
Who Said That? – The Send-Receive
Correlation Problem in Network Log Analysis

Björn Scheuermann Wolfgang Kiess
Computer Networks Research Group, Heinrich Heine University, Düsseldorf, Germany

{scheuermann, kiess}@cs.uni-duesseldorf.de

ABSTRACT
When analyzing packet log files from network experiments,
the question which received packet belongs to which send
event arises. If non-unique (i. e., binary identical) transmis-
sions have occurred, this send-receive correlation problem
can become very challenging. We discuss this problem in
the case of networks with local broadcast media, and out-
line first directions how it can be solved.

1. INTRODUCTION
In computer network experiments, each participating node

typically records a local log file using tools like tcpdump.
Such files contain the transmitted and received packets along
with time stamps. When the outcome of an experiment is
analyzed, an interesting problem may arise: given a log en-
try for a reception, what is the corresponding transmission?

If each transmission is unique, in the sense that during the
whole recorded time span only one binary identical packet
transmission has taken place, this question is trivial. How-
ever, with many protocols, binary identical packet trans-
missions may occur. Typical causes are retransmissions of
non-acknowledged data, repeated ARP requests [5], or pe-
riodic hello messages (like, e. g., in [2]). Then, the question
becomes interesting: from the reception log entry alone, we
cannot immediately tell which one of the binary identical
transmissions in the log files caused it.

A simple solution is the addition of unique identifiers to
each packet, to avoid ambiguities altogether. However, in
network experiments, one usually intends to assess the per-
formance of a protocol or application as-is. Modifications
alter the subject under test and should thus be avoided.
Existing literature on events and event orders in distributed
systems—beginning with Lamport’s milestone paper [3]—
can provide starting points. But work in that area typi-
cally assumes unique message IDs or even more piggybacked
data (like logical clock ticks), raising similar concerns as
above. Another option are heuristic solutions based on the
time stamps in the logs, along the lines of [1, 4]. There,
binary identical packet receptions that fall within a short
time interval are simply assumed to stem from the same
transmission—this may be correct, but it may also be wrong.
Many factors may influence the time stamping process [6],
so it is hard, if not impossible, to provide bounds on its accu-
racy (on affordable standard hardware at least). Therefore,
any time stamp based approach is necessarily a heuristic: it
may yield correct solutions, but we can never be completely
sure. Here, we ask the more fundamental question: what
can we tell for sure about the send-receive correlation?

2. LOCAL BROADCAST NETWORKS
We consider this question in networks with local broad-

cast media, like, for instance, WiFi networks or MANETs.
We will assume that propagation delays on the medium are
negligible in relation to the duration of a packet transmis-
sion; this is the case in practically relevant local broadcast
networks. We furthermore assume that each node can be
involved in only one successful transmission at a time, and
that logging preserves the order of events at the node’s inter-
face, i. e., the order of packet transmissions and receptions
at the transceiver and in the log file are identical. Such a
network exhibits the following properties: (1) a transmis-
sion will potentially be recorded by multiple receivers.1 (2)
when two or more nodes record log entries for a number of
transmissions (as their sender or as a receiver), then they
are logged in the same order.

Essentially, property (2) means that transmissions cannot
“overtake” each other on the medium: they may not appear
in one order at one node and in a different order at an-
other node. This implies that each local log file provides us
with partial information on the overall (i. e., global) order
of transmissions. We can use this to “check” a hypothe-
sis about which packet reception stems from which trans-
mission: if we substitute all receptions with their assumed
transmissions, we obtain a number of sequences of packet
transmission events, one per log file. If our hypothesis is
compatible with what has been observed, these sequences
must not be contradictory with respect to the event order.

3. AN INTUITIVE EXAMPLE
Let us first illustrate the problem with Figure 1(a), which

shows log files from an experiment with three nodes N1, N2,
N3: each line corresponds to the local log file of one node
(N1, N2, N3), as indicated in the leftmost column. Within
each line, events have been recorded in the order from left
to right. Capital letters (A,B) denote packet transmissions,
corresponding lower case letters (a, b) indicate a matching
packet reception. The numerical indices serve the only pur-
pose to allow us to refer to the individual entries.

