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ABSTRACT
Discrete-event network simulation is a major tool for the research
and development of mobile ad-hoc networks (MANETs). These
simulations are used for debugging, teaching, understanding, and
performance-evaluating MANET protocols. For the first three tasks,
visualization of the processes occurring in the simulated network
is crucial for verification and credibility of the generated results.
Working with the popular network simulator ns-2, we have not yet
found a visualization toolkit capable of reading native ns-2 trace
files and providing means to change the evaluated parameters with-
out changing the visualization software. Thus, we developed Hug-
inn, a software providing an intuitive way to visualize simulation
properties and to determine how they should be displayed without
the need of programming. In addition, Huginn has a 3D interface
allowing an improved exploitation of the (human) user’s percep-
tual system. It helps to handle the significant cognitive load as-
sociated with the mental reconstruction of simulated network pro-
cesses. Besides presenting the software interface and architecture,
we describe algorithmic solutions that might be of a more general
interest for similar problems.

Categories and Subject Descriptors
I.6.6 [Simulation Output Analysis]; C.2.2 [Network Protocols]:
Protocol verification; C.2.1 [Network Architecture and Design]:
Wireless communication

General Terms
Verification, Algorithms

Keywords
Network simulation, visualization, trace file analysis, wireless net-
works, ad hoc networks, ns-2
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1. INTRODUCTION
Network simulation is an important tool in mobile ad-hoc net-

work (MANET) research. Usually network simulators create huge
sets of ‘trace files’, i. e., protocols of the discrete events that were
processed by the simulator. These files are used for both statistical
evaluation of the protocol performance and debugging. The for-
mer procedure, also called ‘macroscopic evaluation’, examines the
whole (set of) trace(s) and computes statistical estimators for sys-
tem properties like, e. g., the ‘average ratio of packet delivery’. The
latter activity means to look at single events inside a trace file to
understand the protocol’s (mis-)behavior.

Consequently, we call the second process ‘microscopic evalua-
tion’. Micro-analyzing a trace file usually challenges a protocol
developer with (a) reading a cryptic trace file and understanding
the semantics of a single event, (b) mapping this event to a network
node at a certain geographic position, time, and an inner state often
not included in the particular event, and (c) including the context
defined by other network nodes being close by, also with their re-
spective states.

In the past, the complexity of this task sometimes led to minor
and major mistakes that might have been identified and avoided by
means of a proper visualization increasing the general credibility of
simulation studies [10]. For example, [8] describes a performance
optimization of the ns-2 channel. However, this can create situa-
tions where nodes (don’t) receive transmissions they should (not)
receive [5]. Problems like this are incredibly hard to find without
visualization.

Since finding and interpreting all the relevant information and
context within the purely textual data of a trace file is obviously
very hard, we have created Huginn1, a visualization tool for packet-
level simulation traces. One of the most appealing features of Hug-
inn is its ability to show a two-dimensional MANET scenario using
the third dimension to display additional information about both
packet transmission processes currently being executed and inner
state of the network nodes. This is similar to [11] stating that 3D
maximizes the use of the screen and helps to shift the user’s cogni-
tive load to the human perceptual system, i. e., it allows the user to
‘see’ interrelationships rather than to infer them by thinking.

The main design constraints were ease-of-use and flexibility to
changing user requirements. In its current state of development,
Huginn is able to handle both the old and the new wireless trace
formats of ns-2 [9], one of the most popular network simulation
frameworks, but could be extended to other formats with justifiable
effort. The focus on ns-2, however, creates some problems we will
address. We also provide hints on how they could be avoided.

1Huginn is one of god Odin’s ravens in Nordic mythology. The
meaning of the word is ‘thought’.



The remainder of this work is structured as follows: While the
next section deals with related work, Section 3 describes Huginn
from the perspective of a user. Section 4 shows the main aspects of
Huginn’s software architecture, and the following Section 5 gives
insights into challenging algorithms used to address specific prob-
lems in discrete-event visualization. Finally, Section 6 concludes
the paper and gives a prospect on future work.

2. RELATED WORK
Since the process of micro-analyzing a discrete-event trace is so

demanding, assisting it with software tools is not a new idea. In the
following we will focus on the major projects available on the web.

