Implicit Hop-by-Hop Congestion Control in Wireless Multihop Networks A d H (1] &
. o _ [ﬂe’rwurks

Bjorn Scheuermann, Christian Lochert, Martin Mauve | B=e=——r=—

PII: S1570-8705(07)00015-7

DOI: 10.1016/j.adhoc.2007.01.001

Reference: ADHOC 223

To appear in: Ad Hoc Networks

Received Date: 22 March 2006

Revised Date: 21 December 2006

Accepted Date: 3 January 2007

Please cite this article as: B. Scheuermann, C. Lochert, M. Mauve, Implicit Hop-by-Hop Congestion Control in
Wireless Multihop Networks, Ad Hoc Networks (2007), doi: 10.1016/j.adhoc.2007.01.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.adhoc.2007.01.001
http://dx.doi.org/10.1016/j.adhoc.2007.01.001

Implicit Hop-by-Hop Congestion Control
in Wireless Multihop Networks

Bjorn Scheuermann !, Christian Lochert, Martin Mauve

Heinrich Heine University Diisseldorf, Computer Science Institute,
Universitdtsstr. 1, D-40225 Diisseldorf, Germany
Phone: +49 211 81-11692, Fax: +49 211 81-11638

{scheuermann,lochert,mauve} @ cs.uni-duesseldorf.de

Abstract

It has been shown that TCP and TCP-like congestion control are highly problematic in
wireless multihop networks. In this paper we present a novel hop-by-hop congestion con-
trol protocol that has been tailored to the specific properties of the shared medium. In
the proposed scheme, backpressure towards the source node is established implicitly, by
passively observing the medium. A lightweight error detection and correction mechanism
guarantees a fast reaction to changing medium conditions and low overhead. Our approach
is equally applicable to TCP- and UDP-like data streams. We demonstrate the performance
of our approach by an in-depth simulation study. These findings are underlined by testbed
results obtained using an implementation of our protocol on real hardware.

Key words: Congestion control; Wireless multihop networks; Shared medium

1 Introduction

It has become more and more apparent that wireless multihop networks are much
more prone to overload-related problems than traditional wireline networks like the
Internet. Appropriate congestion control is thus vital to ensure network stability and
acceptable performance.

TCP congestion control, which is one of the major foundations of today’s Inter-
net, has proven to be highly problematic in wireless multihop networks [1-5]. Se-
vere fairness problems, suboptimal throughput and throughput stability issues have

' Corresponding author.

Preprint submitted to Elsevier Science 21st December 2006

25 300

UDP/802.11 without RTS/CTS — &
UDP/802.11 with RTS/CTS - -
20l o 2s0)
Y Y
2 = 2 200
g 15¢ #u :
< R <
5 | I TN 5 150 f
=% 'Ll o
g ¥ i g 100
= /7 l =
[= / ., [=
5 /i !“I—!;!,g~l-l-lrn-.....—l 1 50
i EBB»BEEBE
0 : ‘ ‘ ‘ ‘ ‘ ‘ 0 F— ‘ : : : : ‘
0 5 10 15 20 25 30 35 40 0 20 40 60 80 100 120 140
Source data rate (KByte/s / sender) Source data rate (KByte/s / sender)
(a) Wireless network. (b) Wired network.

Figure 1. Obtained throughput in bidirectional chain topology.

been reported. Such effects have also been observed experimentally in real multi-
hop wireless networks, e. g. in [6]. Recently it has even been shown that TCP can
generally not work as well in those networks as it does in common wired networks,
because the rates of multiple TCP flows do not necessarily converge to a fair shar-
ing of the bandwidth due to the shared medium [7].

All this is not too surprising, considering the fundamentally different properties of
wired networks and multihop wireless networks. In a wireless network, the medium
is a locally shared broadcast medium. Thus, congestion is a spatial phenomenon:
neither nodes nor links, but geographical regions of the network are overloaded.
The impact of this can be demonstrated by a very simple simulation experiment.
In Figure 1(a), ns-2 simulation results of a bidirectional 10-hop chain topology are
shown. In the simulation, static routing and the IEEE 802.11 MAC protocol are
used. UDP constant bitrate traffic is injected with increasing data rate at both ends
of the chain, traveling towards the opposite end. It can clearly be seen that the
obtained total throughput drops rapidly once an optimal load is exceeded. This is
due to an increasing number of collisions, leading to more and more packet drops.
In a wireline network, throughput degrading effects for a too high UDP load are
also well-known; they led to the development of TCP congestion control, which is
able to deal with these problems very well. However, the problem observed here is
of a completely different nature, which becomes immediately clear if we set up an
equivalent wired topology in ns-2 and measure the throughput in the same scenario,
as done in Figure 1(b)—due to the duplex connections used between the routers on
the Internet, the two packet streams do never even share a link or queue, and thus
of course maximum throughput is achieved and maintained.

Note that the observed throughput drop is not a routing effect, since we use static
routing without routing overhead and with no link breaks. Enabling RTS/CTS does
not improve the situation significantly, and is thus not of help here. It is also not
a problem of TCP congestion control, since TCP is not used. But TCP is also not
an appropriate solution to the problem since, as explicated at the beginning of this

section: TCP-like congestion control doesn’t behave well in wireless multihop net-
works. The results of the experiment demonstrate the spatial nature of congestion
in wireless multihop networks. The problem is fundamental, and needs to be taken
into consideration by any wireless multihop network design. Thus, the congestion
problem in wireless multihop networks deserves to be reconsidered, and there is a
need to search for better suited ways to perform congestion control.

Here, we propose a novel congestion control concept for wireless multihop net-
works, and a concrete protocol design realizing this concept. Our approach takes
the local broadcast property of the wireless medium into account. It considers ra-
dio interference and can deal with an interference range that is—as it is the fact in
real networks—much larger than the possible transmission range. It applies equally
well to both TCP- and UDP-like traffic. It is a cross-layer approach, recombining
functionality from different traditional layers, while still preserving an overall sep-
aration of functionality.

Our congestion control mechanism is a hop-by-hop approach. Traditionally, hop-
by-hop congestion control means that local feedback on the sustainable rate for
each node is transmitted to the respective upstream node, in order to establish some
kind of backpressure towards the source. Here, we go one step further and actively
exploit wireless multihop medium properties. We do not just try to cure the symp-
toms the traditional protocols exhibit when used in a environment they have not
been designed for. In fact, we perceive the properties of the medium not primar-
ily as a handicap, but instead also as a chance—a chance to solve problems like
congestion control in new, different ways.

We call our congestion control approach implicit hop-by-hop congestion control,
because its foundations are the hop-by-hop nature and implicit feedback, 1. e., infor-
mation gained by observing the transmissions of other nodes in the neighborhood.
Even more central, the rate regulation at the source also happens implicitly, just by
obeying some simple packet forwarding rules. The protocol design proposed here
that realizes the concept of implicit hop-by-hop congestion control is called coop-
erative cross-layer congestion control (CXCC), because it relies on the cooperation
of multiple layers.

Various factors can influence the congestion situation in a network. However, the
most fundamental ones stem from the medium properties. The effects that we have
shown above are not caused by, e. g., routing or mobility. There is a great variety
of different routing paradigms that have been proposed for wireless multihop net-
works. By using static routing tables for the evaluations presented here, we stay
neutral with regard to the routing protocol, and we avoid effects that might oc-
cur only in conjunction with a specific protocol, and thus cannot be unrestrictedly
generalized.

The remainder of the paper is structured as follows. In Section 2 we will review

some related work. Thereafter, in Section 3, the behavior of wireless multihop net-
works in congestion situations will be analyzed and the principles of implicit hop-
by-hop congestion control will be deduced from these insights. Following that, we
will apply the developed principles in a basis variant of a concrete protocol design,
the CXCC protocol, in Section 4. In Section 5, we will analyze the performance
of this basic approach, point out some remaining problems and show how they can
be overcome. How we envision the integration of our approach into the protocol
stack is detailed in Section 6. We will then assess the performance of our approach
in detail by a simulation study in Section 7. To show that our concepts also work
on real hardware, we present a real-world implementation and some experimental
measurements in Section 8. Finally, we conclude our paper in Section 9.

2 Related Work

In recent publications several approaches for congestion control in wireless multi-
hop networks have been proposed. Most of them can be classified based on whether
they seek to improve TCP or propose alternative approaches. TCP improvements
deal with adaptions of TCP to the special wireless characteristics. Alternative ap-
proaches are specifically designed to the wireless multihop medium and are mostly
independent of the mechanisms of TCP. We only describe approaches that are rel-
evant to our work here, a more complete overview of congestion control proposals
for mobile ad-hoc networks can be found in [8].

2.1 TCP Improvements

A lot of work has been done in the area of TCP improvements that take the charac-
teristics of wireless networks into account, examples are [9-14]. In the following,
we discuss only two representatives of this class. For both approaches simulator
implementations are publicly available. We use them for comparison purposes in
the evaluation of our own protocol.

Fu et al. present ADTCP in [13]. ADTCP is motivated by a key problem of end-to-
end transport protocols in mobile ad-hoc networks: the noisiness of the measure-
ments of indicators for certain network events. To overcome this, different metrics
are used: the inter-arrival time of two successive packet, out-of order packet ar-
rivals, the current packet loss ratio, and the short-term throughput in the immediate
past. ADTCP combines these metrics in order to obtain a more accurate and robust
estimate of the network situation, which then helps to react more appropriately. In
ADTCEP, the receiver detects the most probable current network state and includes
this information into its feedback to the sender.

ElRakabawy et al. propose TCP with Adaptive Pacing (TCP-AP) [14], also an end-
to-end approach. In TCP-AP, the focus is on avoiding large packet bursts. For this
purpose, the packets that are allowed to be sent out by the TCP congestion window
are paced adaptively. The authors define the 4-hop propagation delay as the time
between the transmission of a packet by the TCP source node and its reception
by the node four hops downstream. TCP-AP estimates this value from the round-
trip time (RTT) of the packets. In combination with the coefficient of variation of
the RTT samples the estimate is used to establish a minimum time between two
successive packet transmissions.

2.2 Alternative Approaches

Our own approach clearly falls into the category of alternative approaches. There-
fore, we investigate the work in this area more closely.

The Ad-hoc Transport Protocol (ATP) by Sundaresan et al. [15] is a rate-based,
network supported transport protocol for mobile ad-hoc networks with end-to-end
congestion control. The authors consider TCP’s mechanisms as inappropriate for
ad-hoc networks. Thus, ATP is designed as an “antithesis” to TCP. ATP strictly
separates congestion control from reliability mechanisms and requires only lim-
ited feedback from the receiver. The intermediate nodes piggyback the maximum
queuing delay along the route on the packets passing by. This information is then
used to determine the appropriate rate at the source node. A similar approach to
ATP is EXACT by Chen et al. [16]. In EXACT, not delays are transmitted, but the
intermediate nodes calculate sustainable rates for each flow directly; these are then
piggybacked. To accomplish this, EXACT, in contrast to ATP, requires state infor-
mation for each flow in the intermediate nodes. Both approaches show that effective
end-to-end congestion control can be performed in different ways than with TCP,
and that it can be tailored for mobile ad-hoc networks. However, both approaches
control the rate only at the source node, based on feedback from within the net-
work. The time until the feedback eventually arrives at the source node is relatively
long, considering the rapidly varying medium conditions. By using in-network re-
action to congestion, our scheme guarantees an immediate, localized adaptation to
a changing environment.