In the example, all transmissions are initiated by N1. It
first transmits two binary identical packets of type A, then
a different packet B, and finally a fourth one that is again
binary identical to the first two. Some of these transmissions
are received by N2 and N3: N2 first receives a packet that
looks like B, then A. N3 first receives A, then B.

1For unicast transmissions, this can be achieved if the inter-
faces are running in so-called promiscuous mode.



(a) Log files. (b) Intuitive solution.

Figure 1: An example experiment outcome.

Based on the properties of local broadcast networks, hu-
man intuition easily solves the puzzle, see Figure 1(b). Since
B has been transmitted only once in the entire experiment,
it is trivial to see that both b5 and b8 are receptions of B3.
Because the order of packets is preserved on the medium, a6

must stem from a transmission that has been on the medium
after B3 (because b5 and a6 have occurred in that order, ac-
cording to N2’s log). Consequently, a6 belongs to A4. From
N3’s log, we know that a7 has occurred before b8, and thus
before B3. Therefore, we can exclude that a7 is a reception
of A4—but we cannot decide between A1 and A2.

In summary, taking into account all local log files allows
to use logical reasoning to derive the send events where each
receive event came from. But we may not expect to be able
to always narrow down the set of possibilities to one single
transmission—as we can see in the case of a7 above. Instead,
for each receive event in all log files, we aim to determine the
set of send events that could possibly have been its source.
We call this problem the send-receive correlation problem.

4. FORMAL PROBLEM STATEMENT
The send-receive correlation problem can be stated as fol-

lows. Given are a set of nodes N , a set of packet types P,
and a set of log entries L. Each log entry is recorded by a
node and refers to one packet type. We capture these rela-
tionships through two mappings N : L→ N and P : L→ P.
Furthermore, each log entry is either a send or a receive en-
try; this is expressed by the mapping D : L→ {s, r}, which
maps each log entry either to s (“send”) or to r (“receive”).

For convenience, we also introduce the following addi-
tional notations. For each n ∈ N , let Ln be the set of
log entries recorded by n, i. e., Ln := {l ∈ L | N(l) = n}.
Let R := {l ∈ L | D(l) = r} be the set of all receive events
and S := {l ∈ L | D(l) = s} the set of all send events.

Recall that the log file of each node is an ordered set of
event records. Thus, for each node n ∈ N , we know an
irreflexive total order <n ⊂ Ln × Ln. For two log entries
l1, l2 ∈ Ln, it holds that l1 <n l2 if and only if l1 describes an
event that happened before l2. Note that <n is not a global
order of all events, but only describes the partial knowledge
about the event order that is given by n’s log file.

In summary, the input of the problem consists of N , P, L,
N , P , and D, along with the local orders <n for all n ∈ N .

For each receive event x ∈ R, our aim is to determine the
set Sx of send events that are possible candidates where the
received packet could have come from. We call this set the
send candidate set of x. Defining the exact conditions that
a send event y ∈ S must fulfill in order to be in the set Sx

of some receive event x ∈ R turns out to be tricky. In order
to do so, we first introduce the notions of a global transmis-
sion order (GTO) and a global assignment (GA). A GTO is
an irreflexive partial2 order ≺ on the set of all transmission

2A GTO is a partial order because transmissions may take
place in parallel if disjoint groups of nodes are involved, for
instance in different collision domains of wireless networks.

events S (that is, ≺ ⊂ S×S). It can be understood as a hy-
pothesis about the global order of all packet transmissions
in the network. Along similar lines, a GA is a hypothe-
sis about the sources of each reception event. It would be
conceivable to model a GA as a mapping R → S; for later
notational convenience, however, we use a slightly modified
variant: a GA is a mapping L → S, where each element in
S is mapped to itself (recall that L = R ∪ S). Furthermore,
we require that for all reception events, the assigned send
event must be of the same packet type. Finally, a node may
not receive its own transmissions. These conditions exclude
obviously invalid assignments. In summary, A : L → S is a
GA if and only if (iff) the following conditions hold:

1. ∀l ∈ S : A(l) = l,
2. ∀l ∈ L : P (A(l)) = P (l), and
3. ∀l ∈ R : N(A(l)) 6= N(l).