Apart from plotting a snapshot of node positions with tools such
as gnuplot [2], which is the basic approach almost every ns-2 user
has once used, ns-2 itself is packaged with nam, the Network Ani-
Mator [4], with the basic purpose of visualizing ns-2 (wired) trace
files. To accomplish this, an additional, more expressive type of
trace file is used. Nam produces a 2-dimensional display of the
wired network with the ability of jumping to an arbitrary moment
in simulation time and selecting additional information by using
a point-and-click interface. Recent versions of nam also provide
support for the visualization of wireless traces. As for now, nam
only supports the visualization of statistical values already calcu-
lated and stored in the nam trace file. Thus, a major problem with
nam’s approach is that a new simulation run is needed whenever a
different visualization is desired.

The second tool we look at is ad-hockey. It was first created
when ns-2 was extended to support wireless networks [7, 3]. Con-
sequently, this Perl/Tk-based tool visualizes mobile nodes and wire-
less network events based on the standard ns-2 trace format. How-
ever, apart from performance problems, ad-hockey is not able to
correlate send and receive events.

The third well-known tool is called iNSpect and was developed
at the Colorado School of Mines [6]. This more recent project al-
lows to keep lines between mobile wireless nodes, even when trans-
mission events are already over. Thus it is possible to visualize
end-to-end routes by keeping lines in place. The main drawback
however is the necessary preprocessing of the ns-2 trace file prior
to visualization. Moreover, the user has to provide an appropriate
parser for this task. Adding up to this, iNSpect does not support
jumping to arbitrary time positions.

3. HUGINN: A USER’S PERSPECTIVE
After the ns-2 simulation runs have produced large amounts of

trace file data, a user needs some way to deal with it. This is where
Huginn can help and ease the evaluation of the simulation traces.

3.1 General Functionality
Huginn parses ns-2 wireless traces and visualizes the events hav-

ing occurred during the simulated time. It displays the simulated
scenario in three dimensions with cones depicting the nodes in the
network. As the nodes move in the simulation, the cones move
around the scene in Huginn. Since ns-2 does not fully support
three-dimensional scenarios, the third dimension can be used to
display additional statistics in the form of bar charts or text floating
above the cones. An example of a 3D view generated by Huginn
can be seen in Figure 1. Of course, a static screenshot does not
really give a good impression of how Huginn works. To alleviate
this, two little movies showing Huginn in action are available at [1].

The second element which is visualized are the transmissions of
packets. When the simulation traces contain MAC layer events,
Huginn will scan and combine these to derive information like the

sender-receiver pairs of all packet transmissions. Transmissions
are depicted by circles around the sender, one circle for the trans-
mission range and another one for the carrier sensing range. This
helps the user to see at once where two or more transmissions have
blocked each other. The sending and receiving nodes are—in addi-
tion to the range circles—connected to each other by a horizontal
cone. If a packet has been dropped at a receiving node because of
a collision, this is indicated by a red symbol at that node.

During the visualization, the user has several options to move
in time. A time line at the bottom of the screen shows the current
position within the simulated time. By clicking on this line, the vi-
sualization jumps to the corresponding point in time. Furthermore,
there are two options available for the animation of the processes
during the simulation: The linear time scale and the so-called Flex-
Time scale. The linear time scale has different scaling factors map-
ping simulation time to real time, allowing the user to watch the
simulation results at different visualization speeds. The FlexTime
scale adapts the visualization speed to the amount of events hap-
pening in a certain period of time. If there is no data traffic for
some time and thus no transmissions are to be shown, the visual-
ization speeds up until the next transmission events occur. Then
it slows down again and thus facilitates the detailed observation of
the activities. This mode is particularly useful for simulations with
an inhomogeneous distribution of events, for example setups with
long periods of inactivity.

While watching the visualization the user may navigate freely
through the scene using the mouse or—with even greater degree
of freedom—a joystick. This bears two major benefits: first, it
allows to look at the scenes from different angles or sides. And
second, the user may zoom in and out to take a closer look at a
single transmission or small area, or to get an overview of what is
happening in the entire network.

3.2 Adapting the Visualization
After invoking Huginn the user is presented a graphical user in-

terface. It allows to configure the visualization of the simulation
data in a simple way. The functionality is arranged into three tabs,
the first of which is named ‘Nodes’: A graphical flow chart, which
can be created and edited by the user, determines a pipeline of op-
erations (or a set of different pipelines) through which all lines of
the simulation traces will go.