Yi and Shakkottai [17] discuss the usage of hop-by-hop congestion control for wire-
less multihop networks. Their theoretic approach shows the feasibility of hop-by-
hop congestion control in these networks. It provides a good basis for the theoreti-
cal understanding of the behavior of congestion control feedback schemes. From a
more practical point of view, however, it has to be considered that the assumptions
they make are not fulfilled by today’s common wireless hardware. The proposition
that in a wireless network any two links not sharing a common node are completely
independent from each other cannot be met. Additionally, their approach uses ex-

plicit feedback to the upstream nodes, and therefore imposes load for the feedback
traffic on the network. In contrast our scheme avoids additional load during con-
gestion situations.

A concept that is in some aspects similar to ours has been used in the DARPA
packet radio network with the “adaptive pacing” protocol [18]. Packet radios using
this protocol wait for a “passive acknowledgment” before the next packet is trans-
mitted along a link. This is combined with rate throttling based on delay measure-
ments. For these measurements their protocol requires to maintain state informa-
tion for each neighbor of a packet radio, which will quickly become outdated. Thus,
we assume that the central aspect of their work—the measurement and calculation
of inter-packet delays (or rates, accordingly)—cannot be immediately adopted for
wireless multihop networks with IEEE 802.11 like physical layers. Our simulations
underline this assumption.

“Passive” or “implicit” acknowledgments obtained by overhearing have been men-
tioned in several publications since being introduced for packet radio, e.g. with
the DSR routing protocol [19]. In our approach, implicit acknowledgments are one
central element of the congestion control mechanism.

Zhai at al. propose an approach which they call Optimum Packet scheduling for
Each Traffic flow (OPET) [20,21]. It consists of four mechanisms to reduce the im-
pact that wireless medium contention has on throughput and fairness in MANETS.
One is a hop-by-hop backpressure scheme, similar to both packet radio adaptive
pacing and our own approach. Their mechanism is used in combination with stan-
dard TCP, and the backpressure mechanism is tightly coupled to the RTS/CTS
mechanism in 802.11, using explicit “Negative CTS” packets. While both design
decisions are very reasonable when compatibility must be preserved, we chose a
more radical approach. We replace TCP altogether and thus avoid any problems of
possible feedback loops between congestion control on multiple layers of the pro-
tocol stack. Furthermore, our scheme is able to send fewer explicit messages and
thus minimizes the load on the network.

Hop-by-hop congestion control has been a basis of several proposals in the context
of wireless sensor networks (WSNs). In WSNs, typical traffic consists of relatively
small packets and is directed to or from a small number of special nodes, the sinks.
Thus, the sensor network approaches have in common that they consider packet
flows that are directed to or from such a sink, whereas we primarily consider unicast
traffic among arbitrary pairs of nodes. A survey on congestion control in sensor
networks is provided in [22].

Implicit acknowledgments have also been used in the WSN context, e. g., by Woo
and Culler [23]. There, they are primarily used to reduce the control packet over-
head, by saving the bandwidth for the acknowledgment in the RTS/CTS/DATA/ACK
handshake. In the same paper, an AIMD-based backpressure rate control approach

is also proposed. In their scheme, the nodes maintain a probability with which a
packet is allowed to be sent out or forwarded, essentially determining the aggres-
siveness of the medium access. The probability is increased or decreased based on
the observation of the downstream node’s forwarding behavior. This yields conges-
tion feedback that propagates backwards towards the sources. In our scheme, no
windows, rates or forwarding probabilities need to be maintained.

The Congestion Detection and Avoidance scheme (CODA) [24] was also one of
the first sensor network approaches. In CODA, the intermediate nodes broadcast
explicit backpressure messages as long as they detect congestion. These are then
propagated towards the sources. Our scheme does not use explicit congestion mes-
saging, to avoid the generation of additional network load in a congestion situation.

In [25] the authors adopt hop-by-hop backpressure for wireless sensor networks
as one of several mechanisms to improve performance. In their scheme, if a node
detects congestion, a “‘congestion bit” is set in its outgoing packets. When the chil-
dren of the node in the routing tree towards the source overhear packets with this
flag being set, they stop sending packets.

Since no dedicated congestion messages are used, schemes like [23] and [25] are
also often called “implicit”. Note, however, that our notion of implicit here is
slightly different: in our work, “implicit congestion control” means that the con-
gestion control itself works without explicitly maintaining window sizes or packet
rates, without any node explicitly deciding whether there currently is congestion or
not, and without any congestion feedback, be it explicit or piggybacked.

A general problem with piggybacked congestion feedback is that it requires packets
to be sent in order to inform the neighbors of the congestion. If a node cannot send
a packet due to an occupied medium, it will not be able to signal congestion. This
problem does not exist in our scheme.

SenTCP is another hop-by-hop congestion control protocol for wireless sensor net-
works [26]. As in some of the previously described approaches, explicit feedback
is used in this scheme, whereas our scheme carefully avoids explicit feedback.

In the Reliable Bursty Convergecast protocol (RBC) [27], the authors specifically
focus on the equally named traffic pattern in sensor networks, where many nodes—
triggered by a commonly observed event—transmit a lot of small packets in parallel
to a single sink. In RBC, a sophisticated queue management scheme is combined
with piggybacked feedback. This feedback is on the one hand used as a replace-
ment for link layer acknowledgments, on the other hand nodes use overheard feed-
back from peers in the vicinity to determine channel access priorities. Multihop
backpressure in order to regulate source nodes’ data rates, as it is provided by our
approach, is not considered. In their setting this is not crucial, since there is no
continuous data stream, but single packets from many sources.

3 Algorithmic Idea

3.1 Shared Medium Model

To motivate the implicit hop-by-hop congestion control approach we introduce a
very simple model for the effects of the shared medium. It is easy to see that in
any part of a network—be it wired or wireless—, on a sufficiently long time scale
to avoid short-term effects, the output rate of traffic forwarded through this area
(OUT) cannot exceed the forwarded traffic input rate (IN). We denote this fact by

OUT <IN. (1)

In common wireline networks, there are also separate, independent upper bounds
for the input and output data rates, given by the bandwidth of the respective links.
If we denote the total ingress link bandwidth into the area under consideration by
BWIN, and similarly the total outgoing bandwidth by BWOUT, we have

IN < BWIN 2)
OUT < BWOUT. 3)

The important point is that, in this constellation, it is not of immediate disadvantage
for the throughput if the input rate exceeds the output rate. Of course this will lead
to dropped packets, but these drops will occur before the bottleneck—in this case
the output—, and maximum throughput will still be obtained.

This is the foundation of any common end-to-end congestion control. TCP, but also,
e. g., the TCP-Friendly Rate Control (TFRC) protocol [28], utilize packet drops
to determine the bottleneck bandwidth. In order to enable this, drops are actually
provoked: TCP congestion control aims to keep the buffers in the network full,
causing strict inequality in (1).

If we consider the situation in a wireless multihop network, the shared medium
adds a new aspect to the above considerations. Instead of independent bounds on
the input and output rate as in (2) and (3), ingoing and outgoing links within a
collision domain share the available bandwidth. This leads to a constraint of the
form

IN+OUT < BW, 4)

where BW is the abovementioned shared total bandwidth.

This has an important implication: here, the output rate cannot be optimal in the
case of strict inequality in (1). Therefore, the situation for the congestion control
is completely different. Due to (4), increasing the input rate beyond the output rate
will result in a sub-optimal overall throughput. This is one key reason for TCP’s
fundamental problems in wireless multihop networks.

These observations can also serve as an explanation for the previously described
throughput breakdown in case of network load beyond the optimal point. Excessive
network input will yield a more and more extreme inequality in (1), an increasingly
dominant role of the input in (4), and consequently leads to decreasing throughput.

The implicit hop-by-hop congestion control proposed here is based on a completely
different feedback paradigm than TCP. Our approach aims to achieve strict equality
in (1) even on a short-term time scale. The key observation is that this is actually
possible in wireless multihop networks, by actively exploiting the local broadcast

property.

3.2 Implicit Hop-by-Hop Congestion Control

We define a flow as a directed pair of communicating nodes, i.e., all the packets
traveling from a node A to another node B belong to the same flow. Other definitions
are possible, but since neither the idea of implicit hop-by-hop congestion control
nor the CXCC protocol necessarily depend on this definition this is only a matter of
form. With implicit hop-by-hop congestion control, the protocol enforces that the
input rate for a given flow does not exceed the output rate at any intermediate node.
This is accomplished by preventing the transfer of a second packet to a node until
this node has forwarded the previous one. Every node along the route thus queues
at most one packet of a flow, and no further packet is forwarded until the queue
space at the next node is free again. We call a flow blocked in a node when there is
no space for the next packet available at the downstream node.

The mechanism of waiting for the next hop to forward one packet before passing
on the next one leads to a fast and efficient implicit backpressure mechanism to-
wards the packet source. If a node is not able to forward a packet immediately, it
will thereby implicitly stop the input flow from its predecessor, and so on, until the
packet source itself will not be allowed to send the next packet. The concept ensures
that the input rate cannot exceed the output rate, and it yields a very fast reaction to
changing medium condition. If the forwarding is delayed, the backpressure is estab-
lished immediately. Furthermore, such a mechanism works for both TCP-like and
UDP-like traffic, whereas TCP congestion control as well as most other approaches
depend on reliable transmission: in our approach, the backpressure is independent
from reliability mechanisms.

Another possible interpretation of implicit hop-by-hop congestion control is that a
node is only allowed to transmit if there is a “hole” at the downstream node. Thus,
these holes propagate along the route in reverse direction. Before a network bottle-
neck, where backpressure builds up, holes are rare. The nodes there are not allowed
to transmit until a hole has propagated through the bottleneck area; therefore, the
input into the congested area is limited. Behind the bottleneck, the holes dominate,
meaning that the output of the congested area is not constrained.

For the backpressure mechanism to work, a node has to know whether the down-
stream node still has a packet of the same flow in its queue. This information could
be sent explicitly, but such a mechanism would induce additional traffic and in-
crease the congestion of the network. In our approach, the shared nature of the
medium is exploited to gain the necessary information at no additional cost. In
most wireless technologies that are considered as a basis for multihop communica-
tion, transmissions are de-facto broadcasts: the radio waves propagate to all nodes
in the vicinity of the sender, in particular also to the upstream node. Then the for-
warding of a packet by the downstream node can be overheard. For our approach,
we assume that this is possible. The central rule of implicit hop-by-hop conges-
tion control is then very simple: if the forwarding of the previously sent packet is
overheard, this indicates that the next one may be transmitted (Figure 2(a)).

At the same time this implicit notification about a free queue space can—as a side
effect—serve as an implicit acknowledgment, indicating successful packet delivery
to the next hop. Note that this requires no additional, piggybacked header fields. If
it has a unique ID, the packet is sufficient as-is. Common MAC layer acknowledg-
ments are therefore no longer required. This is also called “passive acknowledg-
ment” in the literature.

The ability to overhear transmission exists in nearly all multihop-capable wireless
interfaces that are in use today, for some others it can be achieved by appropriate
modifications to the lower layers. E. g., if power control is used, it would be nec-
essary to ensure a transmission power that allows both the next hop node and the
previous node to receive the packet. With directional antennas, however, one might
have to resort to sending a separate, explicit ACK frame to the previous node after
the transmission.

