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ABSTRACT

The recent work on COPE by Katti et al. demonstrates a
practical application of network coding to wireless multihop
networks. We note, however, that the opportunistic nature
of COPE leaves it at the mercy of higher and lower layer
protocols to create coding opportunities spontaneously. In
this paper, we go one step beyond COPE’s opportunism and
study how to create coding opportunities in a more deter-
ministic, yet still practical way. We start from the insight
that in two-way traffic the existence of coding opportuni-
ties can be guaranteed through carefully co-ordinated packet
scheduling, and establish general properties of protocols that
are able to achieve this. We then propose Near-Optimal Co-
ordinated Coding (noCoCo), a cross-layer scheme that inte-
grates per-hop packet scheduling, network coding, and con-
gestion control in a novel way. Extensive simulations show
that noCoCo significantly outperforms standard non-coding
approaches as well as COPE in terms of network throughput,
delay and transmission overhead.

1. INTRODUCTION

With network coding, a router transmits multiple packets
within a single “coded” packet, and can thereby make more
efficient use of the available bandwidth. The recent work
COPE [4] applies this technique to wireless multihop net-
works. Considering a simple three-node, two-hop setting
outlined in [11], the basic principle of network coding is
easy to understand: if node A sends a packet py to C via
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B, and C sends a packet pc to A, also via B, then B may
send the XOR of p4 and pc, pa @ pc, instead of transmit-
ting them separately. Since A and C know p4 and pc re-
spectively, they can extract the data intended for them with
another XOR operation: ps @ (pa @ pc) to retrieve pc, and
similarly pc @ (pa @ pc) to retrieve p4. The concept can be
transferred to more complex scenarios; COPE generalises it
to using overheard packets to decode.

In COPE, coding is performed when opportunities arise
spontaneously. Such an opportunistic approach may work
very well if, in the above example, indeed both A and C make
their transmissions before B accesses the medium. If, how-
ever, A transmits first and B forwards the packet further on
immediately, no coding is possible. Consequently, the order
of transmissions can significantly impact the availability of
coding opportunities, and hence the coding benefits.

This prompts us to investigate more deterministic alter-
natives to opportunistic coding. In this work we start by
analysing packet flows in two-way data traffic in detail, and
conclude that it is possible to guarantee coding opportunities
through carefully co-ordinating packet transmissions. After
studying the theoretical limits, we translate the understand-
ing into a practical protocol proposal, Near-Optimal Co-
ordinated Coding (noCoCo). noCoCo guarantees achieving
the maximum possible coding gain for each single bidirec-
tional connection in isolation. It can be further combined
with opportunistic schemes to identify and exploit additional
coding opportunities with, e.g., cross-traffic or unidirec-
tional traffic components.

noCoCo is built around a few simple rules for packet for-
warding. These rules, though designed to ensure the exis-
tence of coding opportunities, also perform very effective
congestion control. The forwarding rules can be seen as an
extension of the approach in CXCC [9], a recent cross-layer
proposal that performs congestion control implicitly hop by
hop. Noting these similarities, we also adopt mechanisms
for signalling and single-hop reliability from CXCC, and ob-
tain a coding-aware congestion control scheme. We are thus
not primarily interested in the information theoretic limits of
network coding, but rather in how to schedule packet trans-



missions in order to achieve high coding gains on a COPE-
like basis.

In the following sections, we first review related work.
Introducing a centrally scheduled coding scheme in Sec-
tion 3, we derive general properties of schedules that can
maximise the coding gain in two-way traffic flows. With
this understanding, we then describe and discuss noCoCo in
Section 4. We analyse its performance in a comparative sim-
ulation study in Section 5, and finally summarise the paper
in Section 6.

2. RELATED WORK

Network coding permits a router to transmit packets de-
rived from mixing information from different packets. This
technique was initially proposed in a seminal study of mul-
ticast communications in wireline networks [1], and shown
to substantially increase the network capacity. Subsequent
theoretical analysis has studied network coding for uni-
cast flows, with an emphasis on modelling and theoretical
bounds, although few in a wireless context [3,6, 11]. In con-
trast, we are concerned with implementing network coding
as a distributed protocol for unicast in wireless multihop net-
works.

The work most relevant to ours is COPE [4], where the
authors proposed an opportunistic coding protocol and im-
plemented it as a coding shim between the MAC and rout-
ing/IP layers. In addition to combining packets that traverse
the same relay in opposite directions, COPE uses overheard
packets for additional coding opportunities. For a coded
transmission to be successful, all intended nexthop receivers
must be able to decode it. This requires a receiver to have
all other component packets except the one directed to itself.
Consequently, the task of identifying coding opportunities
boils down to obtaining information about which packets are
known by which neighbouring node. COPE employs three
mechanisms. First, a node knows all packets it has sent out.
Therefore the node from which a packet has been received
will know that packet—this is the case discussed previously.
Secondly, COPE nodes piggyback “reception reports” onto
their transmissions, to explicitly notify neighbours of the
packets received/overheard. Finally, COPE also “guesses”
coding opportunities: based on the link quality information
from the routing protocol, a node estimates the overhear-
ing probabilities of coding candidates at specific neighbours.
This yields the probabilities of successful decoding on all ad-
dressees for a particular combination of packets. If this suc-
cess probability is above a threshold, the packets are com-
bined into one packet—at the risk of occasional failed de-
coding on some neighbour. In this work, we mostly study
coding in two-way traffic as proposed in [11], but follow
COPE’s general protocol architecture.

