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Abstract— Real-world experiments in computer networks typi-
cally result in a set of log files, one for each system involved in the
experiment. Each log file contains event timestamps based on the
local clock of the respective system. These clocks are not perfectly
accurate, and deviate from each other. For a thorough analysis,
however, a common time basis is necessary. In this paper, we
tackle the fundamental problem of creating such a common time
base for experiments in networks with local broadcast media,
where transmissions can be received by more than one node. We
show how clock deviations and event times can be estimated
with very high accuracy, without introducing any additional
traffic in the network. The proposed method is applied after
the experiment is completed, using just the set of local log files
as its input. It leads to a large linear program with a very specific
structure. We exploit the structure to solve the synchronization
problem quickly and efficiently, and present an implementation
of a specialized solver. Furthermore, we give analytical and
numerical evaluation results and present real-world experiments,
all underlining the performance and accuracy of the method.

I. INTRODUCTION

A fundamental problem with interpreting results from real-
world experiments in computer networks is that each system
uses its own local clock to timestamp events. These clocks do
not run perfectly synchronously, they can deviate. At the end
of the experiment, the result is a set of log files where the
timestamps are based on the clocks of the individual systems.
This is generally insufficient for the investigation of timing
issues, the correlation of events, and the visualization of the
experiment. It is thus highly desirable to obtain an event log
where all timestamps refer to a single reference clock instead
of multiple local clocks.

The obvious attempt to reach this goal is to synchronize the
clocks of the involved systems with a time synchronization
protocol like NTP [1], [2]. Unfortunately, there are two key
reasons why this approach may be inappropriate. First, running
a time synchronization protocol will cause additional network
traffic and may thus interfere with the experiment. Second,
even if the clocks were perfectly synchronized, it takes some
system dependent (and potentially non-deterministic) time
from the occurrence of an event until it is actually time-
stamped and recorded. We call this the timestamping delay.
The drawback of additional network traffic can be eliminated
by providing each system with a very accurate clock, e. g.,
controlled by a GPS receiver. Aside from the fact that this
is quite expensive, this approach does not solve the problem
of the timestamping delay. While it may also be possible to
use customized hard- and software to bound the timestamping
delay, such a solution cannot be employed for the off-the-shelf
systems often used in network experiments.

In order to avoid these problems we propose to correct
the timestamps of the individual log files after an experi-
ment is completed instead of synchronizing clocks during the
experiment. To do so, we exploit a specific characteristic of
networks with local broadcast media: a transmission is often
received by multiple nodes. Upon recording this transmission,
each node uses its local clock to provide a timestamp for
the same physical event. Such shared events can be used as
anchor points that relate the different clocks to each other.
The combination of multiple anchor points allows for a very
good estimation of this relation and finally for an accurate
post-experiment synchronization of the log files.

In essence we employ a model for the clocks and the
timestamping delays. We then use the anchor points to estimate
the parameters of this model and thus the clock deviations.
This results in estimates for the timestamps of all events on a
common time basis. A maximum likelihood estimator is used
for this purpose. It leads to a large linear program with a very
specific structure. We exploit this structure to solve the linear
problem efficiently in spite of its huge size. The solution then
yields a synchronized log file where all entries are recorded
with a common time basis.

Analytical and numerical results show that the solution
converges quickly to a good estimate for increasing input data
sizes, and that it is robust if the assumptions made for its
derivation are not perfectly fulfilled. Thus, in practice, a very
reasonable amount of log data is typically sufficient to identify
and eliminate clock deviations.

Our approach is applicable to all networks with local
broadcast characteristics. It just requires that the clocks of
any two nodes in the network can be—directly or indirectly—
set into relation by anchor points. In particular, this includes
experiments in wireless ad-hoc-, sensor- and mesh-networks,
as well as local area networks with multiple stations in each
collision domain and satellite networks.

The key contribution of this work is an algorithm to
synchronize the distributed log files in networks with local
broadcast media. In detail this contribution includes: (1) a
maximum likelihood estimator for the clock parameters and
global event times, based on models for the local clocks and
the timestamping delays, (2) the expression of the maximum
likelihood estimator as the solution of a linear program, (3) an
efficient way to solve this specific type of linear program, (4) a
publicly available implementation, (5) analytical error bounds
and a consistency proof, i. e., convergence to a correct solution
for increasing data set sizes, (6) a numerical evaluation of
the algorithm and its implementation, and (7) an experimental
evaluation of the synchronization performance.
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This paper is structured as follows. In the next section,
we review related work and examine its applicability to the
synchronization of distributed log files. We then introduce a
detailed clock model and establish the required terminology in
Section III. Section IV presents our synchronization algorithm
and Section V shows how the resulting optimization problem
can be solved efficiently. The properties of the algorithm are
analytically investigated in Section VI and are verified through
a numerical evaluation in Section VII. Subsequently, we apply
our algorithm to real-world experimental data in Section VIII,
and analyze the results. Section IX concludes this paper with
a summary.

II. RELATED WORK

The relevant literature in the area of clock synchronization
can be divided into online and offline clock synchronization
protocols. The aim of online clock synchronization protocols,
like the well-known Network Time Protocol (NTP) [1], [2],
is to keep the clocks of the participating nodes synchronized
while the network is up and running. In contrast to that, offline
clock synchronization approaches correct timestamps that have
been provided by unsynchronized clocks after the experiment
is finished. Our own approach clearly falls into the second
category.

A. Online clock synchronization

As discussed in the introduction, online approaches typically
use explicit messages for clock synchronization. They are also
constrained by the fact that they need to work in a distributed
fashion and may consume only very limited computational
resources. Moreover, online synchronization can only exploit
past information, whereas offline approaches can make use of
all—previous as well as later occurring—events for the time
estimates. For these reasons, online synchronization protocols
are not an optimal solution for the synchronization of dis-
tributed log files. Nevertheless, some of them use the idea of
events that are observed by multiple systems. In the following,
we summarize those approaches. A broader overview of the
topic, with a focus on wireless sensor networks, can be found
in [3].

A number of online synchronization protocols [4]–[6] relies
on the parallel reception of broadcasted packets by multiple
systems. A broadcasted packet is received by all systems
nearly at the same instant, the only uncertainty in timestam-
ping such packets is the signal propagation time and the
timestamping delay. To synchronize the clocks, the recipients
of a given broadcast communicate to exchange their respective
reception times. By comparing these reception times, two
nodes are able to compare and adjust their clocks. In [6], for
example, the clock skew is estimated using linear least-squares
regression. A complete network can then be synchronized by
synchronizing adjacent nodes pairwise along a tree structure,
yielding, however, the disadvantage of accumulating the pair-
wise errors.