Due to backpressure or medium contention, the forwarding can be delayed. Thus,
the nodes have to tolerate a significant delay before the implicit acknowledgment.
We don’t see this as a problem; instead, we actually realize this kind of delay tol-
erance as a necessity for robust multihop wireless protocols. This leads to another
key concept of our approach, which we call soft timing. Due to the local broad-
cast property of the wireless medium it is very hard to predict when a chance to
transmit a packet will arise. Thus, it is also not unrestrictedly possible to guaran-
tee a collision-free answer from a specific node within a certain, tight time frame.
Afterall, the medium around this node might be busy, preventing it from sending.

10

802.11’s way to deal with this issue is to ignore carrier sensing when transmitting
MAC layer acknowledgments; however, this can cause additional collisions and
therefore wastes bandwidth. We thus advocate to use asynchronous answers within
a comparatively long period of time—potentially only after several other transmis-
sions have happened.

Obviously, when a packet reaches its final destination node, there will be no further
forwarding. Thus, the packet cannot be implicitly acknowledged. The destination
node therefore needs to send an explicit acknowledgment. By delaying this ac-
knowledgment if the packet cannot be immediately passed up the protocol stack,
an integration with flow control is possible—that this is tolerable for the protocol
can be seen as a consequent generalization of the soft timing principle.

It is conceivable to allow a higher number of unacknowledged packets to be trans-
mitted before a node has to wait for an acknowledgment and backpressure builds
up. This, however, not only increases the complexity of the protocol, it also means
that typically a smaller number of queues is blocked. A higher number of nodes in
the same area would be allowed to transmit, therefore more stations are potentially
contending for medium access. The latter is detrimental for the network’s perfor-
mance, due to the reasons discussed above. Furthermore, the ability to transmit
multiple unacknowledged packets would occur primarily in front of a bottleneck,
but not behind the congested area, where packets can be forwarded away quickly.
This increases the backlog in front of the bottleneck, the queuing delay and, con-
sequentially, the packet latency. These substantial drawbacks outweigh potential
benefits by far, and thus we consider using one single unacknowledged packet to
be the best option.

3.3 Deadlock Freeness

In implicit hop-by-hop congestion control, flows are stopped completely when
backpressure occurs. Thus, it is crucial to verify that this blocking will eventually
be released, i. e., that no deadlocks can occur where flows are blocked indefinitely.
However, it is easy to see that our scheme will not run into such a deadlock situa-
tion.

When a queue is blocked in a node, then this is because it waits for the next node
downstream to forward another packet of the same flow. This node might in turn
wait for the next node downstream, and so on. Eventually, the queues will, directly
or indirectly, all wait for the destination node of the flow. Thus, as long as the
destination node is accepting packets, the blocking will be released.

In order to formalize and generalize this statement, we define the wait graph of
a network. The wait graph is the directed graph where the vertices are the queue
instances in all nodes, and where a pair of queues (g;,¢>) is in the set of edges if

11

BLOCK
BLOCK

Timeout

R4
9]
_expl. A —

BLOCK

BLOCK
BLOCK

Timeout

CK
CONTENTION

BLO!

DATA

|

(c) Loss of implicit ACK. (d) Early timeout.
Figure 2. Basic CXCC protocol operation.

and only if g is currently waiting for ¢,. If the wait graph is loop-free, then there
is no deadlock situation: all queues will eventually wait either for a non-blocked
queue or for the destination node. In our scheme, the wait graph is always loop-free
if the routing is loop-free. This holds because a queue g; of flow f in node n; can
wait—directly or indirectly—only for another queue ¢ if ¢» also belongs to f and
is located at a node n; such that n, is further downstream on f’s route.

This is the reason why implicit hop-by-hop congestion control works on a per-
flow basis. One could also think of a scheme where a node generally waits for the
next node to forward the previously sent packet before the next one is transmitted,
regardless of the flow it belongs to. In this case, however, the loop-freeness of the
wait graph would not be ensured.

4 Basic CXCC

In the previous section, the general idea of implicit hop-by-hop congestion control
has been reasoned and explained. Now we focus on how to realize this idealized,
abstract idea in a real network, where packet losses due to collisions and other
adversities are common. In order to do so, we will describe a basic version of our
CXCC protocol, using the previously introduced concepts.

12

4.1 Dealing with Lost Packets

In wireless multihop networks it is common that a packet transmission is unsuccess-
ful. For implicit hop-by-hop congestion control packet loss poses a serious threat:
a packet loss will block the transmission of data for the flow that the lost packet
belonged to. Thus, CXCC needs to be able to recover from packet loss efficiently.

The most basic loss situation is that the next hop node does not receive a data packet
transmission (Figure 2(b)). No more packets would then be forwarded: since the
next hop will of course not forward a packet it has never received, no implicit ac-
knowledgment will arrive. The simple solution to this problem in the basic CXCC
protocol is to repeat the packet transmission if, after a certain timeout, no acknowl-
edgment has been received.

A data packet transmission is not only used to communicate the data in down-
stream direction, but also to acknowledge the reception of the packet at the same
time implicitly. The situation that the upstream node, waiting for the acknowledg-
ment, does not receive the packet is also possible (Figure 2(c)). The upstream node
will then stop sending any further packets because it has missed the implicit ACK.
Note that the upstream node is not able to distinguish this situation from the case
above: it cannot tell if the next hop has not received the packet, or if the implicit ac-
knowledgment has not been received. It will thus conduct a packet retransmission
as described above.

This could lead to packet duplication because this packet has already been for-
warded. Therefore, the proposed solution has to be augmented by a duplicate de-
tection mechanism. This is easy to accomplish, since only a duplicate of the last
received packet is possible. When a second copy of a packet is received, the next
hop will drop the duplicate and will not forward the packet again. However, then
the previous hop will again not receive an implicit acknowledgment. To overcome
this, we propose the following behavior: a node sends an explicit acknowledgment
when it receives a duplicate of a packet it has already forwarded and for which it
has already received an (implicit or explicit) acknowledgment. If these conditions
do not apply it silently ignores the duplicate. This ensures that an ACK is only sent
when there will definitely be no further chance to acknowledge the packet implic-
itly. This avoids unnecessary transmissions.

There is a third situation that can also not be distinguished from the ones above by
the upstream node: the timer of the upstream node could expire before the next hop
has been able to forward the packet. This is depicted in Figure 2(d). In this case,
the next hop node will have the packet in its queue and it will ignore the received
duplicate. It will not transmit any explicit information to the upstream node. The
reason for this behavior is twofold: firstly, an explicit acknowledgment would not
be of any direct use for the upstream node, since its reaction would be the same

13

as if nothing at all is received: it would wait. Secondly, if the packet is still in
the queue this probably means that there is network congestion. Thus, if there is
a chance to transmit anything at all, the precious medium time should be used to
transmit data—which will also serve as an implicit acknowledgment—rather than
an explicit control packet.

4.2 Queuing in CXCC Nodes

The forwarding rules established above define how a basic CXCC node works.
An important implication of these rules is that queuing in each node requires some
attention. For each flow passing through a node a queue has to be maintained. These
queues can be created on-demand when the first packet of a stream arrives. Because
of the one-packet-per-hop restriction the queue has to provide space for at most
two packets: one that has already been forwarded but is not yet acknowledged, and
therefore needs to be cached in order to be retransmitted if necessary. The other one
that has been received from the upstream node but must not be forwarded until an
acknowledgment for the preceding packet arrives from the next hop node.

As one node can handle queues for different streams, it is necessary to decide out
of which queue a packet shall be forwarded. Normally, one of the queues that are
not empty and not blocked is chosen randomly. Retransmissions after a timeout are
handled like the first transmission of the respective packet. If an explicit acknowl-
edgment is waiting to be sent, it is given priority over data packets. More sophis-
ticated schemes could be integrated to enforce, e. g., certain quality of service or
fairness metrics.

From the discussion above it can be seen that CXCC requires to keep per-flow state
in the intermediate nodes, and that it also implies a certain computational overhead.
There are per-flow queues, and the duplicate detection mechanism needs to remem-
ber the last packet of each queue for some time. However, we do not consider this
to be a problem in practice. For a node in, e. g., a mobile ad-hoc network, one can
expect a relatively high computational power and many resources in relation to the
small effective bandwidth of the shared multihop medium. Because of this small
bandwidth the number of flows crossing one node is also quite limited, compared
to, e. g., typical Internet routers.

Furthermore, the information does not need to be kept for a long time. When no
more packets of a stream are queued in a node, the corresponding queue can be re-
moved immediately. The information that is needed for the duplicate detection can
also be removed quickly, since it can reasonably be expected that a duplicate can
only be received within a relatively short time. So, the small additional overhead is
perfectly reasonable and does not significantly limit the scalability of our approach.

14

4.3 Retransmission Timeouts

The choice of an appropriate retransmission timeout is a crucial factor for CXCC to
work properly. In our implementation, the timeout 70 before a packet transmission
is scheduled depends only on the packet’s size and thus the medium time needed
for the transmission of a packet. The packet transmission time 7p can be easily
calculated in the case of a constant medium bandwidth B, since the packet size sp
is known:

Sp

Tp = L.
P

We chose a value of three times the packet transmission time with a small jitter
j for the timeout, so 70O = 3 - Tp + j. This choice might seem to be a very short
time. But an elapsing packet retransmission timeout does not imply an immediate
retransmission. It just allows the retransmission of the packet. It still has to wait
until the medium is free and a packet can actually be sent, and until the respec-
tive queue is chosen out of potentially several alternatives. Thus, the actual delay
until a retransmission is performed depends largely on the network conditions and
current media utilization; the retransmission timeout just establishes a lower bound
on this time. Therefore, some adaptivity to different medium conditions is already
achieved by this simple scheme. Note that it also remains possible for a packet to
be acknowledged after the timeout has elapsed, while it is waiting for its retrans-
mission.

One could imagine more complex schemes to find a good retransmission timeout.
We have conducted many experiments with different approaches. Amongst them
were, for example, sliding averages over a measurement of the average delay until
packet forwarding in neighbored nodes, or exponential backoff schemes for re-
peated retransmissions. But none of them performed better than the simple variant
with a packet size based timeout. Our conclusion is that the simple scheme de-
scribed above already achieves the flexibility and adaptivity that is needed to deal
well with the medium properties.

5 Request for ACK

5.1 First Simulation Results with Basic CXCC

As shown in Figure 1 the throughput of an 802.11-based multihop wireless network
goes up with increasing data rates, but beyond some optimal point it cannot main-
tain this throughput. Instead, due to collisions and retransmissions, the throughput
decreases rapidly. Basic CXCC in the same topology on the other hand exhibits one

15

25

basic CXCC s
UDP/802.11 without RTS/CTS ~—a-

20 b UDP/802.11 with RTS/CTS - |

15

10

Throughput (KByte/s)

5r ' i‘“&!&-—lr.....,._./- 1

/ H-8.0.5.
1] BE88amn

0 5 10 15 20 25 30 35 40
Source data rate (KByte/s / sender)

Figure 3. Obtained throughput in a bidirectional chain topology.

important characteristic: it is able to stabilize the throughput if too high input data
rates are offered. Figure 3 shows this trait of CXCC.