The pipeline consists of five steps: The first step extracts spe-
cific events or states out of the stream of trace lines. These events
all bear a reference to a point in time and a network node. This
first column can be seen as the source of all events, whereas the
rightmost column represents perceivable elements influenceable by
these events like, e. g., some displayed text. The three columns in
between serve as intermediate steps for filtering, aggregation and
scaling.

Figure 2 shows an example for such a set of user-defined pipe-
lines. The leftmost column defines the events and states to be mon-
itored. Examples for this are the event of a starting transmission on
the MAC layer or the current speed of a node. The second column
contains filter blocks which can be specified by entering snippets of
Ruby [12] code directly within the GUI. An example for this would
be that only MAC transmissions of packets larger than 100 byte are
to be considered for further processing. After the desired set of
events is defined, the middle column specifies aggregate functions.
For events like the MAC transmission start, this can be, e. g., the
number of events in total. On the other hand, state information like
the current node speed may for example be averaged in this stage.

While the output values of the third column are already of in-
terest for the user, they are yet to be presented in a graphical way.



Figure 1: Example of a 3D view generated by Huginn

Figure 2: Example of a configuration in the flowchart editor



Figure 3: A visualization with load distribution bar chart

To bridge the gap between those values and the perception mod-
ules in the rightmost column, the fourth column allows to map the
values to different scales or colors. An example for the color map-
ping would be that depending on the number of events, the resulting
color slowly changes from green to yellow and finally to red. As
a scale a linear or a logarithmic function can be defined to adapt
the values to be used in the last step. For example, the interval of
the averaged speed could be changed from 0 to 20 m/s to values
between 0 and 50.

The final stage of the pipeline, represented by the rightmost col-
umn of blocks, describes the way the values or colors from the
previous stages affect the appearance of the nodes. Values, like the
number of MAC transmissions, can be used to vary the radius of a
node, to display a bar chart above the node using a corresponding
radius or height, or to show a text flowing above the node and dis-
playing the value. In the same way, colors may be assigned either
to the bar chart or to the nodes themselves.

After the description of the first tab ‘Nodes’, we quickly cover
the second, named ‘Transmissions’, and the third one, called ‘Run’.
The ‘Transmissions’ tab works similar to the ‘Nodes’ tab but al-
lows to adjust how the range circles and transmission cones be-
tween sender and receiver are represented. The ‘Run’ tab finally
contains the selection of the trace file to be visualized, some other
global settings and the button to start the visualization.

A short example shall illustrate the concept of the configuration
flowcharts further. If a user requested an analysis of the load distri-
bution in a network, one possible metric could be the total number
of bytes transmitted by each node on the wireless medium. In or-
der to embed this value for each node into the visualization, the user
would use the predefined MACSendStart event in the first column
of the visualization. This event signals the start of a MAC layer
transmission. Since all transmissions are to be accounted for in the
evaluation, filtering is not necessary. Thus the second column is
not used. Instead, the event is directly connected to a sum aggre-
gate function in the third column, that is configured to add up the
size parameter of all the events.

This sum can now be used in the visualization in different ways.
If the user chooses to map it to the height of a bar chart over the
nodes, a bar chart item would be used in the fifth column. In order
to properly scale the value calculated by the sum(size) aggregate, an
appropriate scaling would also have to be configured in the fourth
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Figure 4: Huginn software architecture overview

column. It maps the values from the aggregate to actual diagram
bar heights in the 3D view. A linear or a logarithmic scale could be
used.

Figure 3 is a screenshot of a resulting visualization where the
discussed flowchart is applied to a trace file of an AODV-routed
network with random communication partners. Apparently nodes
closer to the center of the network need to transmit much more data
in this scenario. This is because more routes go through the center
of the network than through the peripheral regions. The embedding
of the additional information into the three-dimensional scene en-
ables an easy attribution of the values to geographic node positions.

The value of the sum(size) aggregate could, of course, also be
mapped to other properties of the scene. E. g., it would be possible
to influence the color of the cones representing the network nodes.
To accomplish this, one would use a color map in the fourth column
and connect it to the node color in the fifth one.

4. SOFTWARE ARCHITECTURE
Huginn has three main tasks to perform. It has to

• provide the user with an interface to create and edit con-
figuration flowcharts and set the properties of the flowchart
nodes,

• read the trace file and evaluate it according to a given flow-
chart, and

• render an animated 3D scene and allow the user to interact
with it.