Some recent efforts considered cross-layer approaches
in the context of coding-aware routing [10]. Chaporkar
and Proutiere also studied the issue of joint scheduling and
COPE-like coding, focusing on characterising the capac-

ity region of a simplified version of COPE combined with
scheduling according to backpressure [2]. In contrast, we
explore the joint design of MAC scheduling, coding, and
congestion control protocols, and propose a practical pro-
tocol, which also uses backpressure.

The single-hop reliability features of noCoCo are closely
based on CXCC [9], which employs a very similar concept
for congestion control, but without using network coding.
We explain CXCC in detail in Section 4.3.

3. MAXIMISING THE CODING GAIN

3.1 A centralised scheduler

We concentrate on the non-opportunistic coding of pack-
ets belonging to the same bidirectional connection, consist-
ing of the two flows from endpoint A to B, and from end-
point B to A. We consider a single bidirectional connection
in isolation. In practice, and in our noCoCo implementation,
opportunistic coding is used to exploit additional coding op-
portunities between different connections. For the discus-
sion below, we term the two endpoints A and B the “left hand
side node” and the “right hand side node”.

Note that two-way traffic is the typical situation for pos-
sible continuous coding gain. Such traffic exists in many
applications, including any form of real-time communica-
tions. Generally, almost all protocols generate at least ac-
knowledgement traffic in the opposite direction to original
data traffic. It has even been argued that symmetry of outgo-
ing and incoming packets counts should be a design criterion
for good protocols [5].

While we concentrate on traffic that is bidirectional and
symmetric between a pair of end nodes, it is also conceiv-
able to apply the presented ideas for traffic belonging to dif-
ferent end-to-end connections, but sharing parts of the route
in opposite directions. In fact, the question how such an
“aggregation” of oppositely directed traffic on partial routes
can be accomplished might constitute an interesting future
research question.

To obtain a maximum number of coding opportunities,
we look at the scheduling of transmissions: in which order
should which nodes transmit which data packets in which
coded combinations? The first question that arises in this
context is what the maximum coding gain is, after all. The
follow-up question whether it can be achieved is intimately
related: is there a schedule that can always guarantee maxi-
mum coding gain, over an arbitrarily long timespan? In the
following, we will first show that optimal scheduling of two-
way traffic is indeed possible, by explicitly giving a centrally
scheduled solution. We then point out some interesting prop-
erties that any schedule with maximum coding gain will nec-
essarily possess.

We first observe that the initial transmission of a packet,
when it leaves the source node, can not be coded. This is be-
cause no other node in the network knows this packet to be
able to undo the coding. Within a bidirectional connection,



in the ideal case, all other transmissions combine two op-
positely directed packets. One such transmission will then
yield two single-hop packet deliveries. At most two (op-
positely directed) packets from the same connection can be
combined. Therefore, if we manage to combine two packets
in each transmission of an intermediate node, we obtain the
maximum coding gain.

The theoretical gain is also easy to quantify: for a con-
nection over & hops, 2(h — 1) + 2 packets will have been for-
warded over one hop each after all 4+ 1 nodes have made
one transmission each (2 — 1 coded transmissions by the in-
termediate nodes, and two uncoded transmissions by the end
nodes). The theoretical coding gain within the bidirectional
connection is therefore

2(h—1)+2  2h
h+1  h+1’

A close look soon reveals that for a connection over more
than two hops, a coding partner for each transmission can-
not possibly be available from the beginning. The intermedi-
ate nodes first need to have packets in both directions avail-
able. Let us thus consider the situation after some initial-
isation has taken place. Enumerate all intermediate nodes
along the route, starting by one. Assume that the initialisa-
tion manages to place exactly one packet for either direction
in each intermediate node with an odd index. If the total
number of hops is odd, thus giving an even number of in-
termediate nodes, it places an additional left-directed packet
in the rightmost node. Any other nodes with even indices
hold no packets. Now further assume that we have a global,
centralised scheduler available. We may thus arbitrarily de-
cide on the occurring transmissions and their order. Let the
scheduler work as follows:

e))

1. First, all intermediate nodes with odd indices makes
one coded transmission each, thereby forwarding one
packet in each direction. These transmissions may
happen in an arbitrary order.

2. If one or both of the end nodes have received a packet
during step 1, they “answer” by injecting a new packet
into the network.

3. Then, all intermediate nodes with even indices will
have a packet in each direction available, and may now
make coded transmissions.

4. Again, the end nodes reply to received packets by in-
jecting a new packet.

5. Repeat this sequence of transmissions from step 1.

For the case of a four-node, three-hop scenario, this is
schematically visualised in Figure 1.

This scheme can be run indefinitely. All transmissions by
intermediate nodes will always forward one packet in either
direction, thus realising optimal coding gain. This demon-
strates that optimal coding gain is possible, though for now
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Figure 1: Operation of the centralised scheduler in a
three-hop environment.

we do not know whether and how it can be achieved in a
distributed way.

Scheduled coding within a bidirectional flow can be com-
bined with any arbitrary opportunistic scheme, thus opening
up opportunities for even higher coding gain. Further pack-
ets can of course also be opportunistically combined with
pairs of coded packets from bidirectional connections.

3.2 Notation

Before further examining the general properties of
scheduling schemes that can guarantee successful network
coding, we introduce a notation for the state of the network.
The state of the queue is denoted in a node as x/y, where x
is the number of queued packets directed to the node’s left
neighbour, and y the number of packets directed to the right
neighbour. x,y are non-negative integers. We neglect all
packets that do not belong to the connection under consider-
ation.