These results are on the one hand very promising, as the basic CXCC protocol
is able to handle the congestion situation and to guarantee a balanced throughput
over multiple hops. However, the achieved throughput is significantly lower than
the maximum achieved by UDP at the optimal input data rate. Thus, basic CXCC
achieves stability, but not optimality. In the following, we will introduce an im-
proved version of the CXCC protocol, that addresses this problem of the simple
basic CXCC scheme.

The reason for the suboptimal performance lies in the packet retransmissions as
they are performed in basic CXCC. Whenever a node does not receive an acknowl-
edgment and a timeout expires, the whole data packet is retransmitted. However,
if only the implicit acknowledgment has been lost, or if the next hop node has
simply not yet been able to forward the packet due to contention or backpressure,
it is unnecessary to retransmit the whole packet: it has already been successfully
transmitted before, the payload has already arrived at the next node.

5.2 RFA Mechanism

In Section 4.1, three situations have been distinguished where basic CXCC per-
forms a packet retransmission. It has also been reasoned that the retransmitting
node is not able to tell these situations apart. But only in one situation it is actually
necessary to retransmit the payload. Therefore, a strategy is missing that helps to
avoid unnecessary transmissions. For the development of such a strategy it is impor-
tant to know which of the three loss situations is the dominating one. We conducted
simulations to obtain this information. Figure 4 shows, which of the three loss sit-
uations causes how many retransmissions in the nodes of a simulated bidirectional
10-hop chain.

16

4000 ‘ I ‘ ‘
early timeout &

loss of acknowledgment e
loss of data ---2--

1
3000 [H =
2000 |

1000 |

Number of retransmissions

.
L

'

Node ID
Figure 4. Reasons for packet retransmissions in bidirectional chain topology.

From this figure it becomes clear that, at least in this topology, the cases where a
retransmission is performed because the timeout expires before the packet could
be forwarded by the next node clearly outnumber the other two situations. Results
from other topologies and the performance figures presented later in this paper point
in the same direction. One possible interpretation of the distribution of the three
retransmission reasons is that the timeouts introduced in the previous section are too
short, resulting in too many or too fast retransmissions. However, our simulations
also show that longer retransmission timeouts do not improve the performance of
basic CXCC, because then the recovery from the two true loss situations happens
with a too long delay. Therefrom arises the necessity for a scheme that is able
to recover fast enough from a real loss situation, but at the same time avoids the
large number of unnecessary packet retransmissions in the case of delay through
backpressure.

Our solution to this problem is to not retransmit the whole data packet after an ex-
pired timeout, but instead just a small control packet. We call these control packets
Request For Acknowledgment (RFA). The RFA contains all the important header
information from the data packet, but not the payload. It thus provides the down-
stream node with all the information that is necessary to react appropriately.

We now look at the reaction of the downstream node upon reception of an RFA
packet. The simplest case is when the transmission of the data packet had not
reached the next hop, i. e., the RFA refers to an unknown packet. Then, a retransmis-
sion including the payload is necessary, and should happen as soon as possible. If
the downstream node detects this situation, it thus tells the upstream node to retrans-
mit the full packet by sending an explicit negative acknowledgment (NACK) frame.
This is depicted in Figure 5(b). Because of the additional RFA-NACK-handshake
the overhead in this case is actually higher than with basic CXCC. However, as the
previously stated simulations indicate, this occurs rather seldom. In the other two
cases, a retransmission of the data packet is not necessary, and thus a lot of other-
wise unnecessarily occupied medium time can be saved with the RFA scheme.

When just the implicit acknowledgment has been lost although the packet had actu-
ally been correctly forwarded, the downstream node sends an explicit acknowledg-

17

Timeo

BLOCK

%}
‘}XW

BLOCK
BLOCK

Timeout

CONTENTION

BLOCK

l%*

(c) Loss of implicit ACK. (d) Early timeout.

Figure 5. Protocol operation with RFA control packets.

ment if the packet has been forwarded further and acknowledged by its downstream
node, as explicated above. This behavior, shown in Figure 5(c), is the same as for
basic CXCC.

In case of an early timeout, the reaction is also identical to that of basic CXCC:
no action is performed, as shown in Figure 5(d). Therefore, the only significant
difference in this as well as in the previous case is that the payload has not been
retransmitted and thereby medium time has been saved.

It should be noted that for an upstream node an overheard RFA packet can serve as
an implicit acknowledgment for the packet it refers to.

6 System Architecture

While the previous sections dealt with the CXCC protocol itself and its functions,
we now discuss how it can be integrated into a protocol stack. Since CXCC is a
cross-layer protocol, there are some interesting aspects that deserve attention.

18

Application

Transport

CXCC Routing

MAC

PHY

Figure 6. CXCC’s position in the protocol stack.

We are aware that cross-layer designs require significant control over the network
participants’ protocol stack. However, our point is that the cost of preserving a
strictly layered architecture is too high, considering all the fundamental negative
results concerning the common protocol stack. Since wireless multihop networks
can often be expected to be closed systems with sufficiently homogeneous devices,
potentially even tailored for one specific application, we consider the required mod-
ifications feasible.

An overview of the CXCC protocol stack is shown in Figure 6. At the transport
layer, the congestion control function is moved to the CXCC module. Therefore, the
transport layer protocol can focus on its main tasks: providing process-to-process
communication (i.e., ports), and, optionally, byte-stream-based, connection-orien-
ted communication primitives, preservation of packet ordering and/or reliability.
Note that a different transport layer protocol does not necessarily mean a different
interface to the application: a TCP/UDP-compatible socket interface to the appli-
cation layer can be provided with CXCC, meaning that existing applications do not
need to be changed.

CXCC does not interfere with the core functionality of the routing layer. This is
important in order to stay independent from a specific routing approach. CXCC es-
sentially embraces the routing protocol. This is necessary since CXCC components
need to reside both above and below the routing protocol. They communicate, by-
passing the routing protocol. In a practical implementation CXCC can take over
the responsibility for layer 2 and 3 packet queuing completely. This simplifies the
maintenance of the per-flow queues, and the routing protocol can concentrate on
its most basic functionality: providing information on the next hop towards a given
destination node. This implementation aspect is, however, not mandatory, and it is
independent from CXCC’s congestion control functionality.

Finally, the MAC layer is also reduced to its core responsibility: observing the
medium and deciding when a transmission is allowed to take place. There is no
need for link layer retransmissions if CXCC is used. Such mechanisms have been
introduced in wireless MAC protocols to overcome the inherent unreliability of the

19

medium. However, CXCC is aware of the medium properties and does not need
this support. Retransmissions and acknowledgments are handled by CXCC itself
in a very efficient manner. Likewise, CXCC does not use the RTS/CTS mechanism
for virtual carrier sensing. Our simulation results show clearly that RTS/CTS has in
fact a mostly negative performance impact in wireless multihop networks. This ob-
servation is in accordance with many previous results, e. g., in [2,29]. RTS/CTS has
been designed for single-hop wireless networks, and does not fully solve the hidden
terminal problem in a multihop environment, but instead causes new problems, like
false blocking due to overheard, but failed RTS/CTS handshakes [30].

One additional difference between the protocol stack of a CXCC node and the
common one is that there exists no interface queue between CXCC and the MAC.
Instead, the queuing is handled by CXCC. The MAC provides feedback on when a
packet may be sent. The reason why we modify the common interface to the MAC
layer is easy to see: with the common interface queue concept, it would be possible
that a packet is enqueued, but can not be sent immediately. It thus might happen
that before the transmission can be started, other messages are received that redun-
dantize the waiting transmission—Ilike an acknowledgment for this packet. In this
case an unnecessary transmission would be performed, even though the transmit-
ting node actually has the knowledge that it is of no benefit. To avoid this effect, we
have removed the interface queue. Another approach would have been to provide
means of altering the interface queue upon demand. However, this would require a
much more complex interface between the layers, and thus contradicts our intention
to keep the functional separation clean.

Due to the MAC modifications CXCC can not immediately be used with most
commodity wireless hardware available today. This is because typically significant
parts of the MAC implementation are located in the firmware and cannot easily be
changed. However, the firmware modifications that are necessary in order to allow
using CXCC on existing hardware are limited. And, as our results show, the possi-
ble gain is significant. More importantly, many, if not most, wireless multihop net-
works will be application-specific, and will often be based on application-specific
hardware.

7 Simulations

In order to examine the performance of CXCC we have performed extensive sim-
ulation studies. For the simulations in this paper the ns-2 network simulator [31],
version 2.29 has been used. In this section, we present the results of the simulations.

The evaluation is based on different scenarios. First, we compare the behavior of
CXCC and that of UDP traffic over IEEE 802.11 in four different topologies, where
packets are produced by constant bit rate (CBR) traffic sources with increasing

20

frequency. This provides us with some general insights on how well CXCC is able
to adjust a source’s rate in order to utilize the capacity of the network.

Thereafter, we compare CXCC to three other congestion control protocols: TCP
NewReno [32], ADTCP [13], and TCP-AP [14]. The latter ones are end-to-end
approaches that aim to improve TCP performance in mobile ad-hoc networks. For
our comparisons, we use the respective protocol implementations that have been
made available by the authors.

In all simulations presented here the packet size is set to 512 bytes. We have also
performed simulation runs with smaller and larger packets. Although the absolute
results were of course different, the overall relative outcome remained the same.
The network bandwidth for all simulations is fixed to one megabit per second. We
use two different propagation models in our simulations, the two-ray ground model
and the log-normal shadowing model. The two-ray ground model is the most widely
used simulation model, and therefore guarantees some degree of comparability of
our results to previous work. The two-ray ground model is used with the typical
settings of 250 meters radio range and 550 meters interference range. All simula-
tion results presented in Sections 1 and 5.1 have been generated using the two-ray
ground model.

The log-normal shadowing model can generally be considered to be a little closer
to reality. This model also includes a random component that makes transmissions
nondeterministic. For the simulations with the shadowing model, we set the model
parameters corresponding to a shadowed urban area setting (loss exponent 3 = 4,
shadowing deviation ogg = 4). The reception and carrier sense thresholds have
been adjusted to yield a 95 % probability to receive a transmission over a distance
of 250 m, and to sense it at a distance of 550 m. This allows us to use the same
topologies for simulations with both radio models, and to compare the obtained
results directly.

We use static routing with optimal routes (with regard to the hop count), in order
to remove any influence of a routing protocol and to focus solely on the inherent
difficulties of congestion control in a multihop wireless network. In this static set-
ting, route breaks do not occur, and CXCC’s retransmissions and RFAs can guaran-
tee single-hop reliability. Therefore, end-to-end reliability is ensured in our CXCC
simulations, without additional measures.

7.1 Deterministic Topologies

In our simulations with deterministic topologies and fixed packet streams we con-
sider the four different scenarios shown in Figure 7. All of them are based on 10-hop
equidistant chains, with neighbored nodes placed 200 meters apart. We have also
performed simulations with different chain lengths, obtaining very similar results.

21

Connection .
......................... »
.

o0 - 00 ;i
. 18
(a) Chaln' Connection 1 . e. Connection 1
o 0.0 -0 O o
:) EXXTIIIITIL "
o < @
Connection 1 H E g: H E
------------------------- »> : gt
o0 00 o Si@v
Cermemnmnnnnnees Cannection 2
(b) Bidirectional chain. (c) Cross. (d) Bidirectional cross.

Figure 7. Deterministic Simulation Topologies.

