively
speaking the body consists of all expressions, function definitions, class definitions, etc.
The analyzer’s main goal is to assess if the setup file is valid or not. The criteria for a

valid file are:

18

5.2 setup.py Analysis

e Not importing an invalid module.

e Not calling non-builtin functions (with the exception of the setuptools, distribute

and ez_setup modules).

e Not instantiating invalid classes. A class is invalid if it calls non-builtin functions.

During the iteration every node is checked for its type and passed to a corresponding pro-
cessing method. If the passed node itself has a body, which is for example the case when
the node is a class definition or function definition, a new analyzer instance is created
with that node as root and processed further. The analyzer works with a combination
of a white and a blacklist. If a module import is encountered and the module is not
whitelisted the module itself and all of its functions are blacklisted. Furthermore if the
module is not a built-in module in Python an Analyzer object is created for the source
code of the imported module. The reason for this behavior is that in Python a module
executes its source code upon import and could therefore execute harmful or undesir-
able code - in which case the importing setup.py would have to be labeled as not valid
according to the previous requirements. However this method is heuristic, because it is
possible to have an invalid module with the name of a builtin module in the directory
of the setup-file. This would cause python to import this invalid module instead of the
built-in module.

When a function definition is parsed its AST body is evaluated with an Analyzer object
and saved in a symbol table for future reference. When that function is called in the
future its content is validated again and blacklisted or respectively taken down from the
blacklist according to the outcome. The body of the function has to be saved because
in python function assignments are a mere binding to a namespace and can be changed

during execution of a program. Consider the following example:

def evil ():

print("I’m a valid function")
def f():

evil ()
def evil ():

evilmodule . evilfunction ()

£0O

19

Chapter 5 Additional Work

First the analyzer encounters the function definition for evil(). Then the analyzer saves
the body of the corresponding AST but does not blacklist the function because the body is
valid. Now the analyzer encounters f{) and again saves the body and does not blacklist the
function. On the second encounter of evil() the functions gets blacklisted. Now the call
to f{) is encountered and the saved body for f is evaluated anew. The analyzer encounters
the call to evil, which is now blacklisted, and marks the source code as invalid. Without
the saving mechanism for the function bodies f would not have been evaluated a second
time and invalid code would not have been detected.

Objectfunctions are handled heuristically, because it is not trivial to detect which type or
class a variable represents with only the given AST. Upon calls the analyzer checks if the
call’s func.name is of the type ast . Attr or ast . Name. Object functions in Python
have a func.name thatis an instance of ast . Attr. Ifitis a call to an object function
a separate objectfunction-blacklist is checked. This heuristic method fails if two classes
each implement a function with the same name. The probability of this happening is
relatively low, because the setup-file is typically very small in the range of 10-20 kB and
often has no class definitions.

Variable assignments are blacklisted according to the validity of the expression which is

assigned to the variable.

5.2.2 Results of the Analysis

Every setup-file deemed valid by the analyzer can be automatically replaced by metadata
because it only uses a small subset of the python language. An analysis of 112690 files
showed the following results as seen in figure 5.1} 26% of the setup-files are invalid.
Additionally the calls which caused a file to become invalid have been recorded. Follow-
ing are the top 10 calls showing in figure[5.2]

Although this option has not been researched further it is likely that the calls to the os
module are made to ensure multi platform compatibility. If that would be the case the

percentage for invalid setup files would be lowered to 15%.

20

5.2 setup.py Analysis

60000 80000 100000
| | |

40000
|

20000
|

0
L

]

invalid files

bad syntax valid files all files

Figure 5.1: Barplot of setupfile Distribution

Figure 5.2: Top 10 calls causing invalid files

Name of call

Nr. of files invalid because of call

0s
Sys

os.path
use_setuptools
distribute_setup
re

ConfigParser
subprocess

glob

paver.tasks

nored from further research.

11991
1793
998
631
556
507
502
337
318
316

The other "forbidden" calls are not present in a significant number and can thus be ig-

The Bad Syntax cases refer to analysis cases where python threw a SyntaxError. Most of

those errors - 5687 - are caused by Python 3 incompatible syntax, for example print

21

Chapter 5 Additional Work

"python2 print statement”. 103 of the errors are due to invalid tokens for example
padding decimal numbers a = 09. 45 errors are caused by repeated keyword arguments in
calls or function declaration for example examplefunction(argument=foo, bar=baz, ar-
gument=pyrate). 13 come from inconsistent indentation, 3 are caused by an assignment

to a reserved keyword and another 3 by invalid utf-8 encoding.