The overall architecture of Huginn resembles this structure very
closely. The software consists of three main parts, each one re-
sponsible for one of the tasks. These three parts are not software
components in the classical sense, i. e., linked into one common
binary. But they cooperate very closely at run-time by means of
UNIX pipes and configuration files.

The three parts are a flowchart editor for configuring which eval-
uation is to be done and how the results are to be displayed, an
evaluation engine for reading the simulation data and performing
the calculations, and a visualization engine which transforms the
results into a dynamic 3D scene. An overview is given in Figure 4.



4.1 Flowchart Editor
The first of the three applications is the flowchart editor (FE)

which is implemented in C++. This editor is the part of the soft-
ware the user will see first when starting the visualization tool (see
also Section 3.2). The FE is responsible for all interaction tasks
that have to be performed before starting the visualization with one
specific trace file. Also the selection of a trace file to apply the
flowchart to and the setting of various global parameters fall into
the responsibility of this component.

Additionally, the FE provides means for saving flowcharts into a
file and loading them back into the editor. This way flowcharts can
be reused later, or can be shared with other Huginn users.

An important aspect of the FE’s—and of Huginn’s architectu-
ral—design is that the FE does not read the trace file. Thus, the
configuration of the flowchart, indicating what and how to evaluate,
is completely independent of any specific aspect of the trace file.
Any given visualization, once configured using a Huginn flowchart,
should be usable with any trace file. This meets the concept of
sharing and reusing configuration flowcharts.

When the user has finished configuring the flowchart—or has
loaded and potentially modified a saved one—a trace file can be se-
lected and the visualization can be started, combining the data from
the trace file with the evaluation rules specified in the flowchart. To
accomplish this, the FE starts an instance of the evaluation engine.

4.2 Evaluation Engine
The evaluation engine (EE) is different from the other parts of

the software in terms of its interaction scheme. The EE does not
interact with the user at all. It is started by the flowchart editor as
a background process when the user wants to apply a flowchart to
a specific trace file and watch the resulting visualization. It reads
the configuration flowchart transmitted to it by the flowchart editor,
and it opens the specified trace file.

During the visualization, the EE reads the trace file and performs
the evaluations defined by the flowchart. It manages various data
structures needed for the interpretation of the simulation data and
for fast navigation within larger trace files. Also, the EE interacts
with the visualization engine during a running visualization, pro-
viding it with high-level, abstract information about what has to be
shown. Reversely, the EE gets information about the user’s navi-
gation requests from the visualization engine. For example, the EE
is told when the user wants to jump to a given point in simulation
time and then decides which part(s) of the trace file have to be read
and which calculations have to be done to fulfill this request.

The EE is implemented in Ruby [12], an object-oriented script-
ing language. Ruby is especially suited for this task, as it is both
well-structured and flexible, and—since it is an interpreted lan-
guage—Ruby programs can easily be extended at run-time. This is
used when integrating user-supplied code fragments for advanced
evaluation tasks, as mentioned before. These code fragments can
be incorporated into the EE by modifying the implementation of an
object method within the running software.

Additionally, Ruby’s reflective programming features simplify
the task of navigating on the time axis while at the same time doing
complex (and often irreversible) computations for statistical eval-
uations. This, along with some other algorithmic aspects of the
evaluation engine, will be discussed in more detail in Section 5.

4.3 Visualization Engine
The visualization engine (VE) used in Huginn originates from

another project, V-IDS [14]. It is a flexible, configurable visualiza-
tion engine for discrete event data. The V-IDS visualization engine
can be configured to meet the needs of a specific visualization task

by writing a configuration script in a language called V-QL. By
providing it with a V-QL configuration script the V-IDS engine has
been adapted to the task of visualizing wireless network simulation
data.

The configuration script is static and defines the behavior of the
visualization engine, i. e., which kinds of objects are or can be
present in the visualization, how they fit together, which GUI el-
ements are present in the 3D window, and how the user can nav-
igate and interact with the scene. All Huginn visualizations use
the same configuration script which is not intended to be modified
by the user and which is not directly related to the user-generated
configuration of evaluations from the flowchart editor.

The visualization engine is a C++ application, OpenGL is used
for 3D graphics.

