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Abstract

In this paper we consider a simplified version of a maximum likelihood time synchronization
estimator introduced in [2]. This simplified variant assumes approximately accurate clock rates.
We give error bounds for the estimator under the assumption of a maximum timestamping delay,
and we show that these error bounds are optimal. Furthermore, we prove consistency of the clock
offset estimator for increasing numbers of observed events, and we derive a result on the error
distribution of the event time estimates.

I. INTRODUCTION

In [2] we propose a solution to the problem of generating a time-consistent global log file out
of a set of local log files from a number of network nodes. The local clocks of these nodes are
inaccurate and thus introduce errors in the local timestamps. In our approach we consider a network
with a local broadcast medium, i. e., one where all or parts of the nodes observe certain events at
the same time instant. These common events are used as a kind of anchor points for a maximum
likelihood estimation of the clock error and of additional delays occuring in each node upon logging
the events. The latter are called the timestamping delays. This maximum likelihood estimator leads
to a big linear program (LP).

Our proposed approach is able to estimate and compensate linear-affine clock deviations. Here
we consider a simplified variant that ignores deviations of the clocks’ rates, such that the only
deviations of the clocks are constant offsets. We prove two desirable properties for this version
of the estimator. First, we show that tight error bounds on the estimation error hold under the
assumption of a bounded timestamping delay. In particular this means that the algorithm does not
amplify errors. Furthermore, we show that our estimator is consistent. This means that for increasing
data set sizes the estimate converges (in probability) to the true values of the estimated features. It
thus supports the intuition that the estimate improves for a larger amount of observed and logged
events in the nodes.

In this paper we will first quickly review our estimator in Section II, with a special focus on
the simplified version without clock rate deviations. We will then focus on the error bounds in
Section III. In Section IV we prove the consistency of the estimator. Finally, Section V concludes
the paper.



II. THE SIMPLIFIED MAXIMUM LIKELIHOOD TIME SYNCHRONIZATION ESTIMATOR

For the most part we adopt the notation from [2] here. The set of nodes is denoted by J and the
set of events by I. R is the relation of node-event pairs for which a timestamp has been recorded,
i. e., (i, j) ∈ R⊆ I× J if and only if i has been observed and timestamped by j.

The employed clock model assumes that for each node j there is an offset o j and a rate r j such that
j’s clock maps the real time t to the local time C j(t) = r jt +o j. In addition to the clock deviations
there are timestamping errors which are assumed to be independent and exponentially distributed
with parameter λ . This means that for the full-featured maximum likelihood estimator the time
recorded for event i at “real” time Ti by node j is r j(Ti +di, j)+o j where di, j is a random variable
modelling the timestamping delay.

In this paper we consider a simplified version of the above. We assume that the clocks run
(approximately) at the correct rate, i. e., we set ∀ j ∈ J : r j = 1. Under this assumption the recorded
time for a node-event pair (i, j)∈ R becomes Ti +di, j +o j. Thus the simplified maximum likelihood
estimator, in analogy to the full-featured version, is the solution to the following problem:

minimize L = ∏
(i, j)∈R

λe−λ(ti, j−ô j−T̂i)

subject to ∀(i, j) ∈ R : d̂i, j = ti, j− ô j− T̂i ≥ 0.

Here, ti, j denotes the local time when node j has recoded event i. ô j and T̂i are the estimates of o j

and Ti, respectively.

As shown in [2], the optimal solution is independent of λ and equivalent to solving

minimize k(L) = ∑
(i, j)∈R

(
ti, j− ô j− T̂i

)
= ∑

(i, j)∈R
d̂i, j

under the same constraints as above.

Let an optimal solution of this LP, consisting of the estimates T̂i, ô j and d̂i, j, be denoted by S .

To simplify the rest of this paper we introduce notations for the set of all nodes observing a certain
event and for all the events observed by a given node:

∀i ∈ I : Ri := { j ∈ J|(i, j) ∈ R}

∀ j ∈ J : R j := {i ∈ I|(i, j) ∈ R}

III. ERROR BOUNDS

Our intention in this section is to establish an upper bound on the error of the maximum likelihood
estimator, i. e., the maximum difference between estimated and real event times. In order to do so
we make two additional assumptions. The first one guarantees network connectivity, the second
one establishes an upper bound on the timestamping delay.

2



Before we introduce the assumptions it is necessary to recall one important fact from [2], which
we call the offset ambiguity: for any offset τ ∈R, the estimates T̂i, ô j and the estimates T̂ ′

i , ô′j with

∀i ∈ I : T̂ ′
i = T̂i + τ ∀ j ∈ J : ô′j = ô j− τ

fit the same set of measurements equally well.

From the offset ambiguity it is easy to see that there is also no way to estimate all the relative times
within an experiment if the network is partitioned. If there are no anchor points between two sets of
nodes, there will be an ambiguity of the offset between these partitions within the experiment. Thus,
in order to get a bounded maximum estimation error we need to assume network connectivity. The
connectivity assumption says that the network nodes do not fall into disjoint partitions, between
which no anchor points at all exist. Formally this is

∀P1,P2 ⊆ J, P1,P2 6= /0 : (P1∪P2 = J ∧ P1∩P2 = /0 =⇒ ∃ j1 ∈ P1, j2 ∈ P2 : R j1 ∩R j2 6= /0).

Under this assumption we will prove that

∀ j1, j2 ∈ J :
∣∣(o j1 −o j2)− (ô j1 − ô j2)

∣∣≤ (|J|−1) ·D

and
∀i1, i2 ∈ I :

∣∣∣(Ti1 −Ti2)−
(

T̂i1 − T̂i2

)∣∣∣≤ |J| ·D

if D ∈R+ is an upper bound for the delays, i. e.,

∀(i, j) ∈ R : di, j ≤ D.

