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Abstract—Epidemic routing is proposed as one of the routing
protocols for Opportunistic Networks. These kind of networks
behave as sparse and/or highly mobile networks in which there
may not be a reliable path from source to destination. We
study the trade-off between delivery delay/ratio and resource
consumption in an Opportunistic Network in which a message
has to be spread to each encountered node by epidemic relaying.
In addition to the destination, there are several other nodes in
the network that can cooperate in relaying the message. We
first assume that, at every instant, all the nodes can predict
the number of relays storing the message and the number of
new message replicators that have received the message. We
formulate the problem as a controlled finite discrete Markov
chain and derive the optimal closed-loop control (replication
policy). However, in practice, the intermittent connectivity in the
network implies that the nodes may not have the required perfect
knowledge of the system state. To address this greedy issue, we
obtain an ordinary differential equation (ODE) approximation
for the optimally controlled Markov chain. Finally, we evaluate
the performance of the replication control policy over finite
networks. Numerical results show that this dynamic replication
policy performs close to the optimal closed-loop policy.

Index Terms—Opportunistic Networks, Epidemic Relaying,
Markov Chain Modeling, Optimal Replication Control

I. INTRODUCTION

The end-to-end path in delay tolerant networks (DTN) is
not guaranteed, therefore, the messages are delivered based
on hop-by-hop routing from a source node to the destination
node via Store-Carry-Forward fashion. In DTN, a source node
or an intermediate node stores messages in its buffer and
carries them while moving around. Furthermore, the DTN
routing is divided into two main types which are flooding-
based routing and utility-based routing. One of the utility-
based routing protocols is PRoPHET [1] which forwards the
messages to other nodes based on calculated cost and the
messages are delivered to the destination node via multiple
hops. The main idea of utility-based routing protocols is to
reduce the node resources consumption in terms of storage,
bandwidth and power by decreasing the number of message
replications. This type of utility-based routing protocols offer
a limited message copy such as the GTMX [1] forwarding
strategy of the PRoPHET routing protocol.

On the other hand, the flooding-based routing protocols
replicate the message to every encountered node. The assump-
tion of unlimited node resources is paid against the redundancy

of unlimited message copies. One representative protocol of
flooding-based routing is the Epidemic [2] routing protocol.
As the name implies, the node replicates the message to all
encountered neighbor nodes. The epidemic routing protocol
is very powerful when the buffer size of nodes is infinite,
however, if the buffer size is not sufficient, especially as in
reality where the node buffer size is limited, the approach
generates unlimited message copies by its flooding behavior
which leads to overhead and the routing performance degrades
by congestion or buffer overflow. In order to solve the message
overhead and node’s resources consumption problem of the
Epidemic protocol, several quota-based routing schemes have
been proposed, such as Spray & Wait [3] and Spray &
Focus [4] protocol. In these protocols, the total number of
message copies present in a network is limited by a certain
number of hops.

In this paper, we propose a replication policy for Epidemic
routing, termed Most Of Storage and Transmission – with
Replication Probability Threshold (MOST-RPT) which inte-
grates an optimal delivery probability policy as function of
the message hop-count combined with a replication counter
and a rule for the optimal number of message copies in the
network. The optimality means that MOST-RPT maximizes
the number of the message copies as inverse of the minimum
single message delivery probability based on a particular
knowledge of the message carrier about the message copies
in network as hop-count. The optimality of MOST-RPT relies
on the assumptions that (1) inter-contact times are distributed
exponentially, or they have at least an exponential tail, (2)
nodes move independently of each other as i.i.d. distribution,
(3) each node knows the average inter-contact rate of all node
pairs in the network.

Our optimal delivery probability policy differs from the
existing delivery probability policies in three important points.

1) It is a comprehensive policy which combines the direct
delivery probability as replication counter and the global
delivery probability from source to destination. In ad-
dition, it considers the cumulative delivery probability
as hop-count of the message, when the previous node
replicates the message to other intermediate nodes.

2) Our optimal delivery probability policy is a dynamic
function of two important states of the message copy
which are hop-count as storage metric and replication



counter as transmission metric to optimize the delivery
of the message copies based on resource-focused thresh-
olds.

3) Our optimal delivery probability policy considers inter-
contact time as node mobility pattern in addition to the
message information as Time-To-Live (TTL), therefore
it is efficient regardless of the nodes’ density.

Our objective for the MOST-RPT policy is that given a
resource consumption criteria in form of a certain constraint on
the maximum number of replications per single message, the
MOST-RPT replication rule maximizes the resource allocation
based on minimizing the delivery rate of each single message.
The basic idea is to model each message replication as an
optimal stopping rule problem. In Section II we give therefore
an overview on existing work and in Section III we present
the MOST-RPT policy. In Section IV we present the detailed
evaluation of MOST-RPT in comparison to current approaches.