To denote sets of possible states, we will use three
placeholders.  “x” means that at the respective posi-
tion there may be any arbitrary non-negative integer, i.e.,
x/y={x/y|x€IN}. “4” stands for a positive integer, so
+/y denotes the set of states {x/y | x € IN*}. Finally, “?”
means either 0 or 1, s0 ?/y = {x/y | x € {0,1}}.



If we look at a set of consecutive nodes along the route, we
may write their joint queue state as x; /y1, x2/y2, X3/¥3,-- -
Transmissions can then be expressed as transformations of
the joint queue state. For example, a right-directed transmis-
sion of a single packet is

X/ Xewt/[Yks1 = X/ye— 1 X1/ v+ Q)

Such a transmission can take place if the transmitting node’s
queue state is in */+.

Likewise, a coded transmission of two packets by node k
would be

Xk—1/Yk—15 Xk/Yi> Xk1/Yir1

— 1+ Uyt = Uy =1, X1 /yesr + 1
(3)

The necessary precondition here is that the sending node’s
state xi /vy is in +/+.

3.3 Properties of high coding gain schedules

Ideally, we want all transmissions of intermediate nodes
to be coded, so we allow only transmissions as in (3) in the
intermediate nodes. As mentioned earlier, no coded trans-
mission can take place at the end nodes. Additional packets
are thus inserted via uncoded transmissions. This yields state
transitions of the following form at the leftmost intermediate
node of the route:

x/y —  x/y+1, “4)

and equivalent ones at the rightmost intermediate node.

Packets leave the network by coded transmissions. For
the leftmost pair of intermediate nodes, the corresponding
transition is

xi—1/yi—1, x/n+1, (5)

with precondition x; /y; € +/+.

The availability of coding partners is likely if there are
many packets in both directions available in the intermediate
nodes. Conversely, coding is seldom possible if “too few”
packets are on their way. Note, however, that it is desirable
to keep the queues short, and thus the number of packets low,
to bound delays in the network. Therefore, a suitable scheme
would need to strike a balance between coding opportunities,
throughput, and packet delay. We thus now determine how
many packets are necessary in order to obtain high coding
gains.

As a step in this direction, consider the allowable transi-
tions (3), (4), and (5) and how they can be applied to “nav-
igate” the global joint queue state space. We assume the
use of some arbitrary scheduling scheme that maximises the
number of coding opportunities, and derive some properties
that such a scheme must exhibit. It turns out that there is a
subset of states which can never be left, should they ever be
entered. The following lemma points out this “state trap”.

xi/y1, x2/y2  —

LEMMA 1. The subset of global joint queue states where
the joint queue state of two consecutive nodes is in 0/, */0
can never be left.

PROOF. Consider the case where the joint queue state of
a pair A, B of consecutive intermediate nodes is in 0/x, /0.
Then, neither A nor B can make a coded transmission. A,
however, can increase its number of left-directed packets
only if a packet is received from B, and vice versa. Hence,
this set of states can never be left by coded transmissions
only. [

Once such a state has been reached, it is impossible to
maintain network coding with maximum gain — the affected
nodes cannot continue to forward data with purely coded
transmissions. This permits the reversal conclusion that a
state as in Lemma 1 will never be reached by any scheme
that maintains optimal coding gain.

If the joint queue state of each node pair will never be in
0/%, x/0, there always has to be at least one packet in one
of the queues of each node pair. The following theorem uses
this to establish a lower bound on the number of packets in
transit.

THEOREM 2. In any n consecutive intermediate nodes
there are at least n — 1 queued packets at any point in time.

PROOF. Let the joint queue state of the n nodes be
X1/Y1,---,%n/yn. For each pair of consecutive nodes with
states x;/yi, Xi+1/Yi+1, 1 < i < n, there is, as a conse-
quence of Lemma 1, either x; > 0 or y;+1 > 0. Therefore
Vi,1 <i<n:xj+yir1 > 0. For the total number of queued
packets we obtain

n—1
(xi+yi) =yi+ Y (i +yir1) +x
i=1 i=1

D=

- (6)
> Y (xityip1) =n—1.
i=1

O

This result can now immediately be used to obtain a lower
limit on the total number of packets on the route, as follows.

COROLLARY 3. For a bidirectional connection over h
hops, there are at least h — 2 packets in the network at any
point in time. This number must be exceeded temporarily.

PROOF. The first assertion follows immediately from the
previous theorem, since there are 4 — 1 intermediate nodes.

For the second part, consider (6) in the proof above in a
situation just before a packet leaves the network. For this to
happen, one of the outmost intermediate nodes must be in a
state in +/+. Therefore, y; > 0 or x, > 0. Then, the first
inequality in (6) becomes strict, and thus the total number of
packets is atleast h—1. [

Let us see how close the centralised scheduler approaches
this lower bound. For a route over & hops, it will, after the



initialisation, start with & packets in the network. Since a
new packet is only injected after another one has left, this
number is never exceeded. Therefore, the number of packets
will always stay within the range [h— 2, 4], and is thus nearly
optimal.

It is worth mentioning that the bound in Corollary 3 is
rather optimistic, and sometimes / packets are needed. Con-
sider a two-hop connection over three nodes, i.e., the case
h = 2. In order to make coded transmissions, the middle
node must have two packets available. Therefore, the num-
ber of packets in the network must be up to / in this situation.