Note that the bounds are on the difference between two estimation errors because of the offset
ambiguity.

The following proof does not exploit the exponential distribution of the delays. Thus, independent of
the derivation of the estimator, the proof shows that if there is an upper bound for the timestamping
delays the estimates are close to the real values, regardless of the real distribution of the delays
within [0,D]. Note that assuming the existence of such an upper bound does not limit the practical
applicability of the results given here: for any given experiment, the set of observations R is finite,
and thus there will always be a maximum delay.

For the proof we introduce some additional terminology.

Definition Let j, j′ ∈ J, i ∈ I. We call i a common event of j and j′ iff {(i, j1),(i, j2)} ⊆ R, and we
call i a connecting event from j to j′ iff i is a common event of j and j′ and the timestamping
delay of i in j is estimated as zero, i. e., d̂i, j = 0.

As will soon become clear, a significant part of the timestamping delay estimates are zero. We now
construct a directed graph G := (J,E) with

E :=
{
( j, j′) ∈ J2 | ∃i ∈ I : i is a connecting event from j to j′

}
.
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The graph G plays a central role in our proof. In the following two lemmas we point out some
properties of G.

Lemma III.1 Let jA, jB ∈ J. Then there exists a directed path ( jA, . . . , jB) in G.

Proof The set of nodes J can be divided into two disjoint subsets:

J1 := { j ∈ J | there exists no directed path ( j, . . . , jB) in G}

J2 := J \ J1.

In the following, we will show that J1 is empty. Let Ī be the events occurring in both J1 and J2:

Ī := {i ∈ I | ∃ j1 ∈ J1, j2 ∈ J2 : {(i, j1),(i, j2)} ⊆ R} .

Let j1 ∈ J1, j2 ∈ J2. Then there is no connecting event from j1 to j2. Otherwise a path from j1 to
jB could be constructed by concatenation of ( j1, j2) and ( j2, . . . , jB), which is a contradiction to
j1 ∈ J1. Thus, we have

∃ε > 0 : ∀(i, j) ∈ R∩ (Ī× J1) : d̂i, j ≥ ε.

Let now

I1 := {i ∈ I | @ j ∈ J2 : (i, j) ∈ R}

I2 := {i ∈ I | @ j ∈ J1 : (i, j) ∈ R} .

With these definitions I = I1 ∪ I2 ∪ Ī holds, and I1, I2, Ī are pairwise disjoint. Now a new solution
S ′ of the LP can be constructed:

T̂ ′
i := T̂i−

ε if i ∈ I1

0 otherwise

ô′j := ô j +

ε if j ∈ J1

0 otherwise

d̂′i, j := d̂i, j−

ε if i ∈ Ī ∧ j ∈ J1

0 otherwise.

It can easily be verified that all the LP constraints hold for S ′ since they hold for S . For S ′ we
have

∑
(i, j)∈R

d̂′i, j = ∑
(i, j)∈R

d̂i, j−|R∩ (Ī× J1)| · ε.

Since S is optimal and ε > 0 we have |R∩ (Ī× J1)| = 0. Therefore, Ī = /0 or J1 = /0, due to the
definitions of J1 and Ī above.
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Ī is not empty if J1 is not empty due to the connectivity assumption. Therefore, J1 = /0 and jA ∈ J2.
Thus, there exists a directed path ( jA, . . . , jB) in G.

Lemma III.2 Let ( j0, . . . , jn) ∈ Jn+1 be a directed path in G. Then

(o j0 −o jn)− (ô j0 − ô jn)≤ nD.

Proof We prove this by induction.

Let n = 1. Let i be a connecting event from j0 to j1. Such an event exists due to the construction
of G. From the LP we have

Ti +o j0 +di, j0 = T̂i + ô j0 + d̂i, j0 (1)

Ti +o j1 +di, j1 = T̂i + ô j1 + d̂i, j1 . (2)

The difference between (1) and (2) yields

(o j0 −o j1)+(di, j0 −di, j1) = (ô j0 − ô j1)+(d̂i, j0 − d̂i, j1)

⇐⇒ (o j0 −o j1)− (ô j0 − ô j1) = ( d̂i, j0︸︷︷︸
=0

− d̂i, j1︸︷︷︸
≥0

)

︸ ︷︷ ︸
≤0

−( di, j0︸︷︷︸
∈[0,D]

− di, j1︸︷︷︸
∈[0,D]

)

︸ ︷︷ ︸
∈[−D,D]

⇐⇒ (o j0 −o j1)− (ô j0 − ô j1) ≤ D.

For the induction step we have:

(o j0 −o jn−1)− (ô j0 − ô jn−1) ≤ (n−1)D (3)

(o jn−1 −o jn)− (ô jn−1 − ô jn) ≤ D. (4)

(4) can be constructed like above. Addition of (3) and (4) gives us

(o j0 −o jn−1)− (ô j0 − ô jn−1)+(o jn−1 −o jn)− (ô jn−1 − ô jn) ≤ (n−1)D+D

⇐⇒ (o j0 −o jn)− (ô j0 − ô jn) ≤ nD.

Now that we know that G is connected and that an upper error bound holds for any path in G,
we only need to put together these pieces in order to get a bounded error of the offsets for any
pair of nodes. While Lemma III.2 establishes only an upper bound for the differences of two offset
estimation errors, the fact that G is connected and thus paths in both directions exist can be exploited
to bound this difference from below, too.