Because the displayed scene might change in each single frame,
and because only the evaluation engine reads the trace file and thus
can know how and when the scene changes, the EE and the VE
have to communicate with each other at run-time. To allow evalua-
tion and visualization to be implemented in two rather lightweight
components, the communication between them has to be as small
as possible. This is mainly alleviated by three aspects in Huginn’s
design:

First, the VE has a ‘memory’ of the visualized scene and allows
updates in a differential manner. Only information regarding ele-
ments of the scene which have changed from one frame to the next
has to be transmitted by the EE.

Second and maybe even more important: through the V-QL con-
figuration script, the VE has some knowledge on the structure of
the data being visualized. This way, the high-level communication
between EE and VE mentioned above is facilitated. E. g., when
displaying a packet transmission event, the VE simply has to be
told that the event exists and which nodes are affected by it; the
VE knows which geometric primitives have to be drawn. From the
node position data, the VE can also deduce the position where they
have to be drawn, without any help from the EE.

Third, simple interpolation tasks like the linear interpolation of a
node’s position between two waypoints can be done by the VE and
hence do not cause additional traffic on the communication channel
between EE and VE.

5. ALGORITHMS
Huginn visualizes ns-2 wireless network simulation traces as

they are written by the simulator. Neither modifications to ns-2
nor any preprocessing of the trace files are necessary.

Reading and analyzing the whole trace file at the start of the vi-
sualization is not practicable since for the usually quite large trace
files this would increase both start-up delay and memory consump-
tion. Therefore we have developed algorithms which allow reading
the trace file and generating the interactive visualization at the same
time.

Although this seems easy to accomplish at first sight, a couple of
issues had to be addressed in order to achieve the intended parallel
data evaluation and visualization. In general, some of these prob-
lems could be circumvented or alleviated by adding information to
certain parts of ns-2’s traces. We will discuss possible ‘improve-
ments’ of ns-2 where applicable. For our project, however, we did
not want Huginn to require a patched version of ns-2.

5.1 Look-ahead and Queue Reconstruction
In ns-2 a transmission consists of corresponding send, receive,

and, possibly, drop events, all represented by a different type of
line in the trace file. A send event on the MAC layer is logged
at the beginning of putting the packet on the channel, whereas re-



ceive and drop events (a node receives the packet but is not able to
decode it correctly) occur at the end of the transmission process.
The visualization software has to find all the lines corresponding
to one such process to be able to indicate that a packet is not only
sent by node A but is also received by node B or even dropped by
node C. As a consequence, line-by-line processing is not possible if
transmissions are to be shown while they occur. To support the vi-
sualization of events when they occur, Huginn has to keep a certain
look-ahead which should be as small as possible, but which should
also capture all events related to one radio transmission process.

Further, unrelated simulation events might occur during the trans-
mission and will thus be interleaved into the trace file. Hence the
trace file lines describing one single transmission may not form one
single, compact block. Even intersections with other MAC layer
transmissions—occurring at different locations in the simulation—
are very common.

To capture enough lines of the trace file to ensure covering all
events possibly corresponding to the current time ts, the visualiza-
tion software has to read enough lines in advance to guarantee that
all receive or drop lines that belong to any transmission in progress
at ts have been found. This is possible because the temporal extent
of MAC layer transmissions has an upper bound. When visualizing
ts, it is sufficient to read the trace file lines with timestamps suc-
ceeding ts until a line has been read with a time stamp greater than
ts + L, where L denotes the look-ahead, a span of time longer than
the longest MAC layer transmission in the trace file. In Huginn, a
fixed (yet user-definable) look-ahead L is chosen before the start of
the visualization. The reading of the trace file is always L ahead of
the visualization. When the next frame after showing ts shall visu-
alize the simulation time ts +∆, the section [ts +L,ts +L+∆] of the
trace file has to be read before rendering the frame2.

The information read in advance is needed when displaying any
frames between ts and ts + L. Huginn stores this information in a
data structure closely resembling the ns-2 event queue. Events read
from the trace file that are relevant for the visualization are inserted
into the event queue. In this queue, event connections not explicitly
logged by the simulator are reconstructed; send and receive events
belonging together are appropriately linked.

For example when after the frame at ts the next frame is to be
displayed at ts + ∆, the trace file section [ts + L,ts + L + ∆] is read,
and the events found are inserted into the queue. Afterwards, all
events in [ts,ts +∆] are extracted from the head of the queue. These
extracted events determine all the changes that occur between the
frames ts and ts + ∆. As described in Section 4.3, a differential
update protocol is used for the communication between the evalu-
ation engine and the visualization engine. So the representation in
a queue with easy extraction of the changes occurring between two
consecutive frames perfectly meets the requirements of the evalua-
tion engine when preparing a frame update.