In summary, it is indeed possible to schedule the trans-
missions in a bidirectional connection in a way that allows
for the highest possible coding gain. There are global joint
queue states which do not allow the intermediate nodes to
proceed with only coded transmissions. Thus, an optimal
schedule will have to avoid these states. This suggests that,
when the number of packets being queued along the route
is below a certain threshold, the coding cannot be optimal.
Since a large number of queued packets in the network will
increase packet delivery latency, there is a potential tradeoff
between achieving the maximum possible coding gain and
keeping a low number of packets in the network.

4. A PRACTICAL PROTOCOL

4.1 Basic protocol rules and mechanisms

We will now refine the centralised approach from the pre-
vious section to obtain a practical and distributed scheduling
scheme for network coding with success guarantees, Near-
Optimal Co-ordinated Coding (noCoCo). The key idea is to
approximate the centrally enforced ordering of the transmis-
sions in a decentralised way. We generate a similar pattern of
alternating transmissions of nodes with odd and even posi-
tions, while keeping the number of packets in the network as
low as possible. We then show how the resulting mechanism
can be adapted to deal with the adversitites of real wireless
media.

Doing so has an interesting implication. The centralised
scheduler does not allow additional packets to enter the net-
work before the previously sent ones have left. It therefore
limits the number of packets in transit. A similar property
can be carried over to achieve a congestion control effect:
packets will not enter the network at a higher rate than they
are able to traverse it. This is indeed the case in our proposed
scheme.

First, however, we need to initialise the network to a valid
starting state. Obviously, we need to begin with transmitting
single packets as in (2). In our scheme, a node is allowed to
forward single packets until it has “seen” packets going in
both directions. Thereafter, only transmissions as in (3) and,
at the outmost intermediate nodes, (4) and (5) are permitted.

The number of packets forwarded without coding should
clearly be as low as possible. This motivates a backpressure
rule: a packet may only be transmitted to a node which has

currently no packet for the same direction in its queue. This
prevents an excessive number of packets from entering the
network.

With the addition of the backpressure rule, the allowable
state transitions can be refined in the following way. For un-
coded transmissions by nodes that have not yet encountered
packets in both directions, replacing (2), we get

x/0, xpp1/1 @)

for a right-directed transmission by such a node. A coded
transmission may only take place if the target queues in the
neighbouring nodes are free. Thus (3) becomes

0/yk-1, 1/1, xi41/0 = 1/yk—1, 0/0, X0 /1. (8)

For packets entering and leaving the network, e. g., at the
left end of the route, we get

/1, x01/0 —

x/0 — x/1 )
and
1/],XQ/O — 0/0, )CQ/], (10)

as refinements of (4) and (5), respectively.

It is easy to verify that the packet has left the queue of
the successor: only coded packet transmissions are allowed.
Thus, the previously transmitted packet has left the neigh-
bouring node if and only if the next packet from this node
has been received. During initialisation, information on the
forwarding of one packet by the downstream node can be
obtained similarly: the forwarding of the next hop node can
be overheard, which allows to infer its current queue state.

At the beginning, packets from both sources will travel
into the network. At most one packet from each source may
be queued in each intermediate node. Eventually, there will
be one node which is the first to hold packets in both direc-
tions. Let the position of this node be denoted by k. When
such a node has emerged, the joint queue state of all inter-
mediate nodes is in

0/?,...,0/2, /0,..., 2/0. (11)

/1,7
—~—
node k

The uncoded transmissions according to (7) allow each
position with the placeholder ? in (11) to hold a packet. Tak-
ing this into account, as well as the fact that node k is allowed
to perform a coded transmission, the state will eventually
reach

0/?,...,0/?,1/1, 0/0, 1/1, 2/0,...,2/0.  (12)
~—~
node k

Iterating this, it is easy to see that a situation will emerge,
in which each node is allowed to transmit exactly once
whenever both its neighbours have performed a transmis-
sion. This also holds for the end nodes. Hence, the emerg-
ing scheme is in fact very similar to the centrally scheduled
scheme discussed before.



4.2 Anupper bound on the number of packets

We will now look at the number of packets in transit for
the proposed protocol. Note that this analysis shows a very
interesting symmetry to the derivation of the respective gen-
eral properties in Section 3.3.

LEMMA 4. With the proposed protocol, a state where the
Jjoint queue state of two consecutive nodes is in +/*, */+
will never be reached.

PROOF. For some node A with queue state x4 /y4, due to
the backpressure rule, it always holds that x4,y4 < 1. Conse-
quently, after A has performed a transmission, x4 = y4 = 0.
The latter is true both during the initialisation phase and dur-
ing normal operation.

Assume the joint queue state x4 /y4, xg/yp of a pair A,B
of consecutive intermediate nodes is in +/%, */+. Then,
x4 > 0 and yg > 0. x4 > 0 means that B’s last transmis-
sion must have been more recent than A’s last transmission.
yp > 0, however, requires the opposite, that A has transmit-
ted more recently than B. This is a contradiction, hence the
assertion holds. [

This lemma can, very similar to what we did before in
Section 3.3, be used to derive a limit for the number of pack-
ets in a connected subset of the intermediate nodes, this time
an upper bound.

THEOREM 5. In any n consecutive intermediate nodes
using our protocol, there are never more then n+ 1 queued
packets.