Theorem III.3 Let j1, j2 ∈ J. Then the following bound holds∣∣(o j1 −o j2)− (ô j1 − ô j2)
∣∣≤ (|J|−1)D.
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Proof According to Lemma III.1 there exists a path from j1 to j2 in G. Likewise, there exists a
path from j2 to j1 in G. Since the number of nodes in G is |J|, the maximum length of each of
these paths is |J|−1. Thus, we have from Lemma III.2:

(o j1 −o j2)− (ô j1 − ô j2)≤ (|J|−1)D

(o j2 −o j1)− (ô j2 − ô j1) =−((o j1 −o j2)− (ô j1 − ô j2))≤ (|J|−1)D.

This immediately gives us the desired result.

We now have an error bound for the offset estimates. From here, it is only a small step to a similar
bound for the error in the estimation of the event times. However, in order to give a good bound
we need an additional property of the estimator that will be established in the following lemma.

Lemma III.4 Let ī ∈ I. Then there exists j̄ ∈ J : d̂ī, j̄ = 0.

Proof We prove this by contradiction. Assume that there is no such j̄. Then

∃ε > 0 : ∀(i, j) ∈ R : i = ī⇒ d̂i, j ≥ ε.

Now we construct an new solution S ′ to the LP:

T̂ ′
i := T̂i +

ε if i = ī

0 otherwise

ô′j := ô j

d̂′i, j := d̂i, j−

ε if i = ī

0 otherwise.

This solution is valid and better than S . Since S is optimal this is a contradiction.

We can exploit the fact that for any event i a node j exists where di, j is estimated as zero in the
following theorem. The result is the desired error bound for the event time estimates.

Theorem III.5 Let i1, i2 ∈ I. Then the following bound holds∣∣∣(Ti1 −Ti2)− (T̂i1 − T̂i2)
∣∣∣≤ |J| ·D.

Proof From Lemma III.4 we have

∀k ∈ {1,2} : ∃ jk ∈ J : (ik, jk) ∈ R ∧ d̂ik, jk = 0.

With these j1, j2 we have

Ti1 +o j1 +di1, j1 = T̂i1 + ô j1 (5)

Ti2 +o j2 +di2, j2 = T̂i2 + ô j2 . (6)
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Calculating the difference between (5) and (6) and some reordering yields

(Ti1 −Ti2)− (T̂i1 − T̂i2) = (ô j1 − ô j2)− (o j1 −o j2)︸ ︷︷ ︸
∈[−(|J|−1)D, (|J|−1)D]

−(di1, j1 −di2, j2)︸ ︷︷ ︸
∈[−D,D]

.

The bounds for (ô j1 − ô j2)− (o j1 −o j2) come from theorem III.3.

This result gives us ∣∣∣(Ti1 −Ti2)− (T̂i1 − T̂i2)
∣∣∣≤ (|J|−1)D+D = |J| ·D,

which is the desired bound.

Now we have bounds on the relative offsets and event time estimates. It remains open whether
these bounds are good. To address this question we introduce some additional terms. We then use
these to point out an important property of any local broadcast network where distributed log files
are recorded. This property in turn will then be used to prove that not only the error bounds are
tight, but also that no estimator with better error bounds is possible.

Definition A receive trace set Q = (I,R,(ti, j)(i, j)∈R) for a set of nodes J consists of a set of events
I, a relation R⊆ I× J and the local timestamps ti, j recorded by the nodes in J for the events they
have observed.

For a given set of nodes J, a scenario S = (I,R,(o j) j∈J,(Ti)i∈I,(di, j)(i, j)∈R) consists of a set of
events I, a relation R ⊆ I× J, and corresponding offsets o j for all nodes, event times Ti for all
events and delays di, j for each event reception.

From the above definition it is clear that there is exactly one receive trace set for any given
scenario. There can, however, well be many possible scenarios for a given receive trace set. The
offset ambiguity mentioned at the beginning of this section is a special case of this situation. Note
that this is an inherent property of the time synchronization problem as it is considered here, and
not specific to our approach.

Definition Two scenarios S = (I,R,(o j) j∈J,(Ti)i∈I,(di, j)(i, j)∈R) and S′ = (I,R,(o′j) j∈J,(T ′
i )i∈I,

(d′i, j)(i, j)∈R) are called indistinguishable if they share a common set of events I and the same
relation R and they result in the same receive trace set, i. e.,

∀(i, j) ∈ R : o j +Ti +di, j = ti, j = o′j +T ′
i +d′i, j.

Theorem III.6 For any set of nodes J, |J| ≥ 1 there exist two indistinguishable scenarios S =
(I,R,(o j) j∈J,(Ti)i∈I,(di, j)(i, j)∈R) and S′ = (I,R,(o′j) j∈J,(T ′

i )i∈I,(d′i, j)(i, j)∈R) and j2, j2 ∈ J such that
R fulfills the connectivity assumption and

(o′j1 −o′j2)− (o j1 −o j2) = 2(|J|−1)D.

Proof Our proof for this theorem is constructive. Let, for the sake of simplicity and without loss of
generality, J = {1, . . . ,n}. Assume these nodes form a chain-like topology. A total of n−1 events
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are recorded by the nodes, I = {1, . . . ,n−1}. Now we define R as follows

(i, j) ∈ R ⇐⇒ i ∈ { j−1, j}.

It is easy to see that the connectivity assumption holds for R.

Now let S and S′ be defined by

∀i ∈ I : Ti := (n− i) ·D T ′
i := i ·D

∀ j ∈ J : o j := j ·D o′j := (n− j +1) ·D

∀(i, j) ∈ R : di, j :=

0 if i = j−1

D if i = j
d′i, j :=

D if i = j−1

0 if i = j.