In [7], the pairwise synchronization of [6] is extended to
a global one. The authors present an online synchronization
approach for sensor networks that is based on a global

unbiased minimum variance estimator. They first introduce a
version that considers only clock offsets, and then complement
it with an idea on how to deal with clock rate differences.
Their approach is, however, not able to handle offsets and
rate deviations conjointly, but must rely on separate estimates
on different time scales. This is feasible and appropriate in
the considered context of online time synchronization for
continuously running sensor networks, but is not optimal
for the offline synchronization of the logs of time-limited
experiments. In addition to avoiding the general drawbacks of
using online approaches for the synchronization of log files,
our approach estimates offsets and rates in one single step,
and can thus exploit all the available information to find the
global optimum for both.

B. Offline clock synchronization

The first offline clock synchronization algorithm has been
proposed by Duda et al. [8] for generic distributed systems.
The send and receive timestamps of messages between nodes
A and B are taken as coordinates of a point, the x-axis being
the timestamp of A and the y-axis being the timestamp of
B for the same packet. Due to the network delay, two point-
clouds emerge with an empty corridor in between. Each point
is either above the corridor (when sent from A to B) or below
(when sent from B to A). The authors present two methods
to fit a line in this corridor, thereby estimating the difference
in clock speed and offset between A and B. The first method
computes the separating line with linear regression, the other
uses a convex hull approach. They also sketch a maximum
likelihood approach but are not able to use it due to a lack of
knowledge about the message delay from sender to receiver,
which would be needed.

Duda’s linear regression and convex hull approaches have
been extended in [9]. The author corrects the timestamps using
experimental knowledge about the smallest round trip delays.
This knowledge is incorporated in an algorithm that selects
the two best points to estimate the skew and offset between
the nodes. In [10], linear programming is used to compensate
for clock skew that influences one-way delay measurements
between two nodes over the Internet. A convex hull based
approach able to cope with clock resets is presented in [11].

All of the presented offline synchronization algorithms
can compensate linear clock deviations between two nodes
without requiring additional network traffic. In contrast to our
approach, which exploits the broadcast nature of the medium,
they can be used for all kinds of communication systems.
However, this benefit is also their main drawback: all of them
consider the comparison of send and receive timestamps. Thus,
the network delay cannot be completely eliminated, as it is
the case in our approach. Likewise, they cannot separate and
handle the timestamping delay. Finally, while we use all the
available data to compute globally consistent estimates for
an arbitrary number of nodes in parallel, all these algorithms
synchronize only two clocks directly. In order to synchronize
more clocks, a successive synchronization of node pairs is
necessary, a process in which errors can accumulate.
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III. MODEL, TERMINOLOGY, AND APPLICABILITY

A. Nodes and events

In our terminology, an event is an incident that has been
observed by one or more nodes and is recorded in their local
log files. Of particular interest for us are packet reception
events, since they can be observed by multiple nodes almost
at the same time. Broadcast packets can generally be received
by all nearby nodes, for unicast transmissions a similar effect
can be achieved by logging receptions in promiscuous mode.
In this mode, a node records all receptions that could be
decoded by its network interface, regardless of whether the
node is the intended destination of the transmission or not.
We assume that parallel receptions of the same transmission
can be identified as such. In the remainder of this paper, we
concentrate primarily on events that have occurred in more
than one node, since they can serve as anchor points for the
synchronization.

We denote the set of nodes participating in an experiment
by J and the set of events that occur during the experiment by
I . Each event i ∈ I occurs at some “true” time Ti. The same
event i can be observed by multiple nodes. In this case each of
the nodes records its own timestamp for the event according to
its local clock, i. e., event i is recorded by some of the nodes
j ∈ J with local timestamps ti,j .

The recorded times define a relation R ⊆ I×J in the sense
that (i, j) ∈ R if and only if event i is recorded by node j. The
subset of nodes that observe a certain event i ∈ I is denoted
by Ri, i. e., j ∈ Ri if and only if (i, j) ∈ R.

B. Clocks

In this paper we model clocks as twice differentiable func-
tions, mapping some (virtual) global, absolute time to the view
of the respective clock. This model matches those commonly
used in literature related to clocks and time synchroniza-
tion [2], [6], [10], and is justified since only the limited
timespan of a single experiment needs to be considered. For
the same reason and for the sake of simplicity we do not
account for clock resets, although our approach could be
extended to such a scenario.

The true clock CT is a clock which is correct by definition:
∀t : CT (t) = t. Our aim is to approximate this clock as closely
as possible by the calculated global event timestamps.

We use the common terminology to describe the properties
of clocks. The offset of a clock C at time t is the difference
C(t) − CT (t) between C and the true clock CT . If we use
the term offset without referring to a certain point in time we
refer to C(0), the offset at time t = 0. C ′(t) is called the rate
or frequency of C at time t. The difference between a clock’s
rate and the true clock’s rate C ′(t) − C ′T (t) = C ′(t) − 1 is
called skew. Finally, the second derivative C ′′(t) is called the
drift of C.

The clock model we use for our estimator assumes that,
during the time interval of an experiment, the local clocks in
the nodes can be closely approximated by a linear function.
We denote the rate of a node j’s local clock Cj by rj > 0
and its offset at time t = 0 by oj . Thus, for all times t during

the experiment we have

Cj(t) = rjt+ oj . (1)

The time span over which the linearity assumption holds is
related to the clock’s frequency stability. It is commonly spec-
ified using the Allan deviation [12], which characterizes the
rate variations over different timescales. One application area
of offline synchronization are experiments with mobile ad-hoc
networks (MANETs). MANET experiments described in the
literature are surveyed and analyzed in [13]; there, it has been
pointed out that typically the duration of an experimental run
does not exceed 1000 seconds. This coincides with previous
work, which shows that clock drift is typically negligible over
time spans up to 1000 seconds [14].

For longer experiments, if the linearity assumptions do
not hold, the accuracy of the results may deteriorate. As
will become clear later, the degradation is graceful, i. e., the
estimation is a good linear approximation. Note also that it is
easily possible to synchronize arbitrary sub-intervals of longer
logs, such that the assumption holds reasonably well within
each sub-interval.

Furthermore, care must be taken that the linearity assump-
tion is not thwarted by processes running on the nodes and
manipulating the clocks. If online synchronization must be
used—e. g., because it is part of the experiment—then it should
record all the modifications it made to the local clock, so that
the effects of these changes can be eliminated from the log
files of the respective nodes prior to synchronizing them.

In practice, time in computer systems does not run continu-
ously, but progresses in discrete steps. While the resolution of
the timer-interrupt driven system clock is typically relatively
coarse—in the order of milliseconds—, more fine-grained time
sources are often available and used. On the x86 platform, for
example, the CPU’s TSC register progresses with every CPU
clock cycle. Thus, its granularity is very fine. It serves for
generating the timestamps, for example, when using a Linux
kernel and the widespread packet tracing library libpcap. Thus,
we can assume that the error introduced by the clock resolution
is small in comparison to other sources of error. Our approach
does not amplify such errors.

C. Timestamping delay

When sending a message, a number of different delays
occur from the moment the source application generates the
message until the receiver timestamps it. As our approach uses
these timestamps as synchronization anchors, we are interested
in the delay differences experienced by distinct nodes. The
deterministic components are not an issue in our context: if
all timestamps in a node are recorded late by some fixed time,
then this is the same as if they were recorded immediately
with a correspondingly increased offset. So, the fixed delay
components are equivalent to an additional clock offset.