The first and second topology are based on one of these chains. Along this chain,
we use one single connection from the first to the last node in the chain as our first
scenario (“chain”). In the second scenario, we added a second stream of packets
to the same topology, running from the last towards the first node, that is, in the
opposite direction (“bidirectional chain”).

The other two scenarios are based on two chains, one in x, the other one in y direc-
tion of a plane. They cross each other in the middle of the chains, where they share
one common node. In this “cross” topology we use two streams, one along each of
the two chains. “Bidirectional cross” has four data streams altogether, one starting
at each chain end, with their destinations at the opposite end of the respective chain.

Like in the bidirectional chain simulations described before in Sections 1 and 5.1,
the CBR sources at the end of the chains were configured to produce packets at a
fixed data rate, which we varied in a broad range. Here, we give results for these
topologies with UDP traffic over IEEE 802.11 with RT'S/CTS enabled and disabled,
and for the CXCC protocol in the variants with and without RFA. Since we can ad-
just the amount of data that is injected in the network freely for UDP, this allows us
to draw conclusions on the performance that some arbitrary 802.11-based protocol
would achieve, if it chose to adjust its output to a certain rate. The comparison with
CXCC then shows how the rather different way of packet forwarding with implicit
congestion control deals with the same data rate being generated by the application.

Figure 8 shows how for each of these four protocol variants the obtained through-
put develops with increasing source data rate. The results are averaged over 10
simulation runs with different random seeds for backoff and jitter. It can be seen
that the UDP traffic is able to sustain a good throughput for the topologies without
two-way data transport. There, 802.11-like packet forwarding seems to be self-
regulating. However, as discussed before, for bidirectional traffic the throughput
suffers substantially if the input data rate exceeds a very small range. This implies
that a congestion control approach on top of 802.11 needs to adjust its output rate
quite exactly.

22

30 T y T 30 T T : T
CXCC with RFA CXCC with RFA -
basic CXCC basic CXCC
25 UDP/802.11 without RTS/CTS -9 25 + UDP/802.11 without RTS/CTS
I UDP/802.11 with RTS/CTS & = UDP/802.11 with RTS/CTS -
g 20 r 40;)‘ 20 |
o o
X l'BE'BE"EH}E'EHEI-E-EI-E'EIVE-E-E-E X J:;E‘ﬁ.g.gA&AgAg&&gag&a&&&&&&a
5 15 ¢) P 5 15 ¢ i b
5; I "'lilillliiil. % W ll‘
§ 10) ol @ 10 o \.,“;.,.:..»E;A,H,.,A»M,A.,,.,“.,,...1,‘ J
£ £ ’
51] 5t A Treasamrrraeann |
o« 't ES&BBEH;H;H:H;H:\
[§
0 : ‘ ‘ ‘ ‘ : : 0 : ‘ ‘ : : ‘ ‘
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Source data rate (KByte/s / sender) Source data rate (KByte/s / sender)
(a) Chain topology. (b) Bidirectional chain topology.
30 T ——— T 30 T ——— T
CXCC with RFA - Beee CXCC with RFA -
basic CXCC -+ basic CXCC -
25 + UDP/802.11 without RTS/CTS - 25 + UDP/802.11 without RTS/CTS -
= UDP/802.11 with RTS/CTS - = UDP/802.11 with RTS/CTS -
@ @
g 2s amEas g bkt -
4 o HBEEEE = o
< e <
5 15 + I Einsnaniiltangpppuun - 5 15 F
_% ‘AA-AVAV‘AVA,‘,A-A-A—A-A"'i—A-A,‘VLA-A-‘,AV‘-A—A-A _%
=] =]
3 10 A 3 10 eatbatatabataaaaaas]
< / £
= n = g
5+ W 5 \B‘B'\."‘l e ——— |
/ = i anigagisnsaign
u ﬂBEgﬂﬂ'E"E*EEE»BBB-B»E»B
0 : : ‘ : : ‘ ‘ 0 : ‘ ‘ ‘ : ‘ ‘
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Source data rate (KByte/s / sender) Source data rate (KByte/s / sender)
(c) Cross topology. (d) Bidirectional cross topology.

Figure 8. Obtained throughput (two-ray ground).

CXCC with the RFA extension is able to achieve and maintain very good through-
put in all four scenarios. While basic CXCC without RFA suffers from a large num-
ber of spurious packet retransmissions, the RFA mechanism allows the protocol to
use network resources well and provides the sender effectively with feedback on
the best sending rate. By comparing the number of packets delivered for each sin-
gle connection in the topologies with more than one sender-receiver-pair we found
that at least in these simple, symmetric topologies all protocols considered here
share the bandwidth fair among the flows.

The optima of the performance of UDP over 802.11 also mark the optimal through-
put that can be achieved by any protocol that uses the common protocol stack. An
ideal protocol would be able to find the optimal sending rate for UDP without
inducing additional traffic. Thus, it can be seen that CXCC with RFA performs
extremely well in comparison to any possible 802.11-based protocol, at least in
those simple scenarios, by achieving a throughput very close to the optimum and
maintaining it for any higher source rate.

The good performance of CXCC is further confirmed by other metrics obtained

23

CXCC with RFA —2-—

basic CXCC -4

UDP/802.11 without RTS/CTS & |
UDP/802.11 with RTS/CTS —=-—

CXCC with RFA s
basic CXCC -

UDP/802.11 without RTS/CTS -
15 UDP/802.11 with RTS/CTS - |

aaBed
3r <.-I-I'ﬁ,!i’ﬁ:EE'—l'l’.‘l-l 1
H I‘.<E_BET
,.-;;E;;rgzgﬁaaagﬁga " g”
e

0.5 -

Average packet delay (s)
- b

Average packet delay (s)
]

AMABAALD AL bAAALsdddd
o mREmasssanwET

0 5 10 15 20 25 30 35 40 0

15 20 25 30 35 40

Source data rate (KByte/s / sender) Source data rate (KByte/s / sender)
(a) Chain topology. (b) Bidirectional chain topology.

Figure 9. Average packet delay (two-ray ground).

from the same simulations. We show only the results for the chain and the bidirec-
tional chain topologies here, since the cross topology and the bidirectional cross
are generally very similar to their respective counterparts, with further amplified
differences.

Figure 9 shows the average packet delay for two of the topologies. We define it as
the time between the start of the MAC layer transmission of the packet at its source
node and the completion of its reception at the destination node. It can be seen that,
for UDP over 802.11, the performance deteriorates rapidly with regard to packet
delay once the sender’s rate exceeds the optimum. The degradation is eminent in
all four topologies. Depending on the scenario, the average packet delay is four to
six times higher for UDP than it is for CXCC with RFA for higher data rates. For
data rates lower than the optimal sending rate, UDP and CXCC with RFA perform
comparably well. This again demonstrates the stabilizing properties of CXCC.

In some cases there is a small interval of source rates in which CXCC’s packet
delay times already grow, while UDP is still able to maintain the very good values
of an underutilized network. This is the range in which collisions already occur,
but not at a frequency that is high enough to actually prevent packets from being
delivered. While UDP over 802.11 is able to immediately retransmit a packet if no
link layer acknowledgment is received and thus does not loose much time in such
cases, CXCC will wait for at least one packet retransmission delay (set to three
packet transmission times) before the transmission is repeated. This is not optimal,
but the losses are small in comparison to those that result from a just slightly too
high packet injection rate, as can be seen from the UDP results.

A last evaluation of the performance in the deterministic topology simulations deals
with the induced overhead of the protocol. The overhead is defined as the number
of bytes that have to be transmitted on the wireless medium in order to deliver
one byte of payload data. The sum of all bytes transmitted on the MAC layer is
divided by the route length to get the average per hop effort. In order to determine

24

20

2 CXCC with RFA 3 'CXCC with RFA —
B basic CXCC T 18 basic CXCC
g 181 UDP/802.11 without RTS/CTS | g UDP/802.11 without RTS/CTS
g L UDP/802.11 with RTS/CTS & S 167 UDP/802.11 with RTS/CTS —
) L 14 + Azl
5 ogppETeEe b=
S 16f poogaie i ey 12 o
o A—AVA»L$<!/:“7A,i.,‘rAr‘A—A,*,Lrg»k*A @ B
s e T e
S 14l : ul i3] =
«é . lrlrl—l—lrlllll-“.“ E 8 b E/Er
i ; Uz

2 i 2 L I anEERg |
E 1.2 | cepaaaaaa587 | E 6 i
s - VVAVA»AA&AVA-A-A—A~A—AAVAAA,A/AVA ; s el
Q ;& O k‘.‘_‘,‘,‘ﬂ]zA..,A;.,..‘.‘..,..‘.‘.‘.A,‘.»;.A
2 Addbshhhsk 5’ 2r .("l --Tij:

1 = 4 4 4 4 4

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Source data rate (KByte/s / sender) Source data rate (KByte/s / sender)
(a) Chain topology. (b) Bidirectional chain topology.

Figure 10. Overhead and energy consumption (two-ray ground).

the overhead, the per hop effort was divided by the number of bytes successfully
delivered to the final destinations. This measure is closely related to the energy
efficiency of the protocol: a higher number of bytes to be transmitted corresponds
to a higher power consumption.

Figure 10 shows the results of this evaluation. It can be seen that again CXCC out-
performs standard 802.11 packet forwarding with UDP largely at almost all source
data rates. The reason for this is that CXCC ensures that only packets may enter the
network which will be able to reach their destination. It therefore does not waste re-
sources on packets that are dropped later on. In the unidirectional topology, a higher
number of unnecessary payload data retransmissions increases basic CXCC'’s over-
head up to a region similar to UDP/802.11. In the variant with RFA there are no
unnecessary retransmissions of complete data packets, but at most small RFA pack-
ets. This yields an extremely low overhead in comparison to any of the simulated
alternatives, which underlines the appropriateness of our design principle to avoid
unnecessary transmissions.

All results presented so far have been obtained using the two-ray ground radio
model. In order to assess the influence of the radio propagation model on our re-
sults, we have repeated the simulations using log-normal shadowing. The outcome
of these simulations further supports our conclusion that the CXCC protocol, in
particular CXCC with RFA, performs its task well. The overall results are similar
to the ones presented above, but the advantage of CXCC increases. With the shad-
owing model, the performance of all the considered protocols decreases in compar-
ison to the two-ray ground simulations. This is not surprising, since the simulated
wireless medium is generally less reliable with the shadowing model. Due to the
random component, packet transmissions may fail even within the potential com-
munication range, and interference over long ranges becomes possible, leading to
more collisions. Figures 11, 12, and 13 show the obtained simulation results for
the throughput, the average packet delay, and the protocol overhead, respectively,
for the unidirectional and bidirectional chain topologies. Again, the results for the

25

20 ‘ ‘ ‘ ‘ 20 ‘ ‘ :
CXCC with RFA - CXCC with RFA
basic CXCC basic CXCC
UDP/802.11 without RTS/CTS UDP/802.11 without RTS/CTS
% 151 UDP/802.11 with RTS/CTS - % 15| UDP/802.11 with RTS/ICTS
K9} IS
=3 S,
Q A A § pAAL LA B DDDADAAADNBD LD DD DDA
g 107 X 1 5 10}
= P 5
g) g / " .
}_E 5| (!, | |'E 5l !4 P P VU S S SO S S S Sy
o W
o \ﬁ,“
o o -t R Rt R R BT T R
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Source data rate (KByte/s / sender) Source data rate (KByte/s / sender)
(a) Chain topology. (b) Bidirectional chain topology.
Figure 11. Obtained throughput (shadowing).
4 ; — ; 14 ; — ‘
CXCC With RFA s CXCC with RFA ——a—
35 | basic CXCC - - basic CXCC
— UDP/802.11 without RTS/CTS & -~ 12r UDP/802.11 without RTS/CTS —&— |
O | UDP/802.11 with RTS/CTS —a-— | O UDP/802.11 with RTS/CTS -—a-—
5 z 10
g 25 g /E'BE‘E‘E'BBB.Q»BEH F
3 © 8 b n =
g) 1 & A L S e R et
g [i gt Eiasalig Ty g ¢l ”m;/ll
o 15 ° e
g g Ll ;
5] 1 / 9]
> i >
< i <
05 |- i 2
Wy A A A A A A Ak kA kA Ak ke
0l mmmmans® ‘ ‘ ‘ ‘ 0 L muitt :
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Source data rate (KByte/s / sender) Source data rate (KByte/s / sender)
(a) Chain topology. (b) Bidirectional chain topology.