With these definitions it is easy to verify that S and S′ are indistinguishable:

∀(i, j) ∈ R : Ti +o j +di, j = T ′
i +o′j +d′i, j.

And it also holds that
(o′1−o′n)− (o1−on) = 2(n−1)D.

Let us now assume that we have two scenarios S and S′ like in the above theorem. Assume now we
have estimates ô1 and ôn of o1 and on that are better than the worst-case result of our maximum
likelihood estimator for scenario S. This means that the relative offset estimation error is less than
(|J|−1)D, which is the bound of our approach according to Theorem III.3. Then in particular

(o1−on)− (ô1− ôn) >−(|J|−1)D.

But we know that
(o′1−o′n)− (o1−on) = 2(n−1)D.

By simple addition we get
(o′1−o′n)− (ô1− ôn) > (|J|−1)D.

This is worse than the maximum error of our MLE estimator. Since S and S′ are indistinguishable,
this proves that there cannot be an estimator with lower maximum offset estimation errors: if the
estimate is better in case of a receive trace set that resulted from S, it is necessarily worse in case
the same receive trace set came from S′ and vice versa. Similar results hold for the event time error
bounds.
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IV. CONSISTENCY

In the last section error bounds for our time synchronization approach have been established. They
do not exploit the exponential distribution of the timestamping delay, but rely on an upper bound
for the timestamping delay. In this section we will not assume such an upper bound, but we will
exploit the exponential distribution of the delays. Under these premises consistency of the clock
offset estimator will be established, which means convergence in probability to the correct offset
values for an increasing number of observed events:

∀ j ∈ J : plim
|I|→∞

ô j = o j + x,

where x ∈R again comes from the offset ambiguity discussed in the previous section.

We will show the consistency of the simplified MLE under an additional regularity condition,
defined as follows.

Definition We say that the regularity condition is fulfilled if there exists an undirected, connected
graph G = (J,V ) and some positive constant β such that

∀{ j1, j2} ∈V : E
[∣∣{i ∈ I|{ j1, j2} ⊆ Ri}

∣∣]≥ β · |I|.

It is valid to assume that G is a tree.

This condition can be seen as a somewhat stronger variant of the connectivity assumption used in the
previous section. It is stronger in the sense that it requires an ever-growing number of independent
connections between all parts of the network with an increasing total number of observed events,
although only probabilistically with respect to the expectancy of their number.

A. Stochastic preliminaries

Before we can tackle the main proof some preliminary results from elementary probability theory
are necessary. They will be established in the following lemmas.

Lemma IV.1 Let X1,X2 be independent, exponentially distributed random variables with parame-
ters λ1,λ2. Then min{X1,X2} is exponentially distributed with parameter λ1 +λ2.

Proof

P(min{X1,X2} ≤ x) = P(X1 ≤ x or X2 ≤ x)

= 1−P(X1 > x and X2 > x)

= 1−P(X1 > x) ·P(X2 > x)

= 1−
(∫

∞

x
λ1e−λ1tdt

)(∫
∞

x
λ2e−λ2tdt

)
= 1−

(
e−λ1x

)(
e−λ2x

)
= 1− e−(λ1+λ2)x.
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Thus, the minimum of X1 and X2 is exponentially distributed with parameter λ1 +λ2.

Lemma IV.2 Let X be a random variable with real values and expected value E[X ]∈R. Let t ∈R
such that E[X |X < t] and E[X |X ≥ t] exist. Then

E[X ] = P(X < t) ·E[X |X < t]+P(X ≥ t) ·E[X |X ≥ t].

Proof Assume X is continuous with probability density f .

E[X ] =
∫

∞

−∞

x · f (x) dx

=
∫ t

−∞

x · f (x) dx+
∫

∞

t
x · f (x) dx

=
∫ t

−∞

x · f (x|X < t) ·P(X < t) dx

+
∫

∞

t
x · f (x|X ≥ t) ·P(X ≥ t) dx

= P(X < t) ·E[X |X < t]+P(X ≥ t) ·E[X |X ≥ t].

For more general X the proof is analogous.

Lemma IV.3 Let d be an exponentially distributed random variable with parameter λ . Let t ∈R+.
Then

E[d|d < t] =
1
λ
− te−λ t

1− e−λ t .

Proof From Lemma IV.2 and with the memorylessness of the exponential distribution it follows
that

E[d|d < t] =
E[d]−P(d ≥ t) ·E[d|d ≥ t]

P(d < t)

=
1
λ
− e−λ t

( 1
λ

+ t
)

1− e−λ t

=
(1− e−λ t) 1

λ
− te−λ t

1− e−λ t

=
1
λ
− te−λ t

1− e−λ t .
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Lemma IV.4 Let d1, . . . ,dn be independent, exponentially distributed random variables with
parameters λ1, . . . ,λn. Let ∆1, . . . ,∆n ∈R be given such that ∀i,1≤ i < n : ∆i+1 ≥ ∆i.

With

∀i,1≤ i≤ n : Li :=
i

∑
j=1

λ j

the following equality holds:

E
[

min
1≤i≤n

(di +∆i)
]

=
n−1

∑
j=1

(
j−1

∏
k=1

e−Lk(∆k+1−∆k)

)(
1− e−L j(∆ j+1−∆ j)

) 1
L j

+

(
n−1

∏
k=1

e−Lk(∆k+1−∆k)

)
1
Ln

+∆1.