The experienced delay can be decomposed into four com-
ponents according to [15]: the time needed to compose the
message and to assemble the packet, the time to access the
medium, the propagation delay on the medium, and finally,
after the transmission arrives at the receiver, the receive time,
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i. e., the delay for checking the message and recording the
arrival timestamp. Obviously, the time until the packet leaves
the sender is the same for all receivers and thus does not need
to be considered.

The propagation delay depends on the distance between
sender and receiver, and the propagation delay differences de-
pend on the different distances between sender and receivers.
As long as these differences are in the order of a few hundred
meters, the propagation delay difference is in the order of, at
most, microseconds and is therefore negligible1. The reason
for the receive time is that timestamps are not assigned
immediately upon reception. The timestamping process will
typically be delayed. The delay can be decomposed further
into a fixed component (which equals the minimum path
delay of the processing necessary at the receiver), and an
additional, variable time that occurs because the timestamping
is performed by the node’s CPU, which may be busy with
other tasks before the event is processed. The latter we call
timestamping delay.

Note that the delay of an event is also “measured” by the
recording node’s clock, and thus is scaled with the rate of this
clock. An event i at “true” time Ti that is recorded by node
j with timestamping delay di,j thus leads to a timestamp

ti,j = Cj(Ti + di,j) = rj(Ti + di,j) + oj . (2)

The timestamping delay is, like all delays, obviously non-
negative. Furthermore, it seems reasonable to assume that
most timestamps are recorded with small latency and few are
set after a longer time. We model the timestamping delays
as exponentially distributed, pairwise independent random
variables. Moreover, we assume that the exponential distri-
butions of all delays share the same parameter λ. The latter
is reasonable if the nodes participating in the experiment use
comparable hard- and software for the timestamp generation,
which will often be the case in a testbed.

In a real-world application our assumptions about the time-
stamping delay just like those about the clocks’ linearity will
of course not perfectly hold. In fact, depending on the hard-
and software of the devices, reality might look very different.
We use the mentioned assumptions for the motivation and
derivation of our method. It will later become clear that
the resulting approach yields good results also under non-
conformant circumstances.

D. Connectivity Constraints

As our proposed approach relies on anchor points to relate
the clocks, it depends on the presence of events that can serve
this role. Consider the case in which there is no common event
between two groups of nodes. Here, it would be impossible
for anchor point-based synchronization to tell if all clocks
in one of the groups are, for example, early by one hour.
A common, global time basis can thus not be established,
whereas it remains nevertheless possible to synchronize the
clocks within each group.

1If nodes are really far apart and the propagation delay is long, then it is
often the case that the distances and thus also the delays are approximately
known. This applies to satellite systems, for example. In this case it is possible
to eliminate the delay prior to synchronization.

Note that the availability of anchor points does not imply
that all pairs of nodes must share common events—clocks may
also be related indirectly, over intermediate nodes. It also does
not necessitate the network to be “connected” in the commonly
used sense. For example, if there are two almost independent
groups of nodes, one single node sharing events with both
groups suffices. These shared events need not occur during
the same time intervals, and thus there is no need for a fully
connected topology at even just one single point in time.

Hence, the existence of anchor points is not a severe
constraint in practice, and anchor point-based synchronization
will be possible in the vast majority of experimental setups.
If this condition is not met, artificial anchor points could be
generated, e. g., by broadcasting “anchor packets”. Doing so
during the experiment might interfere with the experiment
itself, just like running an online synchronization protocol.
Anchor points, however, may also be generated before and
after an experimental run.

IV. ALGORITHM

The previous section introduced a model of the network
and the timestamping delays. Now, we will formalize the
problem and propose an approach for its solution via a
maximum likelihood estimator (MLE). Given the recorded
local timestamps, we wish to maximize the likelihood that
our estimates of the true event times are correct.

Due to the exponentially distributed delays, the conditional
probability density for measuring a timestamp ti,j for event i
at node j given Cj and Ti is

f(ti,j | Cj , Ti) = f(di,j) = λe−λdi,j . (3)

Because of the independence of the delays the probability
density for the whole set of measurements in our experiment
can be written as

f((ti,j)(i,j)∈R | (Cj)j∈J , (Ti)i∈I) =
∏

(i,j)∈R

λe−λdi,j . (4)

We can now express our problem as an optimization prob-
lem. Under a uniform prior, we want to find the optimal
estimates T̂i of Ti for all i ∈ I , and, in parallel, the optimal
estimates Ĉj of Cj for all j ∈ J such that the likelihood
function L defined in the following way is maximized:

L = L((Ĉj)j∈J , (T̂i)i∈I | (ti,j)(i,j)∈R)

= f((ti,j)(i,j)∈R | (Ĉj)j∈J , (T̂i)i∈I).
(5)

From (2) we can see that

∀(i, j) ∈ R : di,j =
ti,j − oj
rj

− Ti. (6)

This relation must also hold for the estimates of Ti and Cj .
Let r̂j , ôj , and d̂i,j denote the estimates for rj , oj , and di,j ,
respectively. Then, in analogy to the above we have

∀(i, j) ∈ R : d̂i,j =
ti,j − ôj
r̂j

− T̂i. (7)



5

Therefore, L can be expressed as

L =
∏

(i,j)∈R

λe−λ
bdi,j

=
∏

(i,j)∈R

λe
−λ
“

ti,j−bojbrj
−bTi

”
,

(8)

eliminating the estimates d̂i,j for the unknown quantities di,j .
Since all the delays are non-negative, the maximization of

L is subject to the constraints

∀(i, j) ∈ R :
ti,j − ôj
r̂j

− T̂i ≥ 0. (9)

Now we apply a standard technique in maximum likelihood
estimation: maximizing L is equivalent to maximizing lnL,
because L > 0 for all valid parametrizations.

lnL = ln
∏

(i,j)∈R

λe
−λ
“

ti,j−bojbrj
−bTi

”

=
∑

(i,j)∈R

(
lnλ+ ln e−λ

“
ti,j−bojbrj

−bTi

”)

= |R| lnλ−
∑

(i,j)∈R

λ

(
ti,j − ôj
r̂j

− T̂i
)
.

(10)

Optimizing this expression with regard to λ and all the T̂i
and Ĉj is a difficult nonlinear optimization problem. However,
we are not primarily interested in the parameter λ. Fortunately
it turns out that the optimal T̂i and Ĉj are independent of the
value of λ. Let for the moment

k(x) := − lnx− |R| lnλ
λ

. (11)

k is strictly monotonically decreasing for any λ > 0 and |R|.
Thus, it is easy to see that L is maximal if and only if k(L)
is minimal:

k(L) = − lnL− |R| lnλ
λ

=
∑

(i,j)∈R

(
ti,j − ôj
r̂j

− T̂i
)
. (12)

Therefore, instead of maximizing L, we minimize k(L). We
have thus eliminated the variable λ > 0. The constraints of
the resulting optimization problem are still of the form (9).