Figure 12. Average packet delay (shadowing).

cross and bidirectional cross are similar, with further pronounced differences.

7.2 Error Resilience in Bidirectional Chain Topologies

Up to now we have seen that CXCC is able to adjust the rate well and to avoid
overload problems very efficiently at least in simple topologies. This, however, only
shows that congestion control is performed, and that it is effective, but it does not
tell us how it compares to other congestion control approaches. From now on, we
compare CXCC’s congestion control abilities to those of TCP NewReno, ADTCP,
and TCP-AP. We have simulated all three TCP variants with and without 802.11’s
RTS/CTS mechanism enabled.

Since it became clear that CXCC with RFA is far superior to the basic CXCC

variant, we concentrate purely on CXCC with RFA from now on. Therefore, if we
refer to “CXCC” in the following, we mean CXCC with RFA.

26

50

K CXCC with RFA —2— B 'CXCC with RFA —a—
B basic CXCC - T 45+ basic CXCC -~ 1
g UDP/802.11 without RTS/CTS - g UDP/802.11 without RTS/CTS ---&--
S 25t UDP/802.11 with RTS/CTS & | 5 4071 UDP/802.11 with RTS/CTS —=—
g =N a g 3By =8
_§‘ /E/E,E'E}EIBEYEF BoagPEty é‘ 30 | 'ELBHE{ i 28 o
g 2 F heey ©
E] 2 3 25 + '
%‘ E 20 m » ™ ™ ™
g g 15 | m l'li/ w m -
T 15 ¢ S P ow
= .- = L ;o
- i 5 10 e
Q E,E,EEBE}T /Q,A-A-A—A»AA&A&AVA—A-A~A—A—A»AA&A,A O Jj’/.,
2 N A.ﬁ:e‘m.ﬁ*&‘?’ ‘ ‘ ‘ ‘ ‘ L% 5 o wi‘%{. s
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Source data rate (KByte/s / sender) Source data rate (KByte/s / sender)
(a) Chain topology. (b) Bidirectional chain topology.

Figure 13. Overhead and energy consumption (shadowing).

For the moment, we stay with the bidirectional 10-hop chain topology that has al-
ready been introduced above. We use it to test how well the considered protocols
can deal with an unreliable medium. For this purpose, we employ the shadowing
propagation model, and add more and more random packet losses, i. €., an increas-
ing bit error rate (BER). We then assess how this influences throughput and latency.
Like above, we have also simulated different chain lengths, which again did not
qualitatively change the results.

Figure 14 shows the results of the simulations for a wide range of bit error rates on
the x-axis. On the right hand side of the chart, the probability that a transmission
of a typical data packet with 512 bytes payload plus all headers succeeds is only
approximately 60 %. Since only 60 % of the bandwidth is available for successful
transmissions, one would expect a relative decrease in throughput by a factor of
3/5 in the ideal case. It could be further decreased by a higher coordination effort.
Similarly, a corresponding increase in packet delay by a factor of 5/3 plus the
coordination effort’s impact can be expected. The charts show that this in fact fits
quite well for CXCC, where the respective factors are 0.56 for the throughput and
1.95 for the latency.

Some of the TCP variants, however, exhibit a largely different behavior. In partic-
ular the packet delay of TCP NewReno actually decreases with increasing BER,
instead of growing as expected. Without RTS/CTS it dropped by as much as 60 %.
Our explanation for this surprising trait of TCP is that the higher packet loss rate
leads to a smaller TCP congestion window size, and this in turn reduces the medium
contention so much that the negative effect of the necessary link layer retransmis-
sions is overcompensated.

In summary, the presented results show that CXCC deals well with random packet
losses over a wide range of loss rates, and that it performs very well especially in
terms of throughput. The packet delay of CXCC is higher than it is for some of the
TCP variants. However, this should be seen in relation to the higher throughput of

27

1.6

"7 cxce —— " TcoXec ——
16 TCP without RTS/CTS & - 14 TCP without RTS/CTS -—&-- a
TCP with RTS/CTS = —_ ’ TCP with RTS/CTS =
& 147 ADTCP without RTS/CTS —x 1 L 12 L ADTCP without RTS/CTS % &
) ADTCP with RTS/CTS --=*-- =) ADTCP with RTS/CTS --=*--
s 124 TCP-AP without RTS/CTS ---o--- 1 © 18 TCP-AP without RTS/CTS ---o---
€ ol TCP-AP with RTS/CTS -~ = . TCP-APwith RTS/CTS -~e--©
5 S 08 moTE o
Q. 8 [
5 o 06
° !
L A =
A Soe Mg UTUEd 8 04
IR e T < e e
2t S i 0.2 37"
@ Oen
S @erieina L)
0O 1 2 3 4 5 6 7 8 9 10 11 o 1 2 3 4 5 6 7 8 9 10 11
Bit error rate (errors / 100000 bit) Bit error rate (errors / 100000 bit)
(a) Throughput. (b) Average packet delay.

Figure 14. Bidirectional chain topology with increasing BER (shadowing).

CXCC that corresponds to a much better media utilization.

7.3 Random Topologies with Long Connections

In the next set of simulations, we examine the steady-state throughput of CXCC in
comparison to the three TCP variants in more realistic topologies. The simulated
networks cover an area of 1500x 1500 square meters, where 150 nodes are placed
randomly. Five random connections are set up in each scenario, that continuously
try to deliver as much data as possible. The same scenarios are simulated with all
considered protocols.

The throughput of each connection with each of the protocols is measured after an
equilibrium had been reached. Figure 15 shows the results of these measurements
for five random network setups for both the two-ray ground and the log-normal
shadowing model. In the charts, each segment of a bar stands for the throughput
of one stream. Within each topology, an identical fill pattern indicates that the re-
spective segment belongs to the same pair of communicating nodes. The chosen
representation thus allows not only a comparison of the total throughput, but also
of its distribution to the five streams.

As can be seen from these results, some connections are starved completely or
almost completely by TCP NewReno. This problem aggravates with RTS/CTS en-
abled, and it is less pronounced in the simulations with the shadowing model. Se-
vere fairness problems with TCP have been reported many times in the literature,
and have been traced back to medium capture problems. A primary motivation
of TCP modifications and alternatives for wireless multihop networks has always
been fairness improvement. While ADTCP and in particular TCP-AP are able to
improve the fairness, this comes at the cost of throughput. This is interrelated, be-
cause TCP often starves in particular those flows that traverse many hops. But a

28

Throughput (KByte/s)

Tonoloav 1 Tonoloav 2

(a) Two-ray ground.

90

Tonoloav 3

Tonoloav 4 Tonoloav 5

Throughput (KByte/s)

Gl

270

N 2\ > 2 N N 2
(XN OIS NI NN NSNS G058 O PN (SN G058 O
XQ)O/O Co o 90C X»p)o/o Co %< XQ)‘QO S o0 %6C "4))90 S o 90C XQ)O/Q Co 9090
I A I N O N O N I
A AN A A &)
Tonnlnav 1 Tonoloav 2 Tonoloav 3 Tonolnav 4 Tonoloav 5

A iizecs i i)i o

(b) Log-normal shadowing.

2

b

Bigel: Hicie

%

(&
X

%
%

Figure 15. Total network goodput in random topologies with five long-lasting streams, bro-

ken down into single streams’ throughputs.

higher throughput for these long flows comes at a high cost, since more medium
capacity is necessary to deliver a packet, compared to a flow with few hops.

CXCC, however, behaves significantly more fair than TCP, without a loss in through
put. Complete flow starvation did never occur in the simulations. A significant
throughput surplus over the TCP modifications and, in particular when the log-
normal shadowing model is considered, also over TCP NewReno can be seen. Thus,
once again we see the general observation confirmed that the more realistic shad-
owing propagation model amplifies the advantage of CXCC.

A look at the packet latencies exposes further interesting aspects. However, a com-
parative evaluation for more than single streams is not straightforward: the latencies
of connections over different hop counts and in different topologies are not directly
comparable. We thus consider relative differences instead of absolute ones. For this
evaluation, we take only those connections into account for which each approach
managed to deliver at least 50 packets, in order to guarantee a solid statistical basis.

29

o o
[§] [§]
= =
2 2
2 2
g g
o o
))
© ©
[a] [a]
S G T, T, by 0y % G QYo o, T Gy
B G Gy N i Re B o S e i @
§ % § %
KP’E\ '9’?5\ @’Ts\ Q’?s\
(a) Two-ray ground. (b) Log-normal shadowing.

Figure 16. Packet delay in relation to TCP, in random topologies with five long-lasting
connections.

This criterion applies to 60 % of the connections in the two-ray ground simulations,
and to 92 % for the shadowing model. For each connection, we use the packet de-
lay of TCP NewReno without RTS/CTS as a reference, and calculate the factor
by which the latency of the other approaches differs. In Figure 16, the geometric
mearﬂ of these relative differences for all connections is shown. Obviously, the
factor for the reference TCP NewReno without RTS/CTS is one. A factor of 0.2
for CXCC means that the mean packet latency for CXCC was 1/5 of that of TCP.
It is evident that CXCC as well as the TCP modifications achieve a, sometimes
very significantly, lowered packet delay. While for the TCP variants this comes, as
seen before, at the cost of throughput, CXCC combines both low latency and high
throughput. The main reasons for the low delays of CXCC are the—by design—
extremely short queues, and the resulting short queuing delays. Interestingly, while
RTS/CTS generally seems to have a negative impact on throughput and fairness,
it can considerably decrease the latency for TCP. This might stem from the lower
media utilization with RTS/CTS, resulting in a lower contention level.

The protocol overhead, just like the packet delay, cannot be directly compared be-
tween different connections due to the differing hop counts. As a metric that takes
this into account we calculate the number of transmitted bytes on the medium per
payload byte and hop, i. e., how many bytes need at an average to be transmitted on
the medium in order to bring one byte of payload one hop further. Figure 17 shows
the results of this evaluation. The significantly higher overhead of all TCP variants
results from a higher number of retransmissions. CXCC’s RFA mechanism reduces
the number of retransmissions of packets with payload to the absolutely necessary
minimum.

The hop-count weighted approach also leads to a different throughput measure:
TCP’s unfairness mainly comes at the cost of streams with a higher number of

2 The geometric mean is more suitable to averaging relative ratios than the arithmetic
mean.

30

Bytes transmitted per
byte delivered and hop
Bytes transmitted per
byte delivered and hop

(a) Two-ray ground. (b) Log-normal shadowing.