Proof First observe that if there exists i,1 ≤ i < n such that ∆i+1 = ∆i, then, with Lemma IV.1,
this is equivalent to the case where di and di+1 are replaced by a single exponentially distributed
random variable with parameter λi + λi+1, and the same ∆i appearing only once. We may thus
without loss of generality assume that ∀i,1≤ i < n : ∆i+1 > ∆i.

To simplify the notation of the following, we define

χ [(∆1,λ1), . . . ,(∆n,λn)] := E
[

min
1≤ j≤n

(d j +∆ j)
]
.

This can be generalized for the conditional expected value, i. e., for a condition A, let

χ[(∆1,λ1), . . . ,(∆n,λn)|A] := E
[

min
1≤ j≤n

(d j +∆ j)
∣∣∣∣A] .

We will now show the assertion by induction over n. The base case n = 1 holds:

χ[(∆1,λ1)] = ∆1 +
1
λ1

.

For the induction step, we will use the following implication of Lemma IV.1:

χ[(∆2,λ1),(∆2,λ2),(∆3,λ3), . . . ,(∆n,λn)]

= E [min{d1 +∆2,d2 +∆2,d3 +∆3, . . . ,dn +∆n}]

= E [min{min{d1 +∆2,d2 +∆2},d3 +∆3, . . . ,dn +∆n}]

= χ[(∆2,λ1 +λ2),(∆3,λ3), . . . ,(∆n,λn)].

With ∆1 ≤ ∆2, Lemma IV.2 at (a), the memorylessness of the exponential distribution at (b),
Lemma IV.3 at (c) and the induction hypothesis (with an index shift) at (d), the following holds:
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χ[(∆1,λ1), . . . ,(∆n+1,λn+1)]

= E [min{d1 +∆1, . . . ,dn+1 +∆n+1}]
(a)= P(d1 +∆1 < ∆2) ·E [min{d1 +∆1, . . . ,dn+1 +∆n+1} | d1 +∆1 < ∆2]

+ P(d1 +∆1 ≥ ∆2) ·E [min{d1 +∆1, . . . ,dn+1 +∆n+1} | d1 +∆1 ≥ ∆2]
(b)= P(d1 +∆1 < ∆2) ·E [d1 +∆1 | d1 +∆1 < ∆2]

+ P(d1 +∆1 ≥ ∆2) ·E [min{d1 +∆2,d2 +∆2, . . . ,dn+1 +∆n+1}]

=
(

1− e−λ1(∆2−∆1)
)

(E[d1 | d1 < ∆2−∆1]+∆1)

+ e−λ1(∆2−∆1) ·χ[(∆2,λ1),(∆2,λ2), . . . ,(∆n+1,λn+1)]

(c)=
(

1− e−λ1(∆2−∆1)
)( 1

λ1
− e−λ1(∆2−∆1)(∆2−∆1)

1− e−λ1(∆2−∆1)
+∆1

)
+ e−λ1(∆2−∆1) ·χ[(∆2,λ1 +λ2),(∆3,λ3), . . . ,(∆n+1,λn+1)]

(d)=
(

1− e−λ1(∆2−∆1)
)( 1

λ1
+∆1

)
− e−λ1(∆2−∆1)(∆2−∆1)

+ e−λ1(∆2−∆1)

(
n

∑
j=2

(
j−1

∏
k=2

e−Lk(∆k+1−∆k)

)(
1− e−L j(∆ j+1−∆ j)

) 1
L j

+

(
n

∏
k=2

e−Lk(∆k+1−∆k)

)
1

Ln+1
+∆2

)

=
(

1− e−L1(∆2−∆1)
)( 1

L1
+∆1

)
− e−L1(∆2−∆1)(∆2−∆1)

+ e−L1(∆2−∆1)

(
n

∑
j=2

(
j−1

∏
k=2

e−Lk(∆k+1−∆k)

)(
1− e−L j(∆ j+1−∆ j)

) 1
L j

+

(
n

∏
k=2

e−Lk(∆k+1−∆k)

)
1

Ln+1
+∆2

)
= ∆1 +

(
1− e−L1(∆2−∆1)

) 1
L1

+
n

∑
j=2

(
j−1

∏
k=1

e−Lk(∆k+1−∆k)

)(
1− e−L j(∆ j+1−∆ j)

) 1
L j

+

(
n

∏
k=1

e−Lk(∆k+1−∆k)

)
1

Ln+1

= ∆1 +
n

∑
j=1

(
j−1

∏
k=1

e−Lk(∆k+1−∆k)

)(
1− e−L j(∆ j+1−∆ j)

) 1
L j

+

(
n

∏
k=1

e−Lk(∆k+1−∆k)

)
1

Ln+1
.
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B. Consistency proof

We will now give the main consistency proof of the simplified maximum likelihood time
synchronization estimator. In order to do so, we first formalize the notion of the clock offset
estimation error. This definition is actually very trivial; we denote the estimation error by a vector
∆ = (∆1, . . . ,∆|J|)T ∈R|J| in the following way.

Definition Let ∀ j ∈ J : ∆ j := o j− ô j.

In the following, we regard a certain scenario (according to the definition in Section III) as given,
thus the Ti, o j and di, j are fixed. We then consider the estimation error vector ∆ as variable and
have a look at the properties of the likelihood function upon a varying estimation error. Our goal
is to show that the probability that the likelihood function (regarded as a function of ∆) has its
optimum in an arbitrarily small environment around the correct clock offset estimates is arbitrarily
high for a sufficing number of observed events.

On our way towards this goal we now introduce a per-event decomposition of the objective function
k(L). Certain properties of these event-wise objective function terms form the basis of our proof.