PROOF. Let the joint queue state of the n nodes be de-
noted by xi/yi1,...,%,/y,. For each pair of consecutive
nodes with states x;/y;, xit1/yir1, 1 <i < n, there is, by
the previous lemma, either x; = 0 or y;;| = 0. Further-
more, from the backpressure rule, we know that for all i
with 1 <i < n, both x; <1 and y; < 1 hold. Therefore,
Vi,1 <i<n:xj+yit+1 < 1. For the total number of packets
it thus holds that

n—1
(G +yi) =y1+ Y (% +Yir1) +x
i=1
n—1 (13)
<24 ) (xi+yis1)
=1

=

=

1

I
-

<2+n—-1=n+1.
O

Again, this can be used to obtain a bound on the total num-
ber of packets along the route.

COROLLARY 6. For a bidirectional connection over h
hops using out protocol, there are at most h packets in the
network at any point in time. The number is temporarily un-
dercut.

PROOF. The first assertion follows directly from the pre-
vious theorem. The second part is rather obvious: when a
packet leaves the network, the number of packets decreases,
until a new packet is inserted. [

This demonstrates that the proposed distributed algorithm
stays within the same bounds on the number of packets in
the network as the centralised scheduler.

4.3 Dealing with real wireless media

The astute reader will surely have noticed that, so far,
we have assumed that all transmissions are always success-
ful. In a real wireless network this is for sure not the case.
Wireless interference can make practically every transmis-
sion fail. For a coded transmission, this may mean that one
or both of the intended receivers cannot decode the message.
Thus, we now look at how it is possible to recover from
such a situation without sacrificing the desirable properties
we have pointed out so far.

Let us first take a detour and examine a related proto-
col, CXCC [9], a congestion control protocol for wireless
multihop networks which is founded on implicit feedback
and control. The key idea is hop-by-hop backpressure, en-
forced by a rule very similar to the backpressure rule used in
noCoCo: in CXCC, congestion control is performed by only
allowing the transmission of a follow-up packet after the for-
warding of the previously sent one has been overheard. This
has been shown to yield a fast-reacting and efficient mech-
anism, which does not only achieve very high throughput,
but also a low protocol overhead and, due to the very short
queues, extremely low packet latency.

CXCC combines the backpressure feedback with implicit
acknowledgements: overhearing the forwarding of a packet
by the downstream node both acknowledges the reception of
that packet and releases the backpressure. For single-hop re-
liability, CXCC uses small control packets called “Request
For Acknowledgement” (RFA). If a node has not received
an acknowledgement for a too long time, it issues an RFA.
The RFA identifies the packet for which an ACK is miss-
ing. Upon reception of such an RFA, a decision can be made
whether an acknowledgement has indeed been missed by the
RFA’s sender. In that case, an explicit acknowledgement can
be sent to resolve the situation.

If the RFA’s receiver does not know the data packet the
RFA refers to, then this transmission must have been lost.
A retransmission of the full packet can then be requested
by a non-acknowledgement (NACK). The main benefit of
the RFA/(N)ACK handshake, compared to an immediate re-
transmission of the data packet if an ACK is missing for too
long, is the substantially lower overhead. It avoids unneces-
sary payload retransmissions in cases where the (implicit)
acknowledgement has not yet been sent or has been lost.
More details can be found in [9].

Since CXCC uses a similar backpressure rule as the one
introduced above, integrating these approaches becomes a
natural solution. It turns out that only one significant modi-



fication to CXCC is necessary to yield the desired behaviour:
adding the rule that only coded pairs of oppositely directed
packets may be transmitted by intermediate nodes after leav-
ing the initialisation state.

One more aspect, however, also deserves attention. In
noCoCo, when a node has made a transmission, it has to wait
for feedback from both its neighbours before the next trans-
mission is allowed. When a transmission fails, additional
protocol handshakes are required for recovery. It is impor-
tant to design these in a way that always ensures a consistent
view of a neighbour’s queue state. For example, it may not
happen that a node A learns that its neighbour B has for-
warded the previously sent packet (through an implicit or
explicit ACK), without at the same time obtaining the infor-
mation that it had been combined with a transmission in the
opposite direction. This is particularly crucial during the ini-
tialisation phase: otherwise the backpressure at A is released
through the ACK, allowing A to forward another (uncoded)
packet to B. It should, however, have sent a coded combi-
nation with the oppositely directed packet. Therefore, we
need to make sure that we both allow recovery from packet
losses and ensure consistent state updates at the neighbour-
ing nodes.

Fortunately, this is relatively simple to achieve. Data
packets are coded and thus always carry information on both
forwarding directions, from which the queue states can be
inferred. Control packets can be tailored to contain infor-
mation on a node’s left- and right-directed queue states. In
particular, a packet in one direction must never be acknowl-
edged without also communicating the queue state of the
opposite direction at the same time. This is achieved by
also sending the respective control messages in pairs, one
for each direction. In effect, each correctly received packet
conveys information on both directions. The resulting pro-
tocol is able to effectively recover from packet losses, while
retaining all the desirable properties shown previously.

4.4 Handling finite bursts of data

As the final step to a practically usable protocol, we need
to take into account that practical data transmissions are of
finite length. In the protocol described so far, there is no
way to return to a state where an intermediate node is al-
lowed to continue with unidirectional transmissions, if the
packet stream from one of the end nodes has ended, tem-
porarily or permanently. Therefore, a mechanism is needed
to allow for the completion of a transmission, in one or in
both directions.