From the clock model we know that the rates of the clocks
are strictly positive. We exploit this fact and define

r̄j := r̂−1
j (13)

ōj :=
ôj
r̂j
. (14)

Equivalently, we have r̂j = r̄−1
j and ôj = ōj r̂j = ōj

r̄j
.

Expressing k(L) in terms of the variables ōj and r̄j leads to

k(L) =
∑

(i,j)∈R

(
ti,j r̄j − ōj − T̂i

)
. (15)

Similarly, the constraints (9) can be simplified to

∀(i, j) ∈ R : ti,j r̄j − ōj − T̂i ≥ 0. (16)

This is a linear objective function with linear constraints,
which can be solved using standard linear program (LP)
solvers like the simplex method.

For exponentially distributed errors, the maximum likeli-
hood estimator is known to be nearly optimal. In our case,
however, a different interpretation of the resulting approach is
also possible. When comparing (12) and (7), we observe that

k(L) =
∑

(i,j)∈R

d̂i,j . (17)

The optimal solution minimizes the sum of the estimated de-
lays. Therefore, the resulting approach may also be understood
as a form of constrained Least Absolute Deviation (LAD)
regression. Since this interpretation is completely independent
from the assumption of exponentially distributed delays, it
supports the expectation that the derived estimator is also well-
suited for delays with other distributions.

Note that the optimization problem (15) and (16) has the
trivial solution ∀j ∈ J : ōj = r̄j = 0 and ∀i ∈ I : T̂i = 0.
This is because, from the information contained in the log
files, it is not possible to estimate all the absolute rates,
but only the relative deviation between clocks. We call this
the rate ambiguity. To overcome the rate ambiguity, we add
a normalizing constraint

∑
j∈J r̄j = |J |; in the average,

the inverse clock rates are assumed to be accurate. This
assumption, however, is not crucial at all: if the average takes
some other value, the solutions are simply scaled accordingly.

Similar to the rate ambiguity, there is also an offset ambi-
guity in the log files. The right hand sides of (15) and (16) do
not change when all ōj are replaced with ōj +τ and all T̂i are
replaced with T̂i − τ , where τ ∈ R is a given constant term.
Thus, like above for the rates, it is not possible to estimate
absolute, but only relative event times and clock offsets (even
ignoring the fact that there is, of course, no “absolute time”).
We may set, without loss of generality, ō1 = 0.

If a reference clock is available—e. g., because at least one
node has a connection to an external time source like a GPS
receiver and records appropriate data—absolute synchroniza-
tion to this reference is possible. More specifically, if the
correct, global time of one event occurrence in one single
node is known, then the offset ambiguity can be overcome.
If the global times of two events, or, alternatively, the time
of one event and the rate of one node are known, then the
rate ambiguity can likewise be eliminated. This is possible
either by adapting the constraints for rates and offset, or by a
respective transformation of the synchronization result.

The resulting linear program can be written in the form

minimize bTy subject to ATy ≤ c, (18)

where y is the vector of the unknowns T̂i for i ∈ I , followed
by the vectors ō ∈ R|J| and r̄ ∈ R|J| of the ōj and r̄j for
j ∈ J , i. e.,

y =

T̂ō
r̄

 . (19)

The matrix AT represents the inequality constraints (16) and
the normalizing constraints.
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Fig. 1. Performance comparison of QSopt, SeDuMi, and our own implementation as time synchronization LP solvers.

Events that have only been observed by one single node do
not contribute information for the synchronization. Therefore,
to keep the size of the linear program as small as possible,
they should not be included in the optimization. Corrected
timestamps for such events can easily be generated based on
the rate and offset estimates.

V. SOLVING THE OPTIMIZATION PROBLEM

In (18), (19) the maximum likelihood estimator is defined
as the solution of a linear program with |I| + 2 · |J | vari-
ables and |R| linear inequality constraints. Due to the size
of the linear program a straightforward application of the
simplex method may result in a significant effort in terms
of computational power and memory. When solving (18)
with a standard simplex solver like QSopt [16] the program
takes hours to terminate even for relatively small problems.
Therefore, we will now focus on the special structure of the
linear program (18) and how it can be exploited to allow for
a fast numerical solution. Below we outline the ideas behind
our implementation of the synchronization approach. It is able
to solve the linear program for data sets with |J | ≈ 100,
|I| ≈ 105, and |R| ≈ 106 on a standard PC within a few
seconds.

Each row of AT corresponding to a constraint (16) has
exactly three non-zero entries and A is thus very sparse.
The matrix AT is closely related to the matrices arising in
network optimization problems. In particular, it does not have
full column rank. In the previous section, the offset ambiguity
was introduced. Since we set ō1 to zero, the corresponding
column of A can be eliminated prior to the optimization. Our
implementation checks for further redundancies that depend
on the particular instance R and eliminates additional linearly
dependent columns of AT if existent.

We use a modern interior-point algorithm for our solver, a
variant of Mehrotra’s predictor corrector algorithm [17] that
is particularly well suited to handle the structure of (18).
The primary advantage of interior-point algorithms versus the
simplex method is that interior-point methods do not suffer
from degeneracy of the problem. Practical implementations
very rarely take more than 70 to 100 iterations to solve a
linear program. In our case, the particular structure of (18)

can be exploited, making a single iteration very cheap. The
concept of the algorithm as implemented here is based on
Algorithm 14.3 in [18].

Apart from minor adjustments of the parameters proposed
in [18], the main modification in our implementation concerns
the storage format for the matrix A. Storing A directly would
be extremely inefficient in terms of memory requirements as
well as from a computational perspective. Our implementation
comprises a specialized storage format for A, tailored to both
the problem structure and the specific operations that appear in
the interior-point algorithm. For matrices A arising from (18)
this is a superior alternative to general purpose sparse matrix
formats, as they are readily provided, e. g., by Matlab.

The main computational effort at each iteration of an
interior-point algorithm is the computation and the Cholesky
factorization of the matrix product H = ADAT. Here, D is a
positive definite diagonal matrix that changes at each iteration.
Due to our choice of setting up the variable y by first including
T̂ and then ō, r̄, the leading |I|×|I|-block of H is a positive
definite diagonal matrix; only the trailing 2 · |J | rows and
columns of H do have fill-in. This sparsity structure is also
inherited by the Cholesky factor L of H . The leading |I|×|I|-
block of L can thus be computed in linear time. Given that
typically |I| � 2 · |J |, the computation of L and thus the
solution of the overall problem is very cheap.

To demonstrate the huge gain in performance that is possible
by using the tailored solver, we compare the runtime of our
implementation with that of QSopt [16] and SeDuMi [19].
QSopt is, as mentioned before, a solver that uses the simplex
method. SeDuMi on the other hand is a Matlab interior-point
code that, like our own solver, benefits from the special struc-
ture of H , but uses a more general—and therefore somewhat
slower—storage format of the sparse matrix AT, and a more
general sparse Cholesky factorization.