Definition For each event i ∈ I let fi be the term added to the objective function k(L) by i for
some estimation error vector ∆:

fi(∆) := ∑
j∈Ri

d̂i, j.

The constraints of the LP in our approach are of the form

∀(i, j) ∈ R : d̂i, j + ô j + T̂i = ti, j = di, j +o j +Ti.

Thus, the estimated timestamping delays can be expressed as

d̂i, j = di, j +o j− ô j +Ti− T̂i

= di, j +∆ j +(Ti− T̂i).

Considering that the di, j and the Ti are given by the scenario it is easy to see that the ∆ j determine
the value of the event time estimates T̂i chosen by the estimator: all the estimated delays d̂i, j need
to be non-negative and at the same time the sum of all these delay estimates is minimized. Thus,
the optimal choice is

T̂i = Ti +min
k∈Ri

(di,k +∆k).

This also follows from the nonnegativity constraints for the d̂i, j and Lemma III.4.

We can now express the objective function terms fi in the following way:

fi(∆) = ∑
j∈Ri

(
di, j +∆ j−min

k∈Ri

(
di,k +∆k

))
.

This is the formulation that we are going to use throughout the proof. Now we will point out some
properties of the objective function terms.

13



Lemma IV.5 The objective function terms fi(∆) are convex.

Proof It is well-known that the minimum of concave functions is concave (see, e. g., [1]). Hence,
mink∈Ri(di,k + ∆k) is concave and −mink∈Ri(di,k + ∆k) is convex. As the sum of convex functions
is convex the assertion follows.

The next property that we are going to prove is a little more tricky. For simplicity, we will assume
that J = {1, . . . , |J|} from now on.

Lemma IV.6 There exists a strictly monotonically increasing function α :R+
0 →R+

0 such that for
each event i ∈ I and each ∆ ∈R|J| the following holds:

E[ fi(∆)] ≥ E[ fi(0)] + α( max
( j1, j2)∈Ri×Ri

@k∈Ri:∆ j1<∆k<∆ j2

(∆ j2 −∆ j1)).

Proof Let n := |Ri|. By the linearity of the expected value, E[ fi(∆)] can be rewritten in the following
way:

E[ fi(∆)] =E

[
∑
j∈Ri

(
di, j +∆ j−min

k∈Ri
(di,k +∆k)

)]

=E

[
∑
j∈Ri

di, j

]
+E

[
∑
j∈Ri

∆ j

]
−n ·E

[
min
j∈Ri

(di, j +∆ j)
]

=
n
λ

+ ∑
j∈Ri

∆ j−n ·E
[

min
j∈Ri

(di, j +∆ j)
]
.

Assume without loss of generality that Ri = {1, . . . ,n} and that the nodes are ordered such that
∀ j,1 ≤ j < n : ∆ j+1 ≥ ∆ j. The exponential distributions if the di, j all share the same parameter λ ,
thus with Lemma IV.4 we have

E[ fi(∆)] =
n
λ

+
n

∑
j=1

∆ j−n∆1

−n ·
n−1

∑
j=1

(
j−1

∏
k=1

e−kλ (∆k+1−∆k)

)(
1− e− jλ (∆ j+1−∆ j)

) 1
jλ

−n ·

(
n−1

∏
k=1

e−kλ (∆k+1−∆k)

)
1

nλ
.

We now define ∀ j,1 ≤ j < n : δ j := ∆ j+1 − ∆ j and δ := (δ1, . . . ,δn−1)T . Then ∀ j,1 ≤ j < n :
δ j ≥ 0. (Note that δ has dimension zero for n = 1.) With the given definition of δ the following
reformulation of E[ fi(∆)] is possible:

E[ fi(∆)] =
n
λ

+
n−1

∑
j=1

(n− j)δ j

−
n−1

∑
j=1

(
j−1

∏
k=1

e−kλδk

)(
1− e− jλδ j

) n
jλ
−

(
n−1

∏
k=1

e−kλδk

)
1
λ

.
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We generalize this to a function K of arbitrary vectors θ with non-negative elements and dimension
m := dimθ , i. e.

K(m,θ) :=
m+1

λ
+

m

∑
j=1

(m− j +1)θ j

−
m

∑
j=1

(
j−1

∏
k=1

e−kλθk

)(
1− e− jλθ j

) m+1
jλ

−

(
m

∏
k=1

e−kλθk

)
1
λ

.

Note that
E[ fi(∆)] = K(n−1,δ ).

Now we construct α . Let ed
k be the k-th unit vector of dimension d and set

α(t) := min
1≤d<|J|
1≤k≤d

(
K(d, t · ed

k )−K(d,0)
)

.

For n = 1 the assertion is true since for n = 1

max
( j1, j2)∈Ri×Ri

@k∈Ri:∆ j1<∆k<∆ j2

(∆ j2 −∆ j1) = 0

and α(0) = 0.

We thus focus on the case n > 1 now. Note that in this case

max
( j1, j2)∈Ri×Ri

@k∈Ri:∆ j1<∆k<∆ j2

(∆ j2 −∆ j1) = ||δ ||∞.