A viable solution is in fact pretty simple: when the source
node sends the last packet of a burst, it may set a special
flag in this packet. An intermediate node, after forwarding
a packet with this end-of-burst flag set, will resume the ini-
tialisation state. Unidirectional transmissions in the opposite
direction are then allowed again at this node.

On the source nodes, the end of a burst may be indicated
by the application itself, if such a tight integration is desired

and possible. Otherwise, a source node may simply set the
flag if it sends out the last packet in its queue, i.e., if no
further packets have so far been generated by the application.

In practice, this approach yields a smooth, load-dependent
transition between opportunistic and enforced coding: if
both sources produce packets at a rate that fills up the ca-
pacity of the route, maximum coding gain will be enforced.
If at least one direction does currently not produce packets
at a rate that suffices to build up backpressure, the scheme
falls back to opportunistic coding. For unidirectional traffic,
noCoCo performs COPE-style opportunistic coding, with
scheduling that reduces to unmodified CXCC. It therefore
also provides efficient congestion control for the unidirec-
tional flow.

S.  PERFORMANCE EVALUATION

Since CXCC, and also noCoCo, are cross-layer ap-
proaches involving changes to the MAC layer, they cannot
be easily implemented on an IEEE 802.11-based wireless
testbed. Therefore we have performed simulations using the
network simulator ns-2.30 [7] to assess the performance of
co-ordinated coding against a purely opportunistic approach.
‘We use the IEEE 802.11 MAC, UDP, and TCP Newreno im-
plementations from the standard ns distribution and the im-
plementation of CXCC from [9]. For performance compari-
son, we have implemented three additional protocols:

e COPE, as described in [4], operating over the plain
802.11 MAC; just as UDP/TCP over 802.11 and
CXCQC, it serves as a reference.

o A straightforward combination of CXCC and COPE-
style opportunistic network coding; this protocol per-
forms CXCC-style packet forwarding and implicit ac-
knowledgements, but combines multiple packets via
XOR into one transmission if coding opportunities
arise. The existence of such coding opportunities is,
however, not guaranteed.

e The co-ordinated network coding scheme we intro-
duce.

In all but our most simple simulation scenarios there will
be more than one connection, and thus additional coding op-
portunities may arise. The COPE-based protocols rely on
recognising these opportunities to maximise the coding ben-
efit. Since the coding component in noCoCo is based on
COPE, our noCoCo implementation also makes use of cod-
ing opportunities beyond the current two-way connection,
as they arise and are identified. In particular this implies
that noCoCo does not miss coding opportunities that can be
identified by CXCC+COPE, and may thus be expected to
perform at least equally well under all circumstances.

However, COPE’s reception reports and guessing both in-
cur substantial complexity and add variance to the protocol
performance. Given our focus is on the different perfor-
mance due to co-ordinated versus opportunistic coding, we



establish upper and lower bounds on what any mechanism
for identifying coding opportunities can possibly achieve,
instead of following any of the above mechanisms.

For this purpose, we derive two variants for each coding
scheme, termed “conservative coding” and “omniscient cod-
ing”. Conservative coding combines packets only if decod-
ing is guaranteed successful, without exchanging any addi-
tional information. In effect, overheard packets are not used
for coding. Conservative coding thus represents a lower
bound of what can be achieved by any scheme for identi-
fying coding opportunities. Omniscient coding, on the other
hand, employs a central component to provide each node
with immediate and exact information on the packets known
by every other node. While this can be implemented in a
simulator, it would obviously not be possible on real devices.
Omniscient coding thus allows for perfect coding decisions,
without the delay or overhead of reception reports or the risk
of guessing wrong. This gives an upper bound on what an
ideal scheme may achieve for identifying coding opportu-
nities. We will show later that the lines representing either
bound often overlap for noCoCo in the plots.

Unless otherwise stated, we use the common settings of
ns-2.30. This includes a physical layer bit rate of 1 Mbps,
the two-ray ground propagation model, 250 m radio range,
and 550 m carrier sense radius. Data packets carry 512 bytes
of payload. We use static, hop-count minimal routes to avoid
possible side-effects introduced by a specific routing ap-
proach. The RTS/CTS mechanism of 802.11 was switched
off in all our simulations. We have observed performance
degradation with RTS/CTS enabled, in line with similar find-
ings in the literature (see, e.g., [8, 12, 13]). In the follow-
ing, we first investigate the protocols’ performance in sim-
ple chain and cross topologies, and then consider random
scenarios with dynamic traffic patterns.

5.1 Chain topology

For our first set of simulations, we use a chain topology
with ten hops. The distance between neighbouring nodes is
150 m. We set up bidirectional UDP traffic, originating from
both ends of the chain, and being directed to the respective
opposite end. The offered load at the sources is gradually
increased.

All intermediate nodes can encode at most two packets
together at a time, one from each direction. In such an en-
vironment, there is no difference between the coding oppor-
tunities that can be identified with conservative coding and
with omniscient coding. Therefore we do not need to distin-
guish between these two.

Figure 2 shows how the total application-layer through-
put varies with increasing offered load. Bidirectional UDP
throughput over 802.11 drops rapidly once the optimal of-
fered load is exceeded [9]. Opportunistic network coding
alone barely alleviates this. Co-ordinated network coding
with noCoCo, however, achieves superior throughput. One
reason is the implicit backpressure property of the conges-
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Figure 3: Packet latency in chain topology.

tion control mechanism, which is also present in CXCC.
But noCoCo achieves a substantially higher throughput than
CXCC, and this throughput gain far exceeds the one ob-
tained with opportunistic coding in CXCC+COPE. The main
reason for the smaller gain with the opportunistic approach is
that coding opportunities do not reliably arise. Nodes often
have only one packet in the transmission queue, and many
transmissions are uncoded.