So far, the definitions of a GTO and a GA allow for vir-
tually arbitrary hypotheses. These need not necessarily fit
together with the event orders in the log files. We therefore
introduce the notion of consistency for a pair (≺, A) of a
GTO and a GA. We call such a pair consistent iff

∀n ∈ N : ∀l1, l2 ∈ Ln : (l1 <n l2 ⇒ A(l1) ≺ A(l2)).

Recall our remark on replacing receive events by their cor-
responding send events in Sec. 2. This in mind, the above
condition becomes clear: if we replace each log entry by the
corresponding (according to A) transmission, the assumed
global order of transmissions ≺ must not contradict any of
the local logs. The substitution essentially translates (local)
log entry orders to the (global) order of packet transmis-
sions.

Basically, if (≺, A) is consistent, then it is possible that
it describes the actual course of events in the experiment.
There may be many consistent pairs (≺, A) for a given set
of log files; in that case, we cannot be sure which one is the
“truth”. All of them are equally possible, because we have
only limited information about the true series of events—we
only know the recorded events and their local orders.

We can now define consistency for a GA A: A is consis-
tent iff there exists a GTO ≺ such that (≺, A) is consistent.
Based on this notion, we can formally capture the sets of
send events that, according to the information present in
the local log files, could possibly be the source of a given
receive event: for x ∈ R, a send event y ∈ S is in the send
candidate set of x iff there exists a consistent GA A such
that A(x) = y. In that case, based on the log files, we can-
not exclude the possibility that y is the transmission that
belongs to x—this is exactly what we are looking for.

5. APPLICATIONS
Which transmissions could have been the source of a given

packet reception event is a very fundamental question. Thus,
the send-receive correlation problem in general has many ap-
plications in the analysis of experimental logs. One specific
application area is anchor-point based offline time synchro-
nization as discussed in [6] (in fact, this application led us
to the problem in the first place). In [6], we consider a set
of experiment log files that have been recorded with deviat-
ing local clocks. We show how so-called anchor points can
be used to eliminate the clock deviations post facto. An-
chor points are groups of reception events that stem from
the same packet transmission. Our technique is able to pro-



vide very accurate time synchronization without any net-
work overhead—if enough anchor points can be identified;
more anchor points result in better synchronization. Identi-
fying anchor points, however, essentially means solving the
send-receive correlation problem.

Besides such direct applications, the relation of transmis-
sion and reception events is tightly intertwined with the
question of the global event order (here expressed by the con-
cept of GTOs): the consistent (GTO,GA)-pairs also show in
which order transmissions could have occurred—and which
orders can definitely be excluded, because there is no match-
ing (GTO,GA)-pair. Hence, the scope of the problem actu-
ally goes significantly beyond the initial question.

6. CALCULATING CANDIDATE SETS
For a finite set of finite log files, there are only a finite

number of GTOs and GAs. To determine Sx for a receive
event x, we could, in theory, generate all (GTO,GA)-pairs
and check them for consistency. Whenever some consistent
GA A says that A(x) = y, we include y in Sx. However,
because the number of possible GTOs and GAs grows ex-
ponentially with the problem size, this is prohibitively ex-
pensive. Coming up with a better algorithm turns out to be
surprisingly difficult; we even suspect NP-hardness.

If we consider, however, a slightly simplified problem, we
can at least significantly narrow down the sets of possible
send events. We make the additional assumption that dif-
ferent nodes may not transmit binary identical packets, i. e.

∀y1, y2 ∈ S : (P (y1) = P (y2)⇒ N(y1) = N(y2)).

This holds, e. g., if each packet contains the sender’s address.
Then, for each packet type p ∈ P, there is a unique source
node, which we denote by np. Consequently, np’s local order
<np induces a total order on all transmissions of type p. If
there are cp such transmissions in total, we can enumerate
them in this order, and denote them by p1, . . . , pcp .