For each m, K is differentiable in δ . We will now show that for all m≥ 1 and all p with 1≤ p≤m

∂K(m,θ)
∂θp

> 0

for θp > 0. Calculating the partial derivative explicitly yields

∂K(θ)
∂θp

= (m− p+1)+ p
m

∑
j=p+1

(
j−1

∏
k=1

e−kλθk

)(
1− e− jλθ j

) m+1
j

−

(
p

∏
k=1

e−kλθk

)
(m+1)+ p

(
m

∏
k=1

e−kλθk

)
= m− p+1

+ p

(
p

∏
k=1

e−kλθk

)(
m

∑
j=p+1

(
j−1

∏
k=p+1

e−kλθk

)(
1− e− jλθ j

) m+1
j

− m+1
p

+

(
m

∏
k=p+1

e−kλθk

))
.
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Since m+1
j > 1 for 1≤ j ≤ m and

m

∑
j=p+1

(
j−1

∏
k=p+1

e−kλθk

)(
1− e− jλθ j

)
+

(
m

∏
k=p+1

e−kλθk

)
= 1

the following holds:

∂K(θ)
∂θp

≥ m− p+1+ p

(
p

∏
k=1

e−kλθk

)
︸ ︷︷ ︸

≤1

(
1− m+1

p

)
︸ ︷︷ ︸

<0

≥ m− p+1+ p
(

1− m+1
p

)
= 0.

Here, the first inequality is strict if there is a j > p such that θ j > 0, and the second inequality is
strict if there is a j ≤ p such that θ j > 0.

Now the inequality from the assertion is easily verified. Let r (1 ≤ r < n) be an index for which
δr = ||δ ||∞. Such an r exists by the definition of || · ||∞. Then

E[ fi(∆)]−E[ fi(0)]

= K(|Ri|,δ )−K(|Ri|,0)

≥ K(|Ri|, ||δ ||∞ · e|Ri|
r )−K(|Ri|,0)

≥ min
1≤k≤|Ri|

(
K(|Ri|, ||δ ||∞ · e|Ri|

k )−K(|Ri|,0)
)

≥ α(||δ ||∞).

The first inequality stems from the fact that all entries of the Jacobian of K are non-negative and
δ is component-wise greater than ||δ ||∞ · e|Ri|

r .

It remains to show that α(||δ ||∞) > 0 is strictly monotonically increasing. This, however, is easy to
see. From the above calculations we know that the entries of the Jacobian of K(m,θ) are strictly
positive if there is some k such that θk > 0. α(t) is the minimum of

K(d, t · ed
k )−K(d,0)

for a finite number of combinations of d and k. For each of these combinations and for any
t1 > t2 ≥ 0, though, (K(d, t1 · ed

k )−K(d,0)) > (K(d, t2 · ed
k )−K(d,0)), since the k-th component of

t1 · ed
k is strictly greater than the respective component of t2 · ed

k , whereas all other components are
equal. Thus, α(t1) > α(t2) and the assertion holds.

Lemma IV.7 There is some L ∈R such that

1
|I|
· k(L) =

1
|I| ∑

(i, j)∈R
d̂i, j

is Lipschitz continuous in ∆ with Lipschitz constant L . L does not depend on |I|.
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Proof From the closed form of fi given above it can be seen that fi is continuous in ∆ for each
event i ∈ I. It is also easy to see that the partial derivatives of fi(∆) exist almost everywhere and
are, where they exist, bounded above by 1 and below by −|Ri|, and thus also by −|J| . Thus, all
fi are Lipschitz continuous with a common Lipschitz constant L .

Since
k(L) = ∑

i∈I
fi(∆)

we can conclude that k(L) is Lipschitz continuous with Lipschitz constant |I| ·L . Therefore, L is
also a Lipschitz constant for 1

|I| · k(L).

From the definition of fi above it can be seen that fi(∆) = fi(∆+(t, . . . , t)T ) for any t ∈R. This is
again the offset ambiguity. Thus, from now on we can assume without loss of generality that the
estimation error for the |J|-th node is zero. Therefore, we will ignore this node in the following
and reduce ∆ to a vector of dimension |J|−1. Consistency of the MLE is then equivalent to

plim
|I|→∞

||∆||= 0.

In the following theorem we will use infinity norm spheres. Our notation for them is as follows.

Definition

∀m ∈Rn,r ∈R :S∞(m,r) :=
{

x
∣∣ ||x−m||∞ < r

}
∀m ∈Rn,r ∈R :S̄∞(m,r) :=

{
x
∣∣ ||x−m||∞ = r

}
Theorem IV.8 If the regularity condition is fulfilled, then for all ε,δ > 0 there exists an N ∈N
such that from |I| ≥ N it follows that for

∆̃ := argmin
∆∈R j

∑
i∈I

fi(∆)

the following holds
P(||∆̃||∞ > δ ) < ε

i. e.,
plim
|I|→∞

||∆||= 0.

Thus, the simplified MLE is consistent.

Proof Let

r :=
β ·α

(
δ

(|J|−1)2

)
3 ·L

with β from the regularity condition, α from Lemma IV.6 and L from Lemma IV.7.

Let M ⊂ S̄∞(0,δ )⊂R|J|−1 be a finite set of points such that

S̄∞(0,δ )⊂
⋃

m∈M

S∞ (m,r) .
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Such a set of points exists since S̄∞(0,δ ) is compact and r > 0. Let m be one of the points in
M. Then there exists p ∈ J such that mp = δ . Let G = (J,V ) be the graph from the regularity
condition. Then there is a path from p to the node with ID |J| with a length of at most |J|− 1.
The estimation error of the |J|-th node is 0 by assumption. Thus, there exists { j1, j2} ∈V such that
|m j1 −m j2 | ≥

δ

|J|−1 .

Let i be an event for which { j1, j2} ⊆ Ri. Since the total number of nodes is |J|, there are at most
|J| nodes in Ri, and for two of them, j1 and j2, it holds that |m j1 −m j2 | ≥

δ

|J|−1 . Thus,

max
( j′1, j′2)∈Ri×Ri

@k∈Ri:m j′1
<mk<m j′2

(m j′2
−m j′1

) ≥ δ

(|J|−1)2 .