Figure 3 shows the average packet delay, measured from
when a packet leaves the source node to its successful recep-
tion at the destination. The delay increases very quickly with
increasing offered load for plain 802.11 as well as for COPE,
because long queues are building up, especially in the nodes
close to the ends of the chain. A packet has to wait for a po-
tentially long time in these queues, before being forwarded.
Since the backpressure rules in noCoCo and CXCC result
in very short queues in the intermediate nodes, the delays
are substantially shorter. As a consequence of even better
medium utilisation, noCoCo’s delays are smaller than those
of opportunistic coding schemes.

The efficiency of the medium utilisation is also closely
related to the protocol overhead. Here we use an overhead
metric that quantifies the average amount of data transmitted
on the wireless medium in order to bring one byte of payload
one hop further. It is computed by summing up the bytes
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Figure 4: Overhead in chain topology.

from all packets transmitted on the MAC layer, divided by
the product of the amount of application data successfully
delivered and the hop distance between source and destina-
tion. Note that all transmissions are included, including con-
trol traffic and retransmissions of data packets. Since wire-
less communication, especially transmitting, is rather expen-
sive in terms of energy consumption, this metric also reflects
the energy efficiency of the protocol. Without network cod-
ing, the optimal value of our overhead metric is one: it is
clearly not possible to forward one byte of payload while
transmitting less.

Figure 4 presents the results of this evaluation in the chain
topology simulations. Apart from generally confirming the
picture gained from the previous metrics, the noCoCo plot
impressively demonstrates the benefits of network coding.
Around an offered load of 10 KB/s at each source the source
data rate approaches the network capacity. At this point, the
transition from opportunistic forwarding of single packets to
enforced coding happens for noCoCo. Once network coding
at each hop is guaranteed, noCoCo underruns the value of
one for the overhead metric: on average it transmits about
0.79 bytes to forward one byte of payload over one hop.
COPE does not achieve this, again due to the lack of sponta-
neous coding opportunities.

5.2 Cross topologies

We now turn to cross topologies, consisting of two or-
thogonally aligned chains like above, sharing one node in
the middle. UDP traffic flows from the end of either leg of
the cross to the end of the opposite leg. We first increase the
offered load in a cross with five hops in each leg, similar to
what we did in the above chain simulations. Subsequently
we will look at the effects of varying leg lengths.

Due to the node spacing of 150 m and the communication
radius of 250 m, the nodes adjacent to the centre node are
able to overhear the transmissions of their two counterparts
in the other chain. Thus, it is generally possible to com-
bine up to four packets into one transmission at the middle
node. While omniscient coding can make optimal use of
this, conservative coding will not. We therefore distinguish
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Figure 6: Packet latency in cross topology with increas-
ing offered load.

between these two strategies in our figures, denoting conser-
vative coding by “(c)” and omniscient coding by “(0)”.

Figures 5, 6, and 7 show throughput, packet delay, and
overhead respectively for the cross with a leg length of five
hops. The occurring effects are generally quite similar to
those already observed in the chain topology. Remarkably,
there is generally very small difference between conserva-
tive coding and omniscient coding. This suggests that the
benefit from additional coding opportunities is quite limited.
For noCoCo in particular, the differences between the simu-
lations with conservative coding and with omniscient coding
are so small that the respective lines in the plots are barely
distinguishable.

One might argue that these small differences stem mainly
from having only 1 out of a total of 21 nodes that is able
to make use of the additional opportunities. We thus com-
plement the results with plots showing the effects of varying
leg lengths of the cross. In Figures 8, 9, and 10 we use a
saturated offered load and gradually increase the size of the
cross. From these results, it becomes clear that the previ-
ously discussed overall picture of relative performance sets
in very quickly, and generally holds for a leg length of two
hops already.
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The only significant differences occur for the situation
where each leg is only one hop long, i.e., where the
source/sink nodes are directly adjacent to the centre node.
In this case, the differences between conservative and omni-
scient coding are indeed significant, particularly for COPE.
The effect of a high gain of COPE versus plain 802.11 in
this specific setting has been observed and explained as the
“coding+MAC gain” in [4]. Without coding the intermediate
node needs to transmit four times as often as the other nodes,
but the 802.11 MAC does only assign it 1/5 of the medium
time. With omniscient coding, this limitation is no longer a
bottleneck. The central node will not be able to access the
medium more often, but it can transmit up to four packets
with one medium access.

The backpressure rules in noCoCo and the CXCC-based
schemes make the source nodes refrain from further trans-
missions until the central node has forwarded the previous
one. These protocols therefore inherently avoid the problem
of inappropriate assignment of medium access opportunities.

5.3 Random topologies

Finally, we study gains obtainable with noCoCo versus
opportunistic schemes in more practical settings, and con-
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Figure 9: Packet latency in cross topology with increas-
ing leg length.
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sider random, static topologies. We intentionally set them
up in a way that yields rapidly changing traffic patterns.
With few, long-lived connections the availability of coding
opportunities essentially depends on the routes of these con-
nections and whether they share many intermediate nodes,
whereas many short-lived will result in a large variation in
the packets that meet.