5.3 Solver comparison

A valid question to ask in the scope of this thesis is how good available PBO solver per-
form in the context of solving python module dependencies.

All available solvers that participated in the Pseudo Boolean Competition 2012 [RM13b]]
were used in this comparison. The test set is a collection of the 100 most popular python
modules on PyPI (and adhocracy) according to [htt13]]. Because there is no ground truth
data available for python dependency resolution problems and because a "good" solution
for a dependency problem is to a grade subjective a custom metric was used.

The (p)wbo solver provided "good" solutions in practice and is used as a reference point.
Every solver starts with a score of 0. For every dependency instance that was deemed
unsolvable by that solver 50 points are deducted from the score of the solver. For every
instance every solver had at maximum 10 seconds, after which the process running the
instance was killed and the instance was deemed unsolvable. If the instance is declared

solvable then dpoints are calculated as following and added to the score:

100
nr. of changes proposed by pwbo

xweight =
dpoints = 100 —xweight x (nr. of deviations from pwbo solution)

Te results are shown in [5.3]and [5.4] wbo and npSolver-pbo seem to be the only solver,
which are capable of solving all of the 101 dependency resolution instances. The other
solvers perform fairly well, but fail in 5 cases - typically if the number of clauses in the
instance is too high. The score shows that all instances which npSolver-pbo solved were
of equal quality as the ones wbo provided. The instances which were solved during the
timeout period by the other solvers have to be comparable to those of wbo, because 250

points have to be deducted for the 5 missing cases and the maximum score for 96 solved

22

5.4 Synthethic generation of pbo Instances

Figure 5.3: Cases solved and corresponding solver

Solver Instances solved out of 101
(p)wbo 101

npSolver-pbo | 101

sat4j-pb 96

clasp-2.1.3 96

minisat+ 96

pb2sat+zchaff | 96

Figure 5.4: Solver and points after tests
Solver Score
(p)wbo 10100
npSolver-pbo | 10100
pb2sat+zchaff | 9450

sat4j-pb 9350
clasp-2.1.3 9350
minisat+ 9350

cases is 9600. Solver speed was not measured for the score because it did not differ much

in the solvable cases.

5.4 Synthethic generation of pbo Instances

Another question that was asked is if it is possible to generate PBO instances which can
not be solved by the previously tested solvers. If synthetic generation is possible hints
can be drawn from the generated data to improve the solver.

However there is currently no formula which iteratively generates PBO instances that
increase in difficulty with each iteration. The procedure that was used instead works
with PBO data obtained from Python dependency resolution problems. 96 solvable PBO
instances are available from the solver comparison in the last chapter. The main idea is
to create a metapackage and then iteratively add one of those packages as a dependency
to determine a boundary where the formula is not solvable in under 10 sec anymore.
The test was done with the minisat+ solver and the CPU time for obtaining a solution

was measured. Surprisingly the needed CPU times were not getting larger with increas-

23

Chapter 5 Additional Work

ing number of dependencies added to the metapackage. This shows that adding more
clauses to a PBO formula does not make it necessarily more complex or harder to solve
- probably because adding more clauses and literals causes some (trivial) optimizations
built into the solver to trigger. However 6 instances which can not be solved by all solvers
were acquired during the solver comparison. To help future research those instances have

been sent as a benchmark to the Pseudo Boolean Competition.

24

Chapter 6

Conclusion

This thesis researched improvements of Python packaging. Weighted boolean optimiza-
tion formulas, a special case of constraint solving, where the theoretical background for
the implementation of a Python dependency solver called PyDYN and its embedding into
the installation tool pip. PyDYN solves the dependency Resolution Problem for Python
modules, using a database filled with metadata acquired from all modules online on PyPI
in May 2013. PyDYN improves the workflow of installation tools like pip or buildout.
During the implementation of PyDYN a downloader tool with cashing abilities and a
metadata database for all modules available at the python package index was written.
Furthermore an analysis of all publicly available python packages was done to determine
whether it is feasible to abandon an installation process dependent on the setup.py file,
which can run arbitrary, potentially harmful, code.

The main contribution of this thesis was presenting the fact that, with the help of a proof
of concept, weighted boolean optimization is a fast and reliable way to compute depen-

dency resolution problems for Python packages.

Future work in the field of improving Python dependencies could be the creation of a
metadata format [CHS13]], which would render the setup.py installation process obsolete.
Also a new method for storing the module files on the local machine could be thought
of, so that usage of virtual environment tools like virtualenv would not be necessary

anymore if two projects on one machine need the same module in different versions.