Figure 1 shows the computation times for calculating the
solutions of optimizations with 20 nodes and with 100 nodes,
for different numbers of shared events. All measurements
have been made on an AMD Athlon X2 BE-2300 CPU with
1900 MHz and 1 GB of main memory. From the figure it can
be seen that our implementation actually works very well. The
tailored solver brings a large performance gain—it reduces the
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computation time by typically at least a factor of 10–15.
Note that SeDuMi expects readily preprocessed input data in

Matlab’s sparse matrix format. The time needed for converting
the data to this format is not included in the SeDuMi results in
Figure 1. Especially for the larger problems, this conversion
can take substantially longer than solving the problem. The
processing times shown for our own solver do include the
time for reading the input data and preparing the optimization
problem. For our specialized matrix format this step can be
performed very efficiently; it accounts only for a negligible
fraction of the total processing time.

In particular the results with QSopt underline that an off-
the-shelf simplex solver is in fact highly unsuitable for the
specific type of linear optimization problem that we deal with.
Not only does the computation time grow rapidly with an
increasing problem size, but also do the memory requirements.
By contrast, our tailored implementation is very memory
efficient, and its observed runtime increases approximately
linearly with the number of events |I|.

VI. PROPERTIES OF THE MLE

Now that we have seen that it is in fact possible to calculate
a solution of the linear program and thus the maximum
likelihood estimator within reasonable time, we are interested
in the quality of this solution. In this section, we will thus
tackle the question of how good the synchronization result is.

The available amount of data to estimate the clock de-
viations increases with an increasing number of network
packets that have been received by multiple network nodes.
Thus, intuitively, one could expect that the quality of the
estimate improves with the availability of more experimental
data. Similarly, it sounds reasonable that it is very unlikely
that the result of the time synchronization process is grossly
wrong if the input data is very accurate. In this section, we
confine ourselves to a simplified variant of our estimator.
For this simplified variant we can prove that these intuitive
expectations are actually true. Since the complete proofs of
these properties are quite complex and technical despite this
simplification, we have not included them here. Instead they
can be found in [20]. Below we will discuss the results and
their implications, and we give a rough sketch of the proofs’
ideas. Our numerical results presented later underline that the
results also hold for the fully featured estimator with clock
rate estimates.

The simplified estimator does not take clock rate deviations
into account, i. e., it assumes that for each node the clock rate
rj is (approximately) 1 and thus correct with respect to the
“true clock”. Under this assumption the recorded time for a
node-event pair (i, j) ∈ R becomes Ti + di,j + oj . Thus, the
simplified maximum likelihood estimator, in analogy to the
fully featured version, is the solution to the following problem:

maximize L =
∏

(i,j)∈R

λe−λ(ti,j−boj−bTi)

subject to ∀(i, j) ∈ R : d̂i,j = ti,j − ôj − T̂i ≥ 0.

(20)

The optimum is again independent of λ and the above is
equivalent to

minimize k(L) =
∑

(i,j)∈R

(
ti,j − ôj − T̂i

)
=

∑
(i,j)∈R

d̂i,j

(21)
under the same constraints.

Here we will point out two desirable properties for this
version of the estimator. First, we give tight error bounds
on the estimation error that hold under the assumption of a
bounded timestamping delay. In particular this means that the
algorithm does not amplify errors. Furthermore, we show that
the estimator is consistent; in other words, for increasing data
set sizes the estimate converges (in probability) to the true
values of the estimated features. It thus supports the intuition
that the estimate improves for a larger amount of observed and
logged events in the nodes.

A. Error bounds

In order to be able to give a bound for the estimation
error, we need to make two additional assumptions. While the
first guarantees network connectivity, the second establishes
an upper bound on the timestamping delay. Note that an
upper bound for the timestamping delay does not constrain
the practical applicability of the results presented here: for any
practical experiment there is a finite number of receptions, and
thus also a maximum timestamping delay.

The existence of the offset ambiguity as introduced in
Section IV prohibits that the absolute event times and clock
offsets are determined from the log files. This also holds
for the simplified estimator considered here. From the offset
ambiguity, it is easy to see that there is also no way to estimate
the relative time between two separate partitions within the
same experiment. If there are no anchor points between two
sets of nodes, there will be an ambiguity of the offset between
these partitions. Thus, in order to get a bounded maximum
estimation error, we need to assume network connectivity in
the sense of anchor points: the network nodes do not fall into
disjoint partitions, between which no events are shared.

Under such an assumption we can prove that

∀j1, j2 ∈ J : |(oj1 − oj2)− (ôj1 − ôj2)| ≤ (|J |−1) ·D (22)

if D ∈ R+ is an upper bound for the delays, i. e.,

∀(i, j) ∈ R : di,j ≤ D. (23)

Note that the bound is on the difference between two estima-
tion errors because of the offset ambiguity.

The basic idea of the proof is the following. Consider two
nodes j1 and j2. It can be shown that a sequence of distinct
nodes s1, ..., sn, 2 ≤ n ≤ |J |, s1 = j1, sn = j2 with a
special property always exists. In this sequence, for each pair
of subsequent nodes sq and sq+1, there is an event observed
by both sq and sq+1, for which the estimated timestamping
delay in sq is zero. This, together with the nonnegativity of the
timestamping delays, allows for the construction of an upper
bound for (oj1 − oj2) − (ôj1 − ôj2). Since j1 and j2 can be
chosen arbitrarily, the same bound also holds with j1 and j2
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interchanged. This yields a corresponding lower bound for j1
and j2 and thus constrains the absolute value as given in (22).

We are also able to show that under the mentioned assump-
tions the bound is the best possible, i. e., that no estimator
can exist that achieves a smaller worst-case error. This proof
is based on two explicitly constructed worst-case scenarios
that result in identical log files. The point is that although the
resulting local log files are identical for the two scenarios, the
clock offsets differ so much that no estimate can be better than
the worst-case bound given above in both cases.

From the bound on the clock offset estimation error it is
then quite easy to come to a similar bound on the event time
estimates:

∀i1, i2 ∈ I : |(Ti1 − Ti2)− (T̂i1 − T̂i2)| ≤ |J | ·D. (24)

No part of the proof exploits the exponential distribution
of the delays. Thus, independent of the derivation of the
estimator, it shows that if there is an upper bound for the
timestamping delays, the estimates are close to the real values,
regardless of the distribution of the delays within [0, D].