5.2 Event Correlation
After having ensured that all potentially relevant trace lines have

been scanned, the actual grouping of trace events into a cause-and-
effect group has to be done. To correlate send events and their
corresponding receive events on the MAC layer, a packet sent by a
node S has to be recognized when it is received by some other node
R, i. e., the corresponding send line in the trace file has to be found.
Unfortunately, ns-2 does not supply packet IDs (or something sim-
ilar) on the MAC layer. In fact, it turned out that it is perfectly
possible for two different transmissions to cause completely iden-
tical trace file entries.

2Please note that the look-ahead is in seconds of simulation time
which may result in a varying number of trace lines to read.

Due to some assumptions that can be made on the properties of
the MAC layer, this problem can mostly be overcome. The central
assumption is that when two frames f1 and f2 are sent by the same
sender, and f1 is sent before f2, f1 can no longer be received after
f2 has been sent. So, only one frame from a given sender can be
in transit on the MAC layer at any given point in time. We call this
the single transmission property. This leads to the idea that when
a frame is received, it has to be the last frame sent from the source
address in the MAC header of that packet before the reception.

This scheme works well for all kinds of data and routing packets,
but fails when used with some special MAC layer frames. In 802.11
CTS and ACK frames the source node’s address is not present in
the MAC header, in the trace file it is always set to zero. Therefore
reliable correlation is not possible using the described method.

It turned out that comparing all four fields of the MAC header
logged in the trace file entries is a quite good—and actually the only
possible—mechanism to find MAC layer send and receive events
belonging together without the need to make modifications to the
simulator itself. A reception is associated with the last preceding
send event with a completely identical MAC header.

Even this mechanism may theoretically fail in a very special
situation, at least for simulation traces using the new ns-2 wire-
less trace format3: If node K sends a CTS frame to node M, in
parallel the node with node ID zero sends an RTS frame to node
M, and the allocation fields in the MAC header (denoting the re-
quested/remaining medium reservation time) are identical, a cor-
rect correlation might not be possible. However, we tend to claim
that this will not occur very often in practice. A definite solution
to this problem would require a modification of the ns-2 trace file
format, which is in contradiction of our aim to support the visual-
ization of ns-2 trace files as-is.

On the routing layer a similar solution to the correlation problem
is not possible. Here, too, no unique packet or event IDs are avail-
able. But differing from the MAC layer, no restrictive assumptions
similar to the single transmission property can be made. For exam-
ple, it happens very often that a routing message is sent by a node
before the previous one has finally arrived at the routing layer of its
final destination node(s). Hence a reliable event correlation mech-
anism cannot be established. Therefore, Huginn can only show the
occurrence of routing layer events, but cannot decide which events
belong together.

On the agent layer the situation is again different. Here, unique
packet IDs are indeed present and can be used to find the send event
corresponding to a given packet reception. But due to the limited
look-ahead, the receptions of a packet will in general not be known
when the send event is to be displayed. Since no upper bound for
the time between sending and receiving an agent layer packet can
be established, extending the look-ahead is not viable. So, Huginn
deliberately abstains from any attempt to show agent layer connec-
tions, for the sake of simplified and more efficient trace file reading.
Nevertheless, for any displayed agent layer receive event the infor-
mation of the corresponding send event can be accessed because it
must have occurred before the reception and thus must have been
read. Then it can be identified by the packet ID. This makes calcu-
lations like, e. g., packet transmission delay statistics possible.

3In the new trace format, the 802.11 control frame subtype (RTS,
CTS,. . .) is not explicitly logged. In combination with the fact that
an unused field is filled with zero and is thus indistinguishable from
a field containing the ID of node zero, this can lead to indistinguish-
able packets originating from different source nodes. Hence the
single transmission property is of no avail here. For the old trace
format, Huginn is able to use the additional information provided
there to resolve this situation correctly.