We define
I+ := {i ∈ I|{ j1, j2} ⊆ Ri}.

From the regularity condition we know that

E[|I+|]≥ β · |I|.

This yields

E

[
1
|I|∑i∈I

fi(m)

]

=
1
|I|

(
E

[
∑

i∈I\I+
fi(m)

]
+E

[
∑

i∈I+
fi(m)

])

≥ 1
|I|

(
E

[
∑

i∈I\I+
fi(0)

]
+E

[
∑

i∈I+

(
fi(0)+α

(
δ

(|J|−1)2

))])

=
1
|I|

(
E

[
∑

i∈I\I+
fi(0)

]
+E

[
∑

i∈I+
fi(0)+ |I+| ·α

(
δ

(|J|−1)2

)])

=
1
|I|

(
E

[
∑

i∈I+
fi(0)

]
+E

[
∑

i∈I\I+
fi(0)

]
+E[|I+|] ·α

(
δ

(|J|−1)2

))

≥ 1
|I|

(
E

[
∑
i∈I

fi(0)

]
+β · |I| ·α

(
δ

(|J|−1)2

))

= E

[
1
|I|∑i∈I

fi(0)

]
+β ·α

(
δ

(|J|−1)2

)
.
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From the Lipschitz condition established in Lemma IV.7 and the definition of r above we get that
for all m′ ∈R|J|−1 with ||m′−m||< r the following holds:∣∣∣∣∣ 1

|I|∑i∈I
fi(m)− 1

|I|∑i∈I
fi(m′)

∣∣∣∣∣< r ·L =
1
3
·β ·α

(
δ

(|J|−1)2

)
.

Thus, we can conclude that if

1
|I|∑i∈I

fi(m) > E

[
1
|I|∑i∈I

fi(0)

]
+

2
3
·β ·α

(
δ

(|J|−1)2

)
(7)

holds for m, then for all m′ ∈ S∞(m,r)

1
|I|∑i∈I

fi(m′) > E

[
1
|I|∑i∈I

fi(0)

]
+

1
3
·β ·α

(
δ

(|J|−1)2

)
. (8)

By the law of large numbers there is some Nm ∈N for m where for |I| ≥ Nm it follows that

P

(
1
|I|∑i∈I

fi(m) > E

[
1
|I|∑i∈I

fi(0)

]
+

2
3
·β ·α

(
δ

(|J|−1)2

))
≥ 1− ε

|M|+1
.

We call the condition in the probability above the superiority condition for m. Similar to the
superiority conditions, there is an inferiority condition: there exists some N0 ∈ N such that for
|I| ≥ N0

P

(
1
|I|∑i∈I

fi(0) < E

[
1
|I|∑i∈I

fi(0)

]
+

1
3
·β ·α

(
δ

(|J|−1)2

))
≥ 1− ε

|M|+1
.

Because |M| is finite, there is some N∗ = max({N0} ∪ {Nm|m ∈ M}) fulfilling the superiority
conditions for all m ∈ M as well as the inferiority condition, each with a probability of at least
1− ε

|M|+1 . Thus, for |I| ≥ N∗ the probability that all |M|+1 conditions are fulfilled is at least

1− (|M|+1) · ε

|M|+1
= 1− ε.

Since the spheres S∞(m,r) around all m ∈ M cover S̄∞(0,δ ), (8) holds for all m′ ∈ S̄∞(0,δ ) if (7)
holds for all m ∈M. Hence, with probability of at least 1− ε , it holds that

∀m′ ∈ S̄∞(0,δ ) :
1
|I|∑i∈I

fi(m′) >
1
|I|∑i∈I

fi(0).

Therefore, we know that 1
|I| ∑i∈I fi has a local optimum in S∞(0,δ ). Since fi is convex for each i

by Lemma IV.5, 1
|I| ∑i∈I fi is also convex. Thus, the local optimum is also a global optimum. A

global optimum of 1
|I| ∑i∈I fi is also a global optimum of ∑i∈I fi. Therefore, for the vector ∆̃ from

the optimal LP solution we have

P(∆̃ ∈ S∞(0,δ )) = P(||∆̃|| ≤ δ )≥ 1− ε.

This is the assertion.
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From the consistency result regarding the clock offsets it is easy to obtain a result on the quality of
the event time estimates in the same asymptotic scenario. It has been stated before that the estimates
of the event times are given by T̂i = Ti +mink∈Ri(di,k +∆k). Thus, if ∆ is close to zero (neglecting
the offset ambiguity), the estimate for event i will be wrong by mink∈Ri di,k. From Lemma IV.1
it then follows that the error is exponentially distributed with parameter |Ri| ·λ . In particular this
means that—as could be expected—the expected estimation error decreases with the number of
nodes observing the same event.

V. CONCLUSION

In this paper we have considered a simplified variant of the maximum likelihood time synchro-
nization estimator presented in [2]. The results presented here underline the performance and the
practical applicability of our time synchronization approach.

We have first proven tight error bounds for the estimates under the assumption of bounded maximum
timestamping delays in the network nodes. It has furthermore been shown that the estimator is
optimal in the sense that no estimator with a smaller maximum clock offset estimation error is
possible. Although exponentially distributed timestamping delays are a major building block in the
derivation of the estimator, the validity of the bounds does not depend on this assumption.

Moreover, by exploiting the exponential distribution assumption of the timestamping delays we have
given a proof for the consistency of the clock offset estimates. Therefrom we have also derived a
result on the error distribution of the event time estimates.
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