B. Consistency

Differing from the results presented so far we will now no
longer assume an upper bound on the timestamping delays.
Instead we exploit their assumed exponential distribution.
Under these premises, consistency of the simplified estimator
can be established, which means convergence in probability to
the correct offset values for an increasing number of observed
events:

∀j ∈ J : plim
|I|→∞

ôj = oj + x, (25)

where x ∈ R again comes from the offset ambiguity.
Similar to the previous results it is clear that such a result

cannot hold if the network is not connected. We show the
consistency of the simplified MLE under an additional regu-
larity condition, defined as follows. We say that this regularity
condition is fulfilled if there exists an undirected, connected
graph G = (J, V ) and some positive constant β such that

∀{j1, j2} ∈ V : E
[∣∣{i ∈ I|{j1, j2} ⊆ Ri}∣∣] ≥ β · |I|. (26)

This precondition can be seen as a somewhat stronger variant
of the connectivity assumption used above. It is stronger in the
sense that it requires an (in expectancy) ever-growing number
of independent connections between all parts of the network
with an increasing total number of observed events.

In order to prove the consistency result we show that the
probability of the likelihood function having its optimum in an
arbitrarily small environment around the correct clock offset
estimates is arbitrarily high for a sufficing number of observed
events. The key idea is to introduce a per-event decomposition
of the objective function k(L). Certain properties of these
event-wise objective function terms form the basis of our
proof. We have seen before that k(L) is simply the sum of
the d̂i,j for all (i, j) in R. Then a decomposition of k(L) into
event-wise components fi is trivial:

fi :=
∑
j∈Ri

d̂i,j k(L) =
∑
i∈I

fi. (27)

We then switch our point of view. We regard the fi no longer
as functions of the estimated latencies, but as functions of the
estimation error. It is then quite straightforward to show that
all the fi are convex and that they are all Lipschitz continuous
with a common Lipschitz constant. Furthermore, we show that
the expectancy for each fi—as a function of the estimation
error—has a global minimum for the correct estimate, and we
give a non-negative lower bound for the difference between
this expectancy in case of a non-zero estimation error and the
minimum value. All these results in conjunction with the law
of large numbers can then be used to establish the consistency
of the estimator: for a given δ > 0 there is a number of events
N such that for |I| > N the probability that the estimation
error is greater than δ becomes arbitrarily small.

From the consistency result for the clock offset estimate, it is
easy to obtain a result on the quality of the event time estimates
in the same asymptotic setting. If the estimation error of the
clock offsets is close to zero (neglecting the offset ambiguity),
the remaining event time error for an event i is minj∈Ri di,j .
This minimum of the independent, exponentially distributed
di,j is itself exponentially distributed with parameter |Ri| · λ.
In particular this means that the expected estimation error
decreases with the number of nodes observing the same event.

VII. NUMERICAL EVALUATION

While the previous section assessed the performance of the
proposed time synchronization method analytically, we will
now focus on numerical experiments with the algorithm. In
particular, we will show that the asymptotic properties that
have been proven for the simplified estimator hold also for
the fully featured version with clock rate estimates. Moreover,
it will become clear that the convergence is quick enough to
yield accurate estimates even for small event counts. Finally,
we will show that the algorithm is robust if the assumptions—
in particular the exponential distribution of the timestamping
delays and the negligibility of clock drift—do not hold.

A. Methodology

Although desirable, using log files from a real testbed for
an evaluation that rigorously quantifies the numerical quality
of the calculations and the convergence speed is not possible:
for real hardware, the correct values for the rates, offsets, and
event times cannot be determined—this is why we need post-
experiment time synchronization in the first place. Therefore,
we use a two-step simulation in which the correct values are
known. In the first step, the network is simulated to obtain
globally consistent event times and a receiver relation R. Then,
subsequently, we simulate the timestamping of the events in
each node. Random clock rates, offsets, and timestamping
delays are used to transform the correct timestamps, yielding
a set of per-node log files. Like after a real experiment, our
algorithm is then given these log files as input. The quality
of the solution can be determined by comparing the results to
the correct times, rates, and offsets.

How a simulation should be set up for credible network
protocol evaluation results is a highly controversial and heavily
discussed topic. Since our focus here, however, is on supplying
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the numerical algorithm evaluation with an event set I , event
times T , and a receiver relation R, and not on a realistic per-
formance evaluation of some protocol, we constrain ourselves
to a basic simulation scenario. We use the network simulator
ns-2 [21], which has been extended to support promiscuous
mode-like packet tracing: if a data packet could be successfully
decoded by a node’s simulated wireless interface, the packet
is timestamped and logged, regardless of whether the node
was the intended destination or just able to overhear the
transmission.

In our simulations, |J | = 100 nodes move on an area of
1200×1200 meters according to the random waypoint mobility
model. AODV [22] is used as a multihop routing protocol. Five
pairs of nodes communicate continuously over a simulation
time of 10 minutes, performing FTP data transfers over TCP
connections. The IEEE 802.11 MAC protocol is used at a
fixed network bandwidth of 1 MBit/s. The radio range is set
to 250 meters, the carrier sense radius to 550 meters.

For the generation of the local node log files, the clock
offset and rate of every node were chosen randomly. The
choice of the offset is not at all critical: our implementation
actually exploits the offset ambiguity to achieve improved
numerical stability and, as its first step, shifts all processed
log files to start at time zero. Consequently, whichever offset
is chosen for a node, the performed calculations and thus
the accuracy of the estimates are virtually identical. In our
simulations, we sample the offsets from a normal distribution
with mean zero and standard deviation five seconds. For the
clock rates, we used a gamma distribution2 with mean one and
different standard deviations. The gamma distribution has the
advantages of yielding only positive rate values, and being
concentrated around the expectancy. The probability density
function of a gamma distribution is depicted in Figure 2.
Unless otherwise stated, the parameters have been chosen to
yield a standard deviation of 100 parts per million (ppm),
which is rather pessimistic, meaning that on average a clock
is wrong by more than eight seconds per day.

To be able to compare the synchronization results directly
with the correct values from the simulation trace file, the
rate and offset ambiguities need to be overcome. As stated
in Section IV, the normalization constraints lead to scaled and
shifted results if the average inverse clock rate is different
from 1, and if the offset of node 1 is different from 0. This
scaling and shifting can easily be removed by a linear-affine
transformation after the optimization, based on the average
inverse clock rate in the simulation and the offset chosen for
the first node.

Because ns-2 simulates the radio propagation delay, the ar-
rival times of the same packet at different nodes actually differ
slightly. For calculating the event time errors, we compare the
estimated event time to the average ns-2 reception time. The

2The gamma distribution is given by the probability density function

f(x; k, θ) = xk−1 e−x/θ

θk · Γ(k)
for x > 0,

where Γ is the gamma function. The gamma distribution has two parameters,
called the shape parameter k and the scale parameter θ. It has mean k · θ
and variance k · θ2.
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differences are in the order of 10−7 seconds, and therefore
significantly below the other errors that we are dealing with
here.

B. Convergence and Numerical Accuracy

In our first set of experiments, we simulated the timestam-
ping delays according to our assumptions, i. e., exponentially
distributed. We varied the expected timestamping delay λ−1

between 10−3 and 10−5 seconds, and increased the number
of events used for the synchronization. One central result
in the previous section was that—at least for the simpli-
fied estimator—we can expect the quality of the estimates
to improve if an increasing number of events is available
for synchronization. In a practical implementation, numerical
effects of, e. g., a limited floating point precision may influence
the results. The primary purpose of our first simulations is to
verify that what we have shown in theory for the simplified
case also holds for our practical implementation of the full
estimator, and also to give an idea of the convergence speed.