The algorithm is based on constructing a directed general-
ized graph (ggraph) representation of the knowledge about
the event order. The log entries constitute the nodes of the
ggraph. There are two kinds of edges: “earlier-than” (E)
edges and “earlier-than-or-equal-to” (EEQ) edges. We ini-
tialize the ggraph by including E edges between each pair
of consecutive log entries within each log file. For each re-
ception x ∈ R, we furthermore add two EEQ edges. Let
p = P (x), then x must stem from one of the transmissions
p1, . . . , pcp . We may thus add an EEQ edge from p1 to x
(because x can impossibly have happened before p1), and an
EEQ edge from x to pcp (because x cannot have happened
after pcp). Each EEQ edge leads from a send to a receive
event or vice versa. Each receive event has exactly one in-
coming EEQ edge and exactly one outgoing EEQ edge. In
the course of the algorithm, the EEQ edges will be iteratively
replaced, whenever it can be excluded that the receive event
at one end belongs to the send event at the other end.

Such an exclusion is possible if, for an EEQ edge (a, b),
there is a path from a to b in the ggraph that traverses at
least one E edge. If this is the case, a must have happened
strictly before b; due to property (2) in Sec. 2, a and b can
thus impossibly be a send-receive pair. Let p = P (a) =
P (b). First consider the case where a is the send event and
b is the receive event. Then, a = pi for some i ∈ {1, . . . , cp}.
If pi cannot be the source of b, then b must stem from pi+1

or a later event. We thus replace (a, b) by an EEQ edge orig-

inating from pi+1, i. e., by (pi+1, b). Analogously, if b = pi

is the send event, then a must belong to pi−1 or an earlier
event, so we replace (a, pi) by (a, pi−1).

This can be iterated until no further “invalid” EEQ edges
are detected. For each receive event x, let αx denote the
origin of x’s incoming EEQ edge, and ωx the endpoint of x’s
outgoing EEQ edge after termination. It is easy to see that
x must necessarily originate from one of the send events
“between” αx and ωx (inclusive): all other send events of
type P (x) have been excluded as impossible in one of the
substitution steps. The algorithm has therefore narrowed
down the send candidate set.

If n is the total number of log entries, the number of
edge substitution steps for each receive event is obviously
bounded by O(n). Consequently, the total number of sub-
stitution steps until termination is in O(n2). After each
substitution, we must re-check all EEQ edges whether they
are still valid. At any time, there are less than 2n EEQ
edges in the ggraph, so O(n3) checks are necessary in the
worst case. Both checking and substitutions can be imple-
mented efficiently, so the computational complexity of the
algorithm is polynomial. A more in-depth analysis is left for
future work.

7. CONCLUSION
We introduced the send-receive correlation problem, which

appears in network log analysis. It is relevant, e. g., in the
context of offline time synchronization. We formalized the
problem and outlined an approach to algorithmically solve
it. In the future, we intend to investigate it further, includ-
ing several variants with relaxed or tightened assumptions.

Acknowledgments
The authors are grateful to a number of people for helpful
discussions and feedback, most notably (in alphabetical or-
der) Frank Gurski, Florian Jarre, Daniel Marks, Alexander
Marold, and Egon Wanke.

8. REFERENCES
[1] Y.-C. Cheng, J. Bellardo, P. Benkö, A. C. Snoeren,

G. M. Voelker, and S. Savage. Jigsaw: Solving the
puzzle of enterprise 802.11 analysis. In SIGCOMM ’06,
Sept. 2006.

[2] B. Karp and H. T. Kung. GPSR: greedy perimeter
stateless routing for wireless networks. In
MobiCom ’00, pages 243–254, Aug. 2000.

[3] L. Lamport. Time, clocks, and the ordering of events in
a distributed system. Communications of the ACM,
21(7):558–565, July 1978.

[4] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan.
Analyzing the MAC-level behavior of wireless networks
in the wild. In SIGCOMM ’06, Sept. 2006.

[5] D. Plummer. Ethernet Address Resolution Protocol:
Or Converting Network Protocol Addresses to 48.bit
Ethernet Address for Transmission on Ethernet
Hardware. RFC 826 (Standard), Nov. 1982.

[6] B. Scheuermann, W. Kiess, M. Roos, F. Jarre, and
M. Mauve. On the time synchronization of distributed
log files in networks with local broadcast media.
IEEE/ACM Transactions on Networking,
17(2):431–444, Apr. 2009.


	1 Introduction
	2 Local Broadcast Networks
	3 An Intuitive Example
	4 Formal Problem Statement
	5 Applications
	6 Calculating Candidate Sets
	7 Conclusion
	8 References