Figure 17. Overhead and energy consumption in random topologies with five long-lasting
connections.

hops. But, as already mentioned, a high throughput for a stream with few hops can
be achieved at a lower media utilization. Thus, in Figure 18, we provide the same
results as before in Figure 15, but with each connection’s throughput weighted by
the number of hops along its route. The significant difference shows that CXCC is
in fact able to utilize the network best, since long connections gain more throughput
and thus the per-hop throughput is higher.

7.4 Random Topologies with Fixed Amounts of Data

Through the last type of simulation that we have performed we examine how well
CXCC behaves in a more realistic and dynamic scenario. We consider random
topologies of the same dimensions and node counts as above. Now, many short
data transmissions are scheduled between random pairs of nodes, each starting at
a random time between 0 and 120 simulation seconds. Each of these transmissions
has a random, equidistributed amount of data in the range between 5 and 50 kilo-
bytes to deliver. For the two-ray ground simulations, we use 120 transmissions. For
the shadowing propagation model, we account for the, as previously seen, generally
lower throughput by reducing this number to 90.

Again, we have performed all simulations of all TCP variants with and without
RTS/CTS enabled. Like for most aspects before, the performance with RTS/CTS
enabled is generally worse. Therefore, for space and readability reasons, we show
only the results without RTS/CTS here.

Figures 19 and 20 depict the packet reception times of some randomly selected
streams in one of the simulation runs for the two-ray ground model and for the
shadowing model respectively. Each point denotes one packet reception. The y-
coordinate of each point denotes the stream that it belongs to, while on the x-axis
the packet arrival time is shown. All four sub-figures are based on the same streams

31

300

Hop-weighted Throughput
(hops KByte/s)

Tonoloav 1 Tonoloav 2 Tonoloav 3 Tonoloav 4 Tonoloav 5

(a) Two-ray ground.

180

—~
5 160 - b
a
-§,A 140 —
og 120 - g
cd
F& 100 | \
gx
% 2 80
= O 60 -
g2
a 40
9]
° 2\ 2\ 2\ 2\
(XN AN (SO STNI ST N (S (AT
xﬂ))OA OAX:?,Q:VAO X«p)‘QO OAX:V,Q:V,Q
& 4)) "/p)\ [\ *9) x»p}
& & [y
Tonoloav 1 Tonoloav 2 Tonoloav 3 Tonolnav 4 Tonolnav 5

(b) Log-normal shadowing.

Figure 18. Total network goodput in random topologies with five long-lasting streams,
weighted by hop count.

from the same scenario, and thus the node positions and communication partners
are identical, equal amounts of data are to be transmitted and the transmissions start
at the same times. To avoid misinterpretations, only the first successful reception of
a segment by the receiver is shown upon duplicate deliveries.

It is visible that, for the vast majority of transmissions, CXCC not only delivers
the last segment much earlier than all TCP variants, but it is also able to sustain
a smoother rate. We attribute this to a faster, since implicit and thus practically
immediate, adjustment to the optimal rate in case of changing network conditions.
Our interpretation of the bad results for all TCP versions is that the feedback path
is too long to yield accurate information on the network state if the traffic pattern
is as dynamic as in these simulations. During some of the transmissions, multiple
losses of data segments and acknowledgments and the resulting long retransmission
timeouts cause long periods of inactivity. Therefore, a number of transmissions that
in fact start quite early are not able to complete for a long time, even when the
network is idle. The charts show only the first 200 seconds.

32

50 T T - T T T T T 50 T T T e—"

40 =T m—] 40 B
[a) _' ——— .- - a) . - -— e .-. -
c 30t R . c 30t - -
=] - 2 - -
S S - S cg—— -
Q [Q L —
IS et 1S T e
£ 20, - £ 20, :
(@] -— e 9] -t
10 | - — 10 ¢ = -
0 L L L Nl L e L L L 0 L L L Ml L e L L L
0O 20 40 60 80 100 120 140 160 180 200 0O 20 40 60 80 100 120 140 160 180 200
Simulation time (s) Simulation time (s)
(a) TCP. (b) ADTCP.
50 —— —————— 50 ——— :
40 ¢ 40 ¢ = T =
o o - - y
c 301 c 301 - -
2 2 % -
o o — 2
5} Q P
S 207 £ 0| =
s} s . -
o o - "
10 10 =" -
0 | mese. . . 0 i . . . L e . . .
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Simulation time (s) Simulation time (s)
(c) TCP-AP. (d) CXCC.

Figure 19. Times of packet receptions in random topology (two-ray ground).

Finally, we now consider the per-stream throughput and the fairness of the differ-
ent protocols under rapidly changing traffic patterns. To examine this aspect, we
performed more simulations in different random topologies, all with their key pa-
rameters chosen as described above. Figure 21 shows the cumulative distribution
functions of the throughputs of all the streams. Note the logarithmic x-axis in the
charts. We calculate the throughput by dividing the amount of data by the transmis-
sion duration. The transmission duration is defined as the time between the start of
the transmission, when the packets are enqueued at the source node, and the point
in time when each segment has been received at least once by the destination node.

Apart from a general trend to higher throughputs, a significantly better fairness of
CXCC is evident: while for the TCP variants many streams have a low or very low
throughput, the CXCC connections all obtain at least some minimum share of the
bandwidth. This can be seen from CXCC'’s curve, which starts decreasing compar-
atively late. The key reason for the better fairness of CXCC is that the nodes refrain
from capturing the medium for a long time. After a packet transmission a node is
forced to stop sending more data from the same stream. It has to wait for the re-
ception of an implicit or explicit acknowledgment, or until the retransmission delay

33

50

0.1 1

10
Throughput (KByte/s)

(a) Two-ray ground.

40 | 1
a a
c 30 B c b
2 S
°© °
2 2
5 20 1 <]
o o
10]]
0 —r i et i e a e 0 —ae i e
0O 20 40 60 80 100 120 140 160 180 200 0O 20 40 60 80 100 120 140 160 180 200
Simulation time (s) Simulation time (s)
(a) TCP. (b) ADTCP.
50 T T e T T 50 T e T T T T T T
wl e wl — -]
g - - e = - 9 R - -
c 30 - 1 c 301 -7 1
2 - S . —
=1 REKTIEH . I3 —
[} Q —-—
= oo ne— ———— = ol —— -
S 20| cme—ee— R | S 20 = - R
o = . o .
100 =] 10 g, & -~ -]
O = powe e | e s | L L L . L se | 0 - — L L L L L L L L
0O 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Simulation time (s) Simulation time (s)
(c) TCP-AP. (d) CXCC.
Figure 20. Times of packet receptions in random topology (shadowing).
~. X N T
N\ ~ CXcC -- -- “ CXCC -- --
0.8
0.6
04 r
0.2 r
0

Throughput (KByte/s)

(b) Log-normal shadowing.

Figure 21. Cumulative distribution functions of stream throughputs in random topologies
with short connections.

34

elapses. This gives other nodes the opportunity to start or continue transmissions.

8 Real-World Testbed Results

In the previous section we have presented simulation results, indicating that our
implicit approach of performing congestion control is in fact able to provide an
efficient way of protecting the network from overload. However, we are aware that
simulations in general—and particularly for wireless multihop networks—are not
able to model all factors that might influence a protocol in the real world, even if
they are based on an elaborated propagation model. Therefore, to complement our
simulations, we have also implemented CXCC with RFA in a real hardware testbed,
and conducted measurements with this implementation.

As stated before, CXCC cannot be implemented on today’s commodity 802.11
wireless hardware. There, a large part of the MAC functionality is realized very
close to the hardware, in the (proprietary) firmware, which is not accessible for
modifications. When looking for a way to overcome these difficulties we came
across the ESB sensor nodes. These relatively inexpensive devices were developed
at the Freie Universitidt Berlin as part of the ScatterWeb project [33]. They are
intended to serve as a testbed platform for wireless sensor networks. ESB nodes are
battery-powered and equipped with a collection of sensors and a wireless interface.
For our purposes, however, their main advantage is the open firmware, which allows
modifications to every part of the software, down to the manipulation of each single
bit transmitted on the wireless medium. Here, they are used as devices ina MANET
testbed instead of their original purpose of being used in sensor networks.

Of course the non-802.11 compatible physical layer of the ESB nodes, operating at
only 19.2 KBit/s in the 868 MHz band, does not allow for a direct performance com-
parison to 802.11-based networks. But our main intention is to show that CXCC
works in practice and exhibits a behavior similar to that in the simulations.

Since on the ESB nodes there is not as much software “infrastructure” available as
it can taken for granted on, e. g., PDAs or a PC, it was not sufficient to implement
only the CXCC protocol. We also created the rest of the necessary testbed infras-
tructure. This comprises, for example, a logging facility that is able to log a large
enough number of MAC layer events in the limited storage space available (64 KB
in each node), a static routing module, and traffic generators. Additionally, some
convenience tools for routing table generation and distribution, for the verification
of the topology and for the collection of log data have been created. More details
on this experimental framework can be found in [34].

In addition it was necessary to make modifications to the standard ESB firmware’s
MAC and link layer to resemble 802.11 more closely. For example, the number of

35

60 T T T : T
CXCC with RFA —=—
UDP/802.11-like forwarding —=—

50 - 1

40
30 -

20 -

Packets delivered

10 ¢

0

0 0.5 1 15 2 2.5 3 35 4
Source data rate (Packets/s / sender)

Figure 22. Measured throughput in bidirectional chain topology experiments.

packet retransmission attempts has been set to seven for those experiments where
CXCC was not used. Also the ESB nodes are—due to their very limited hardware
resources—not able to handle packets of the size that is common for IEEE 802.11.
Since there are only 2 KB of RAM available in total, there is not enough space
for queues containing long packets. In order to be able to use a reasonable data
packet size, we prepended additional 200 bytes to the data packets, as some kind of
additional preamble. We used 32 bytes of payload per packet in our experiments, a
size that is easily feasible with the ESB nodes. With the prepended 200 bytes, a 32
byte data packet transmission results in the same medium occupancy as a “real” 232
byte packet would. Control packets such as ACKs or RFA packets are transmitted
without the artificially increased preamble, so they occupy the medium with their
regular size.

In our experiments we used six ESB nodes, set up in a bidirectional chain topol-
ogy. Each node was placed in a different room. This was sufficient to prevent a
reliable direct communication between nodes that are not neighbors. In each of
three separate experiment runs we slowly increased the offered load at the nodes
for both CXCC with RFA and 802.11-like packet queuing and forwarding. At each
examined data rate, traffic was generated for two minutes. Then the successfully
delivered packets were counted. Figure 22 shows the outcome of our throughput
measurements, averaged over the three experimental runs.

The results show clearly that the real-world behavior of both protocols matches the
simulations very closely. Of course the absolute values are very different—but this
is hardly surprising given the vastly different radio layers. However, much more im-
portantly, on a qualitative level, the 802.11-like approach’s performance drops to a
very low level after some optimal input rate is exceeded, while CXCC'’s throughput
remains stable at a comparably high level. We consider this as a confirmation that
the throughput-stabilizing properties of CXCC are also present in real networks.