Figure 3 shows the resulting average event time error with
95-percentile error bars. For better readability of the chart,
only the upper part of the error bars is shown. The x-axis
denotes the number of events that have been used for the
synchronization. These have been chosen randomly from all
transmissions with more than one receiver. Note that at the left
hand side of the chart, for 100 events, there is only one sent
packet per node on average. The randomly chosen clock errors
are quite significant. Still, the synchronization eliminates them
to an extent that allows for accurate event time estimates. If
more events are available for the synchronization, the estimates
improve further quickly, and the average event time errors are
one order of magnitude below the timestamping delays. The
convergence is so quick that for 1000 available anchor point
events and more, only tiny fluctuations are left.

From these as well as from our other results, it can also
be seen that the extent and the nature of the timestamping
delays constitute the central limiting factor for the achievable
event time estimate accuracy. This is a common limitation to
any synchronization solution. The error of the rate and offset
estimates, however, tends to zero for large |I|. This is evident
from Figure 4, which shows how the rate error develops in the
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same setting as before. The figure also displays the different
levels of accuracy depending on the order of magnitude of the
timestamping delays. The corresponding results for the offset
estimates show the same behavior. For very small delays with
λ−1 = 10−5 seconds and a high number of available anchor
points, it can be seen that the accuracy does no longer improve
linearly; then the implementation approaches its numerical
accuracy limits.

It also turns out that the estimation errors of rate and
offset are largely independent from the true values of these
parameters and their spread. For the offsets, this is clear from
the problem structure. For the rates, however, this trait is not
immediately obvious. Tables I and II show the accuracy of the
estimation results. The small deviations in estimation accuracy
are remaining statistical fluctuations.

Another theoretical result from the previous section is that
the event time estimation accuracy for an event i increases

TABLE I
CLOCK RATE ESTIMATION ERROR FOR DIFFERENT CLOCK RATE

STANDARD DEVIATIONS (λ−1 = 10−4 S, |I| = 10 000).

std. dev. of rates avg. rate error 95-perc. max rate error
10 ppm 0.00352 ppm 0.00935 ppm

100 ppm 0.00358 ppm 0.00945 ppm
1000 ppm 0.00355 ppm 0.00927 ppm
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with |Ri|. More specifically, the result said that for correct
rate and offset estimates, the remaining expected event time
error is exponentially distributed with parameter |Ri| · λ, and
thus is λ−1/|Ri| on average. Figure 5 shows simulation results
from log files with λ−1 = 10−4 seconds and |I| = 10 000.
They exhibit exactly the predicted behavior. The chart shows
the average event time error and again the 95-percentile upper
error bar, where the events are broken down along the x-axis
according to the number of nodes |Ri| that observed them.
The chart shows also the theoretical average error given by
the function x 7→ λ−1/x, and it is evident that the results
match the theoretical expectations very closely.

We conclude that the convergence of the estimate is very
quick, and a reasonable synchronization quality can be ex-
pected even if only a limited number of anchor points is avail-
able. The results also underline that the numerical performance
of our implementation will not be the limiting factor for the
accuracy in practical usage.

C. Robustness

So far, our simulations have used clocks and timestamping
delays that match the assumptions made for the derivation
of the approach. Now we assess how robust the estimator
is if these assumptions do not hold. We thus use the very
same estimator as before, but generate simulation data that
intentionally contradicts the assumptions in different ways.

The event time estimation errors occurring in these
experiments are shown in Figure 6. The results with
λ−1 = 10−4 seconds from the previous simulations, where all
our assumptions hold, are used as a “baseline” for comparison
(labeled “exponential”). Since the error bars in particular are
difficult to identify in this figure, Table III provides a more
detailed view on the exact values for |I| = 10 000. As could

TABLE II
CLOCK OFFSET ESTIMATION ERROR FOR DIFFERENT CLOCK RATE

STANDARD DEVIATIONS (λ−1 = 10−4 S, |I| = 10 000).

std. dev. of rates avg. offset error 95-perc. max offset error
10 ppm 1.56µs 3.84µs

100 ppm 1.50µs 3.81µs
1000 ppm 1.50µs 3.96µs
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TABLE III
EVENT TIME ESTIMATION ERRORS FOR |I| = 10 000 EVENTS

IF ASSUMPTIONS DO NOT HOLD.

distribution avg. timestamp err. 95-perc. max timestamp err.
exponential 9.4µs 31.6µs
gamma 30.2µs 60.5µs
multi-modal 11.0µs 35.9µs
two groups 20.3µs 38.7µs
lim. resol. 22.5µs 46.0µs
clock drift 24.5µs 75.8µs
combined 36.0µs 93.5µs

be expected, the estimation results with exponential delays are
slightly better than those where the assumptions do not hold.

First, we varied the distribution from which the time-
stamping delays were sampled. The result labeled “gamma”
shows the estimation error for delays drawn from a gamma
distribution with shape parameter k = 3. The scale parameter
θ has been set to 1/(k · λ). This yields a mean of λ−1 and
therefore allows for a direct comparison to the results with
exponentially distributed delays with the same mean. The
probability density functions of these two distributions are
shown in Figure 2, both adjusted to mean 1.

In the “multi-modal” simulations we assess the robust-
ness to outliers in the timestamping delays. The majority of
timestamping delays follows an exponential distribution with
λ−1 = 10−4 seconds. 10 %, however, are instead drawn from a
gamma distribution with k = 10 and a mean ten times higher.
1 % are “heavy outliers”, sampled from a gamma distribution
with a mean 50 times higher and k = 100. From these results,
it can be seen in particular that our proposed method is very
robust against outliers.

Heterogeneous hardware with different timestamping delay
characteristics is simulated in the “two groups” setup. The
simulated network nodes are divided into two groups of 50
nodes each. The delays are exponentially distributed here, but
the values of λ−1 differ by one order of magnitude: one half
of the nodes uses λ−1 = 10−4.5 seconds, and the other half
uses λ−1 = 10−3.5 seconds.

We have also simulated the effects of a bad clock accuracy.
As stated earlier, clocks in computer systems sometimes
have a rather coarse resolution. In the simulations labeled
“lim. resol.”, the timestamping delays are again exponentially

distributed with λ−1 = 10−4 seconds, but the timestamps’
resolution has been reduced to 0.1 milliseconds prior to per-
forming the time synchronization. The estimator again deals
very well with this effect. It is particularly remarkable that
the availability of measurements from multiple nodes with
different offsets allows for an estimation of the event times
that is more accurate than the resolution of a single node’s
clock.

The “clock drift” simulations show the effect that randomly
drifting clocks have on the accuracy of the estimates. Instead
of linear clock functions, we use second order polynomials.
Clock drifts are chosen independently from a Gaussian dis-
tribution with mean zero and standard deviation 3 · 10−9.
With this, the speed change of a clock can easily sum up
to several ppm during a ten-minute simulation. Nevertheless,
as our results show, the effect on the synchronization accuracy
is very limited.