25

Bibliography

[ABL"10] ARGELICH, Josep; BERRE, Daniel L.; LYNCE, Inés; MARQUES-SILVA,

[Bur05]

[CHS13]

[gral3]

[htt13]

[KM13]

[LBRO9]

[RM13a]

Joao; RAPICAULT, Pascal: Solving Linux upgradeability problems using
boolean optimization. In: arXiv preprint arXiv:1007.1021 (2010).

BURROWS, Daniel: Modelling and resolving software dependencies. In:
Conferenza Italiana sul Software Libero (CONFSL 2010), 2005.

COGHLAN, Nick; HOLTH, Daniel; STUFFT, Donald: PEP 426 Metadata
for Python Software Packages 2.0. http://www.python.org/dev/
peps/pep—0426/. Version: 2013.

GRAPHVIZ.ORG: The DOT Language Reference Guide. http://www.
graphviz.org/doc/info/lang.html. Version: Mai 2013.

HTTP://TAICHINO.COM: PyPI Ranking. |http://pypi-ranking.
infol Version:2013.

KAPLAN-MOSS, Jacob: Download of the python-nation package. https:
//pypi.python.org/simple/python-nation/. Version:2013.

LE BERRE, Daniel; RAPICAULT, Pascal: Dependency management for the
eclipse ecosystem: eclipse p2, metadata and resolution. In: Proceedings of

the 1st international workshop on Open component ecosystems ACM, 2009,
S. 21-30.

ROUSELL, Olivier; MANQUINHO, Vasco: Input/Output For-

27

http://www.python.org/dev/peps/pep-0426/
http://www.python.org/dev/peps/pep-0426/
http://www.graphviz.org/doc/info/lang.html
http://www.graphviz.org/doc/info/lang.html
http://pypi-ranking.info
http://pypi-ranking.info
https://pypi.python.org/simple/python-nation/
https://pypi.python.org/simple/python-nation/

Bibliography

[RM13b]

[Teal3]

[TLO10]

28

mat and Solver Requirements for the Competitions of Pseudo-Boolean
Solvers. http://www.cril.univ-artois.fr/PBl2/format.
pdf. Version: Mai 2013.

ROUSELL, Olivier; MANQUINHO, Vasco: Pseudo Boolean Com-
petition Homepage. http://www.cril.univ—-artois.fr/PB12/.
Version: Mai 2013.

TEAM, Red Dove D.: Python Metadata Online. |http://www.
red—-dove.com/pypi/projects/. Version:2013.

TREZENTOS, Paulo; LYNCE, Inés; OLIVEIRA, Arlindo L.: Apt-pbo: solv-
ing the software dependency problem using pseudo-Boolean optimization.
In: Proceedings of the IEEE/ACM international conference on Automated
software engineering ACM, 2010, S. 427-436.

http://www.cril.univ-artois.fr/PB12/format.pdf
http://www.cril.univ-artois.fr/PB12/format.pdf
http://www.cril.univ-artois.fr/PB12/
http://www.red-dove.com/pypi/projects/
http://www.red-dove.com/pypi/projects/

Ehrenwortliche Erklarung

Hiermit versichere ich, die vorliegende Bachelorarbeit selbststindig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt zu haben. Alle Stellen, die
aus den Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese

Arbeit hat in gleicher oder @hnlicher Form noch keiner Priifungsbehdrde vorgelegen.

Diisseldorf, 15.Juli 2013 Alexander Schneider

29

Hier die Hiille

mit der CD/DVD einkleben

Diese CD enthalt:

e cine pdf-Version der vorliegenden Bachelorarbeit

die IATEX- und Grafik-Quelldateien der vorliegenden Bachelorarbeit samt aller ver-
wendeten Skripte

[anpassen] die Quelldateien der im Rahmen der Bachelorarbeit erstellten Software
XYZ

[anpassen] den zur Auswertung verwendeten Datensatz

die Websites der verwendeten Internetquellen

	Titlepage
	Acknowledgements
	Contents
	List of Figures
	1 Introduction
	2 Theoretical Background
	2.1 Definitions
	2.2 Dependency Resolution Problem
	2.3 Pseudo Boolean Optimization

	3 Related Work
	4 Implementation
	4.1 Structure
	4.2 Dependency Database
	4.3 OPB Translation
	4.3.1 OPB file format
	4.3.2 Dependency dictionary
	4.3.3 Translation process

	4.4 Graphical Output
	4.5 API
	4.6 Integration in pip

	5 Additional Work
	5.1 Downloader Tool
	5.2 setup.py Analysis
	5.2.1 Execution of the Analysis
	5.2.2 Results of the Analysis

	5.3 Solver comparison
	5.4 Synthethic generation of pbo Instances

	6 Conclusion
	Bibliography