One could modify ns-2 to add more information to the trace lines
that helps identifying causal relationships. A first step could be
to introduce globally unique transmission identifiers on the MAC
layer, allowing to find corresponding trace file entries much easier
and without heuristics. Similarly, unique IDs for packets generated
at the routing layer would allow to tell where and when a received
packet has originated. More sophisticated changes could maybe
even provide a means to track the effects of single simulation events
through all layers, in order to enable the reconstruction and thus the
visualization of causality between, e. g., a route request packet and
the data packet that caused its sending. However, such an effort
would require changes for almost every protocol implementation
in ns-2.

5.3 Checkpoint Index
Typically, a trace file visualization will not be viewed linearly

from the first to the last simulation second. Instead, certain inter-
esting parts will be repeated, or whole sections might be omitted.
In short: It is necessary to allow free navigation on the time axis.

To implement a time axis jump feature it is necessary to provide
a means of bringing the visualization software into the right inner
state. The inner state at time t comprises the structure and values
of all data structures, variables or objects as present at time t. In
case of Huginn, e. g., the 3D scene as shown at simulation time t,
the queue containing the trace file data read in advance (that is, the
events in the simulation time interval [t,t +L]) and the current value
of all statistical evaluations belong to the inner state.

To jump to a given point in simulation time, it is sufficient to con-
struct the appropriate inner state. Of course, this construction has
to be possible in a reasonable amount of time. Finding the appro-
priate position in the trace file is not sufficient, as the information
of all preceding events may affect the inner state—just consider
statistical values calculated up to this point. Reading the trace file
from the beginning up to the right position is a way to construct the
desired inner state, but is definitely not fast enough for jump targets
which are not too close to the beginning of the simulation.

In Ruby it is possible to make a copy of a complete object hi-
erarchy. Using this feature, it is possible to save the inner state of
the evaluation engine into some kind of backup. This backup can
be ‘restored’ later to bring the visualization back to the previously
saved state. We call such a backup of the inner state of the evalua-
tion engine a checkpoint.

The complete scene can be deduced from the state of the evalua-
tion engine, thus checkpointing the visualization engine is not nec-
essary. Its state can be reconstructed from the evaluation engine’s
checkpoint.

Checkpoints may contain a considerable amount of data, mostly
due to the trace file data read in advance for the look-ahead. Hence
the number of checkpoints that can be kept in memory is limited.
Most notably it is not possible to create a checkpoint for every sin-
gle potential jump target, which is every point in simulation time,
or at least every point in simulation time a simulation event has
caused a trace file entry.

If the inner state at simulation time t shall be reconstructed and a
checkpoint representing t is not available, a checkpoint represent-
ing a point in simulation time prior to t can be used instead. After
restoring it, the section of the trace file filling the ‘gap’ between
the checkpoint’s time and t can be processed. Of course, this trace
file processing is costly and should be minimized. Therefore it is
desirable to have as many checkpoints as possible.

To create checkpoints for the whole trace file, the trace file would
need to be processed completely. As mentioned before, this is not
possible because of the large impact on the start-up time of the

visualization. So Huginn creates checkpoints when first reading a
specific trace file section. If the user wants to jump into this section
again later, the created checkpoints can be used to speed up the
navigation.

The cost for reconstructing the inner state for a given point in
simulation time grows larger for an increasing number of trace file
lines that have to be processed after using the nearest checkpoint
before the desired jump target. Thus minimizing the number of
these lines is intended. It can be shown that the expected number
of lines to be read is minimal for equally distributed checkpoints if
equally distributed jump targets are assumed. Note that the events
in the simulation are always equally distributed over the trace lines
since every line represents one event. The assumption of equally
distributed jump targets is appropriate since there is no way for the
visualization tool to know in advance which regions of the trace file
are particularly interesting for the user.

The mentioned optimum of an equal distribution of the check-
points cannot be obtained without moving the checkpoints con-
stantly around since the domain they are distributed in is contin-
uously growing while the number of checkpoints has to stay the
same. But moving all checkpoints around over and over again
would definitely be too expensive. Instead, an algorithm for the
creation of checkpoints is used which first creates checkpoints with
a high frequency. When the number of processed trace lines and
therewith the number of created checkpoints grows, present check-
points are removed and the frequency of checkpoints is reduced.

The current checkpoint distance determines whether after read-
ing trace file line n a checkpoint cn is created. cn is created when n
mod d = 0. At the beginning the checkpoint distance is initialized
to a value of dinitial = 1000 lines.