Finally, the “combined” simulations incorporate all of the
above sources of inaccuracies. In this data set, the timestamps
are delayed according to the outlier-prone “multi-modal” dis-
tribution, there are two groups of nodes with different expected
timestamping delays like in the “two groups” simulations, the
simulated clocks drift as described above, and the timestamps’
resolution is again limited to 0.1 ms. Even this combination
of effects—all of which heavily contradict the foundations
on which we have initially built our method—results in a
degradation of the estimation quality by substantially less than
one order of magnitude.

In summary, the estimator has proven to be very robust
and yields sensible results also if the various assumptions
made for its derivation do not exactly hold. The nature of the
timestamping delays clearly impacts the achieved precision.
But although the quality of the estimates may degrade to a
certain extent (as could be expected), the errors are still small,
and the estimator converges quickly to a high accuracy in all
cases.

VIII. REAL-WORLD EXPERIMENTS

The previously presented robustness assessment has shown
that our proposed time synchronization method is able to deal
well with a whole range of adversarial effects in the log data.
Still, however, these evaluations were based on artificially
generated simulation data. We will thus now complement them
with an application of our method to real-world experimental
data. Due to the unknown true values this does not allow to
rigorously determine the remaining errors. But it nevertheless
provides a good intuitive understanding and shows how well
the method can handle real data.

Our experimental setup consist of seven PCs with rather
heterogeneous hardware both in terms of CPU/memory and
the wireless interface card. One of these nodes periodically
broadcasts one packet per second, over a total of 20 minutes.
The other six record and timestamp the received packets.
Initially, the offsets have been reduced by approximately
setting the clocks by hand.

In our figures, we use one of the receivers as a reference,
and plot the differences in the recorded timestamps between
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Fig. 7. Unsynchronized timestamp differences in real-world experiments.
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Fig. 8. Synchronized timestamp differences in real-world experiments.

this receiver and the other five. Figure 7 shows how—for
unsynchronized clocks—this difference develops during the
experiment. The almost exactly linear relative clock errors are
clearly visible. Where the lines in the plot are interrupted, the
respective nodes have missed packets.

We have used our time synchronization algorithm on the
data from the above experiment. This yields estimates r̂j and
ôj for the rates and offsets of the six receivers. We use those to
eliminate the estimated linear clock deviations from Figure 7,
by computing

ti,j − ôj
r̂j

≈ Ti + di,j (28)

for each timestamp. In Figure 8, we show the results of this
correction. Again we plot the timestamp differences to the
reference node, the y-axis uses the same scale as in Figure 7.

The approximation in (28) is exact if the estimates r̂j
and ôj of rj and oj are exact. Remaining clock deviations
or estimation errors would therefore be visible in Figure 8:
they would result in remaining timestamp differences to the
reference node.

That such errors are in fact virtually non-existent becomes
clear if we zoom the y-axis further in, as we do in Figure 9. It
can be seen that the timestamping differences are typically in
the order of some ten microseconds, with occasional outliers
of up to 1–2 milliseconds. There is, however, no sign of a
systematic (i. e., rate or offset estimation) error, like clocks
drifting apart over time. This indicates that the rate and offset
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Fig. 9. Synchronized timestamp differences in real-world experiments
(zoomed).

estimates are indeed correct.
Note that eliminating the estimated linear clock deviations

according to (28) leaves the timestamping delays in the data.
In a practical application, our approach would have been able
to also eliminate long timestamping delays with very high
probability. Recall that given exact rate and error estimates, it
removes all but the shortest timestamping delay that occurred
for events with multiple observers. Since we do not know
the true times of the packet receptions in the experiment, we
cannot tell how large exactly the then remaining deviations
are. It seems reasonable, however, to assume that the smallest
timestamping delay for a packet is within the same order
of magnitude as the minimal timestamp difference to the
reference node3. Considering (28) this difference is simply
the difference of two timestamping delays. In the discussed
experiment, the average of the per-packet minimum timestamp
difference is 5 microseconds; for 95 % of the packets, it is
below 29 microseconds.

In order to examine the impact of clock drift, we have
performed a second experiment with a duration of 100 min-
utes. Note that this significantly exceeds the time span over
which drift can be neglected. The experimental setup as

3This does of course not hold when the minimum path delay is included
in the timestamping delay. This, however, is not a problem here: recall from
Section III-C that the minimum path delay in a node is equivalent to an
additional clock offset, and may thus be eliminated.

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  1000  2000  3000  4000  5000  6000

T
im

e
 d

e
lt
a
 t
o
 r

e
fe

re
n
c
e
 (

m
s
)

Packet ID

Node 1
Node 2

Node 3
Node 4

Node 5

Fig. 10. Synchronized timestamp differences in a real-world experiment with
an overall duration of 100 minutes.
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well as the used evaluation methodology are the same as
above. The results of this experiment after correcting the
timestamps according to (28) are shown in Figure 10. The non-
linear deviations—effects of clock drift—are clearly visible.
Nevertheless, our approach provides good estimates for the
offsets and rates. Still, 95 % of all timestamp differences are
below 142 microseconds.

IX. CONCLUSION

In this paper we have considered offline time synchro-
nization for networks with local broadcast media. We have
proposed a method to combine separate event log files from
nodes in such a network into one single log file with a common
time basis, in spite of deviating local clocks and latencies that
occur when the timestamps for the events are generated. This is
useful, for example, for the evaluation of experimental results.
The key issue is how the deviations of the clocks and the
latencies can be addressed without the necessity of additional
communication between the network nodes.

Our algorithm utilizes transmissions that have been received
by multiple nodes as anchor points. It has been shown how
the synchronization can be formulated as an optimization
problem, and how this problem can be expressed as a linear
program. The special structure of this linear program can
then be exploited by an efficient solution algorithm. We have
presented an implementation of a specialized solver, and com-
parisons to other LP solvers underline the performance of the
employed solution techniques. Furthermore, we have presented
analytical results on the quality of the synchronization for a
simplified variant of the estimator. In particular, these results
include a bound on the maximum possible synchronization
error, depending on the maximum timestamping delay, and a
consistency proof. A subsequent numerical evaluation shows
that the convergence to accurate estimates is quick, and that
the solver is robust even if the underlying assumptions do not
hold. Finally, it has been shown in a number of experiments
that the estimator is able to correctly handle real-world data
in the presence of timestamping delays and clock drift.

We consider the presented approach generally applicable
whenever event data is distributed over multiple sources, and
common events can be used as anchor points for a maximum
likelihood time synchronization. Apart from supporting the
interpretation of experimental results in networks with local
broadcast media that we have primarily considered, we en-
vision adaptations of the proposed technique for example in
the field of network forensics, where data of, e. g., multiple
intrusion detection systems (IDS) or firewall logs is combined.
There, too, certain events will often have been observed in
parallel by multiple systems.
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