Each simulation scenario uses 150 nodes at uniformly ran-
dom positions on a 1500 x 1500 m square area. A total of
40 bidirectional connections start at random times between
0 and 120 seconds. Each connection is assigned a random
amount of data between 5 and 50 KB, which is to be trans-
mitted in both directions. In the absence of route breaks the
single-hop reliability mechanism of CXCC will result in reli-
able end-to-end delivery; the same holds for noCoCo, which
adopts CXCC’s respective mechanisms. It does not hold for
plain 802.11 and COPE. Thus, in order to ensure reliable de-
livery of the data we use TCP Newreno as a reliable transport
protocol. The generally unsatisfactory performance of TCP
congestion control over wireless multihop networks is well-
known and has to be taken into account when comparing the
results here. However, since we are more interested in the
relative improvements with opportunistic and co-ordinated
network coding, this is only of secondary relevance here.
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Figure 11: Cumulative distribution function of through-
puts in random topologies.

We simulate all protocols using the same set of topologies
and traffic patterns. Since the connections run over very dif-
ferent hop counts and transmit different amounts of data, it
is hard to define a global throughput metric that would be
able to capture all effects appropriately. But it is easily pos-
sible to calculate the throughput of each single connection,
by dividing the amount of data delivered by the time it took
from initiating the connection to the successful delivery of
the last data segment. In Figure 11 we show the cumulative
distribution functions of these per-flow throughputs. For ex-
ample, about 25 % of all connections with noCoCo achieve
a throughput below 10 KByte/s, whereas the same applies
to about 40 % of the connections with CXCC, and to about
70 % of those with TCP Newreno over IEEE 802.11.

The results with conservative coding and omniscient cod-
ing are generally close together here. To maintain readabil-
ity of the figure, we only show the results with omniscient
coding for COPE and CXCC+COPE (as an upper bound of
these protocols’ performance), and with conservative coding
for noCoCo (as a lower bound).

The random topology simulations confirm that our find-
ings from the deterministic topology simulations above hold
in a similar way also in more complex environments. It was
pointed out in [4] that the interaction between COPE and
TCP is complex, due to TCP’s congestion avoidance rules,
timing issues and potential packet reordering. We also make
this observation here. Even though the traffic is bidirec-
tional — and coding opportunities of similarly sized pack-
ets can thus generally exist at each single intermediate hop
— COPE barely improves the throughput. For the protocols
with a backpressure rule, the relative performance matches
the picture from the previous simulations, with opportunistic
coding noticeably improving upon the performance of non-
coding CXCC, but in turn being clearly outperformed by co-
ordinated network coding.

The average per-hop delay of the connections is shown in
Figure 12. The per-hop delay of a packet is the time from
leaving the source node until the arrival at the destination
node, divided by the number of hops along the route. The
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Figure 12: Per-hop delay in random topologies.
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Figure 13: Overhead in random topologies.

relative ordering of the protocols remains the one observed
above, though the absolute differences are generally not as
grave as those of, e. g., the throughput.

In Figure 13 we have evaluated the overhead in the ran-
dom topology simulations, and again the overall picture
seems familiar. In the presence of a complex traffic pattern
and with TCP being used, COPE actually exhibits a mini-
mally higher overhead than plain 802.11. This can be traced
back to a higher number of packet retransmissions. Unlike
in the chain and cross topologies above, noCoCo does not
underrun the non-coding limit of an overhead of one in these
simulations, but it comes very close to this value.

On a final note, we emphasise again that the main fo-
cus of noCoCo is on scheduling packet transmissions to co-
ordinate coding, and much of the benefit we have seen in this
section of noCoCo over COPE with the 802.11 MAC is due
to the scheduling. Therefore, we used traffic patterns that
would favour coding in the first place to highlight the im-
portance of scheduling. Dealing with coding-adverse traffic
patterns, such as asymmetric and more random flows is an
interesting research issue but beyond the scope of this paper.

6. CONCLUSION

In this paper, we have introduced a deterministic packet
scheduling scheme for network coding within two-way traf-
fic flows in wireless multihop networks. We have derived
some general properties of scheduling schemes that achieve
maximum coding gain in the given scenario, and introduced
a centralised scheduling approach with favourable perfor-
mance. Developing this further into a practical and dis-



tributed protocol, we proposed Near-Optimal Co-ordinated
Coding (noCoCo). noCoCo has been shown to approach the
theoretical limits established with the centralised schedul-
ing approach. It also results in a form of congestion con-
trol resembling the implicit hop-by-hop congestion control
in CXCC.

Our evaluation demonstrates the potential of a co-
ordinated approach for network coding, in terms of through-
put, packet delay, and protocol efficiency. The results also
reveal some interesting insights regarding opportunistic cod-
ing schemes. Without appropriate medium allocation, net-
work coding alone may also be at its wit’s end for achiev-
ing good performance. It is also interesting to notice the
small differences between conservative coding and omni-
scient coding. This suggests that the benefits from iden-
tifying additional coding opportunities are limited in this
context, which could be used to simplify coding protocols
adopting similar scheduling principles.

Note that the current noCoCo design is based on insight
from analysing two-way traffic and has an end-to-end con-
trol flavour. This opens many avenues to generalise the de-
sign and extract further coding benefit. For example, more
coding opportunities could arise if the signalling for burst
traffic is carried per hop. Furthermore, an analysis of differ-
ent traffic patterns could bring new insights.
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