The total number of checkpoints is limited by another parame-
ter, the maximum checkpoint count m. When the total number of
checkpoints reaches this limit, the checkpoint distance d is dou-
bled. This happens for the first time after having read dinitial ·m
lines. New checkpoints are then created at a lower frequency. Each
time a new checkpoint is created now, a present one with a posi-
tion no longer matching the new ‘doubled d’ is removed. When no
more checkpoints exist which can be removed using this criterion,
the checkpoint distance d is again doubled, further decreasing the
checkpoint frequency and making half of the existing checkpoints
available for substitution.

After doubling d, old checkpoints no longer matching the new
checkpoint distance are not immediately removed. Instead they are
kept until being substituted by a new checkpoint. No checkpoint
is removed earlier than necessary since the information it contains
remains valuable.

It can be seen that the distance between two contiguous check-
points created by this scheme is always at least d

2 and at most d. Let
n be the number of lines processed so far. As long as n < dinitial ·m
the maximum number of checkpoints is not yet used, and the dis-
tance between two contiguous checkpoints will be as low as dinitial.
The number of lines to process for a jump will thus be very small
in this case. Therefore we can focus on larger n. Then d is bounded
above by 2 n

m . This holds because d is doubled only after all check-
points have a distance of d from their neighbors, and thus not before
n > m ·d.

The worst case position for a jump target within the already in-
dexed part of the trace file is just before an existing checkpoint.
Therefore in the worst case, after restoring the nearest checkpoint
before the jump target, d lines would have to be processed, where
d ≤ 2 n

m . For the theoretical optimum of m equally distributed
checkpoints n

m lines would have to be read in the same situation.
Hence we see that our checkpoint index algorithm requires at most
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Figure 5: Expected number of trace file lines to be processed
for a jump. The maximum checkpoint count m is 10 and the
initial checkpoint distance d is 1000 lines here.

twice as many lines to be read than an (for other reasons highly
inefficient) algorithm with optimal checkpoint distribution. With-
out checkpoints, all lines from the beginning of the trace file would
have to be processed again—this would be n in the worst case.

Another analysis is provided in Figure 5. Here we assume an
equally distributed jump into the indexed part of the trace file and
compute the expected number of trace file lines to be processed.
The figure shows the results for our checkpoint index algorithm
and for the theoretic minimum of at any time equally distributed
checkpoints. The performance of the checkpoint index algorithm
is close to the optimum, even though in this analytic evaluation
a maximum checkpoint count m of only 10 checkpoints has been
used. In practice, Huginn’s default value for m is 100 checkpoints.

6. CONCLUSIONS AND FUTURE WORK
Discrete event simulation using the ns-2 network simulator is a

very important step in the development and evaluation of mobile
ad-hoc networks. Usually, ns-2 writes a textual representation of
the events occurring during the simulation into a trace file. Read-
ing this trace file is the main source for understanding MANET
algorithms. However, getting a ‘bigger picture’ than a single event
is a demanding task.

Thus, we have developed Huginn, a visualization tool for wire-
less ns-2 traces. Huginn provides a three-dimensional view of a
wireless ns-2 simulation. Trace files in standard ns-2 syntax can
immediately be visualized, without any preprocessing steps. Con-
figurable evaluations of a broad range of parameters can be embed-
ded into the visualization, a scripting interface allows for further
flexibility. In addition, Huginn provides an intuitive user interface
to the visualization, as well as for the configuration of the evalua-
tions.

To derive wireless transmissions in their geographical and logi-
cal scope, algorithms are needed to reconstruct the ns-2 event queue
and to find the receive events corresponding to a certain send event.
In addition to these, we have presented an algorithm for efficient
checkpointing.

The main development of Huginn was conducted by the primary
author during his master thesis work. Thus, a much more elaborate

version of this document can be found in [13]. This document is in
German.

The home page of Huginn can be found at [1]. On this page
screen shots and movies of Huginn in action are provided. In the
future, a software distribution will also be available for download.

While we have already used Huginn extensively for the visual-
ization of our own trace files, there is still some work to do for
the easy deployment of the software. As for now, the installa-
tion of some necessary support libraries can be difficult. Further,
we want to evaluate the usefulness of the Huginn flowchart edi-
tor to create macroscopic statistics, providing an understandable
tool for the second big part of simulation-driven evaluation studies.
In our experience, most people using simulation build their own
Perl scripts, which is usually a never-ending source of bugs and
non-extendability, given the fact that the metrics evaluated by these
kinds of scripts are often quite similar.
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