36

9 Conclusion

In this paper we have proposed a novel way of accomplishing congestion control in
wireless multihop networks: implicit hop-by-hop congestion control. It is based on
the insight that an input rate exceeding the optimal output rate of a node or network
area even on a short-term will be detrimental for the performance of a wireless mul-
tihop network. Our mechanism exploits the wireless broadcast medium in order to
gain the necessary information for a backpressure mechanism that reliably limits
the number of packets to one per flow and hop, and thereby implicitly avoids net-
work congestion. We have presented a protocol, CXCC, that builds upon the idea
of implicit hop-by-hop congestion control. An improvement of the CXCC protocol,
the Request For ACK (RFA) mechanism, avoids unnecessary data packet retrans-
missions.

Our simulation results demonstrate that in simple and deterministic scenarios as
well as in more realistic ones CXCC is able to effectively adjust the packet sources’
rates and to utilize the network capacity well. In comparison to TCP and two other
transport protocols for mobile ad-hoc networks, good fairness properties and a very
competitive throughput can be observed. This altogether shows that implicit hop-
by-hop congestion control as a new congestion control paradigm not just works
well, but also exhibits some remarkable advantages over common transport layer
end-to-end mechanisms. In particular these are the ability deal with UDP- as well
as with TCP-like traffic, very fast reaction times, a low packet delay, very good
energy efficiency, and a simple protocol design, which greatly eases the adaption
of the protocol to new usage scenarios and environments. Since wireless multihop
network applications span a broad range of traffic types, we consider this a very
central benefit.

The simulations with both a deterministic and a probabilistic radio propagation
model are accompanied by an implementation on real hardware. We have shown
that the behavior of CXCC in a real network matches the expectations from the sim-
ulations. The chosen hardware platform allowed us to do such an implementation
by avoiding the constraints imposed by commodity 802.11 hardware.

Acknowledgments

We wish to thank Markus Koegel, Yves Jerschow, and Alfonso Cervantes for their
great work on the CXCC protocol implementations. We also want to express our
gratitude to the authors of ADTCP and TCP-AP, for making their ns-2 implemen-
tations available. In particular we thank Sherif EIRakabawy from the University of
Leipzig, Germany, for helpful discussions on the TCP-AP simulations.

37

References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

M. Gerla, K. Tang, R. Bagrodia, TCP Performance in Wireless Multi-hop Networks,
in: WMCSA °99: Proceedings of the 2nd IEEE Workshop on Mobile Computing
Systems and Applications, IEEE Computer Society, Los Alamitos, CA, USA, 1999,
p. 41.

S. Xu, T. Saadawi, Does the IEEE 802.11 MAC protocol work well in multihop
wireless ad hoc network, IEEE Communications Magazine 39 (6) (2001) 130-137.

R. de Oliveira, T. Braun, TCP in Wireless Mobile Ad Hoc Networks, Tech. Rep. IAM-
02-003, Institute of Computer Science and Applied Mathematics, University of Berne
(Jul. 2002).

Z. Fu, X. Meng, S. Lu, How Bad TCP Can Perform In Mobile Ad Hoc Networks, in:
ISCC ’02: Proceedings of the 7th IEEE International Symposium on Computers and
Communication, 2002, pp. 298-303.

Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, M. Gerla, The Impact of Multihop Wireless
Channel on TCP Throughput and Loss, in: INFOCOM ’03: Proceedings of the 22nd

Annual Joint Conference of the IEEE Computer and Communications Societies,
Vol. 3, 2003, pp. 1744-1753.

T. Plesse, C. Adjih, P. Minet, A. Laouiti, A. Plakoo, M. Badel, P. Miihlethaler,
P. Jacquet, J. Lecomte, OLSR performance measurement in a military mobile ad hoc
network, Elsevier Ad Hoc Networks 3 (5) (2005) 575-588.

V. Raghunathan, P. R. Kumar, A Counterexample in Congestion Control of Wireless
Networks, in: MSWiM ’05: Proceedings of the 8th ACM International Symposium
on Modeling, Analysis and Simulation of Wireless and Mobile Systems, 2005, pp.
290-297.

C. Lochert, B. Scheuermann, M. Mauve, A Survey on Congestion Control for
Mobile Ad-Hoc Networks, Wiley Wireless Communications and Mobile Computing,
to appear.

K. Chandran, S. Raghunathan, S. Venkatesan, R. Prakash, A Feedback Based Scheme
for Improving TCP Performance in Ad-Hoc Wireless Networks, in: ICDCS ’98:
Proceedings of the 18th International Conference on Distributed Computing Systems,
IEEE Computer Society, 1998, pp. 472—479.

[10] G. Holland, N. H. Vaidya, Analysis of TCP Performance Over Mobile Ad Hoc

Networks, in: MobiCom ’99: Proceedings of the Sth Annual ACM/IEEE International
Conference on Mobile Computing and Networking, 1999, pp. 219-230.

[11] F. Wang, Y. Zhang, Improving TCP Performance over Mobile Ad-Hoc Networks with

Out-of-Order Detection and Response, in: MobiHoc *02: Proceedings of the 3rd ACM
International Symposium on Mobile Ad Hoc Networking & Computing, ACM Press,
2002, pp. 217-225.

38

[12] R. de Oliveira, T. Braun, A Dynamic Adaptive Acknowledgment Strategy for TCP
over Multihop Wireless Networks, in: INFOCOM ’05: Proceedings of the 24th Annual
Joint Conference of the IEEE Computer and Communications Societies, 2005, pp.
1863-1874.

[13] Z. Fu, B. Greenstein, X. Meng, S. Lu, Design and Implementation of a TCP-Friendly
Transport Protocol for Ad Hoc Wireless Networks, in: ICNP ’02: Proceedings of the
10th IEEE International Conference on Network Protocols, Washington D.C., USA,
2002, pp. 216-225.

[14] S. M. ElRakabawy, A. Klemm, C. Lindemann, TCP with Adaptive Pacing for
Multihop Wireless Networks, in: MobiHoc ’05: Proceedings of the 6th ACM
International Symposium on Mobile Ad Hoc Networking and Computing, ACM Press,
New York, NY, USA, 2005, pp. 288-299.

[15] K. Sundaresan, V. Anantharaman, H.-Y. Hsieh, R. Sivakumar, ATP: A Reliable
Transport Protocol for Ad-hoc Networks, in: MobiHoc *03: Proceedings of the 4th
ACM International Symposium on Mobile Ad Hoc Networking & Computing, ACM
Press, 2003, pp. 64-75.

[16] K. Chen, K. Nahrstedt, N. Vaidya, The Utility of Explicit Rate-based Flow Control
in Mobile Ad Hoc Networks, in: WCNC ’04: Proceedings of the IEEE Wireless
Communications and Networking Conference, Vol. 3, 2004, pp. 1921-1926.

[17] Y. Yi, S. Shakkottai, Hop-by-hop Congestion Control over a Wireless Multi-hop
Network, in: INFOCOM ’04: Proceedings of the 23rd Annual Joint Conference of
the IEEE Computer and Communications Societies, 2004, pp. 2548-2558.

[18] N. Gower, J. Jubin, Congestion Control Using Pacing in a Packet Radio Network,
in: MILCOM ’82: Proceedings of the IEEE Military Communications Conference
"Progress in Spread Spectrum Communications’, 1982, pp. 23.1.1-23.1.6.

[19] D. B. Johnson, D. A. Maltz, Dynamic Source Routing in Ad Hoc Wireless Networks,
in: T. Imielinski, H. Korth (Eds.), Mobile Computing, Vol. 353, Kluwer Academic
Publishers, 1996, Ch. 5, pp. 153-181.

[20] H. Zhai, J. Wang, Y. Fang, Distributed Packet Scheduling for Multihop Flows in Ad
Hoc Networks, in: WCNC ’04: Proceedings of the IEEE Wireless Communications
and Networking Conference, Vol. 2, 2004, pp. 1081-1086.

[21] H. Zhai, X. Chen, Y. Fang, Alleviating Intra-Flow and Inter-Flow Contentions for
Reliable Service in Mobile Ad Hoc Networks, in: MILCOM ’04: Proceedings of the
IEEE Military Communications Conference, Vol. 3, 2004, pp. 1640-1646.

[22] C. Wang, K. Sohraby, B. Li, M. Daneshmand, Y. Hu, A Survey of Transport Protocols
for Wireless Sensor Networks, Network, IEEE 20 (3) (2006) 34—40.

[23] A. Woo, D. E. Culler, A Transmission Control Scheme for Media Access in Sensor
Networks, in: MobiCom ’01: Proceedings of the 7th Annual ACM International
Conference on Mobile Computing and Networking, ACM Press, New York, NY, USA,
2001, pp. 221-235.

39

[24] C.-Y. Wan, S. B. Eisenman, A. T. Campbell, CODA: Congestion Detection and
Avoidance in Sensor Networks, in: SenSys *03: Proceedings of the 1st international
conference on Embedded networked sensor systems, 2003, pp. 266-279.

[25] B. Hull, K. Jamieson, H. Balakrishnan, Mitigating Congestion in Wireless Sensor
Networks, in: SenSys ’04: Proceedings of the 2nd international conference on
Embedded networked sensor systems, ACM Press, New York, NY, USA, 2004, pp.
134-147.

[26] C. Wang, K. Sohraby, B. Li, SenTCP: A Hop-by-Hop Congestion Control Protocol for
Wireless Sensor Networks, [IEEE INFOCOM 2005 (Poster Paper) (Mar. 2005).

[27] H. Zhang, A. Arora, Y. Choi, M. G. Gouda, Reliably Bursty Convergecast in Wireless
Sensor Networks, in: MobiHoc ’05: Proceedings of the 6th ACM International
Symposium on Mobile Ad Hoc Networking and Computing, 2005, pp. 266-276.

[28] S. Floyd, M. Handley, J. Padhye, J. Widmer, Equation-Based Congestion Control for
Unicast Applications, ACM SIGCOMM Computer Communication Review 30 (4)
(2000) 43-56.

[29] K. Xu, M. Gerla, S. Bae, How Effective is the IEEE 802.11 RTS/CTS Handshake
in Ad Hoc Networks?, in: GLOBECOM ’02: Proceedings of the IEEE Global
Telecommunications Conference, 2002, pp. 72-76.

[30] S. Ray, J. B. Carruthers, D. Starobinski, RT'S/CTS-Induced Congestion in Ad Hoc
Wireless LANs, in: WCNC ’03: Proceedings of the IEEE Wireless Communications
and Networking Conference, 2003, pp. 1516-1521.

[31] The ns-2 network simulator, http://www.isi.edu/nsnam/ns/.

[32] S. Floyd, T. Henderson, A. Gurtov, The NewReno Modification to TCP’s Fast
Recovery Algorithm, RFC 3782 (Proposed Standard) (Apr. 2004).

[33] Freie Universitdt Berlin, Computer Systems Telematics, ScatterWeb Project,
http://www.inf.fu-berlin.de/inst/ag-tech/scatterweb_net.

[34] Y. I. Jerschow, B. Scheuermann, C. Lochert, M. Mauve, A Real-World Framework to
Evaluate Cross-Layer Protocols for Wireless Multihop Networks, in: REALMAN ’06:
Proceedings of the 2nd International Workshop on Multi-hop Ad Hoc Networks: from
Theory to Reality, 2006, pp. 1-6.

40

http://www.isi.edu/nsnam/ns/
http://www.inf.fu-berlin.de/inst/ag-tech/scatterweb_net
http://www.inf.fu-berlin.de/inst/ag-tech/scatterweb_net