II. RELATED WORK

An Opportunistic Network is a subclass of DTN which is
often partitioned and only provides a hop-wise end-to-end path
between nodes over time, therefore, it uses routing fashion
like Store-Carry-Forward. the Direct Delivery [5] is is the
simplest DTN routing scheme.In Direct Delivery routing pro-
tocol, the source nodes carry their messages to the destination
nodes by themselves leading to a low delivery ratio. Another
approach is Epidemic Routing which floods the message to
all encountered nodes. The Epidemic Routing occupies more
system bandwidth, node buffer space and energy consumption
for the delivery of the message. The routing protocol Spray
& Wait adapts the number of message copies between single,
direct copies as in Direct Delivery and an unlimited number of
copies. In the first phase, Spray & Wait limits the maximum
number of messages copies by a hop count limit L. It then
bounds the maximum hop counts of messages to one, i.e.
performs direct delivery. The Spray & Wait uses a quota for
message delivery as L limits the number of copies between
one and infinity.

The analysis and control of unicast DTN routing has been
widely studied. Groenevelt et al. [6] modeled epidemic and
two-hop routing using Markov chains. They found the relation
between the delay and the number of message copies. Zhang
et al. [7] derived a framework based on ordinary differential
equations (ODEs) to analyze Epidemic Routing. Neglia and
Zhang [8] use the optimal control of replication in DTNs
of epidemic routing. Their work assumes that all the nodes
know the number of nodes carrying the message. The optimal
closed-loop control is a threshold-based policy using the
number of relays carrying the message. Some DTN routing
protocols tried to achieve better performance with different
levels of knowledge about the relays. Optimal Probabilistic
Forwarding [9] aimed to maximize the delivery ratio of each
message based on its hop count and message life. The optimal
probabilistic forwarding metric derived by modeling each
forwarding task as an optimal stopping rule problem. Jia
Xu provides in his paper [10] an Optimal Joint Expected

Delay Forwarding (OJEDF) protocol which minimizes the
expected delay based on the number of forwarding times per
message. Their paper proposes a comprehensive forwarding
metric called Joint Expected Delay (JED) which is calculated
based on remaining hop-count (or ticket) and message residual
lifetime. The aim of this approach is to achieve a near-optimal
replication of the message which both provides a maximum
possible message delivery ratio, while keeping the overhead
for this purpose as small as possible.

III. SYSTEM MODEL AND ASSUMPTIONS

In the following, we describe our models for communica-
tion, mobility, routing and traffic, as well as the scheduling and
dropping policies of buffer management. This framework con-
siders resources during message delivery through node contact
duration. Our theoretical framework and its assumptions are
described as follows.

Communication Model The system of the mobile DTN
environment consists of mobile nodes. Therefore, we assume
that there is a finite number (N) of nodes in the network.
Each of these nodes has a communication interface, such as
Wi-Fi or Bluetooth, with finite and limited coverage area, we
also assume that all nodes have the same interface. Moreover,
we assume that the connection between encountered nodes is
established when nodes come in the coverage area of each
other. Furthermore, we assume that each node in the system
has limited physical storage that can store up to B messages
and that nodes only have limited energy.

Mobility Model In the DTN context, message flooding
occurs only when nodes encounter each other. Thus, the
inter-contact time (ICT) between sequential node meetings is
the basic delay component of message delivery. The contact
duration (CT) of a meeting distribution is a basic property of
the message transmission rate, both the values of ICT and CT
characterize the mobility model. ICT is related to message
delay, so it is the main criteria for end-to-end delay, CT is
related to message transmission which is assumed to be small
compared to ICT. Therefore, to formulate the optimal replica-
tion policy problem, we assume that our mobility model has
the following three properties. First, contact duration times are
distributed exponentially, or they have at least an exponential
tail. Second, nodes move independently of each other as i.i.d.
distribution, where each node moves from one location to an
other based on the movement vector of random speed and
direction. Third, the mobility of the nodes is homogeneous,
which means that all nodes have the same meeting rate λc.

Routing Model In our theory, we assume that every single
message has both an unique id at any time (t) and a single
destination, i.e. unicast communication, and is assumed to
be routed using a replication scheme. Moreover, every single
message has a limited overall life time (TTL) and a timer
(TBUF ) of staying in the current node’s buffer. During a
contact time, the routing protocol should create a list of
derivable messages among the ones that are currently in the
node buffer. Every time the node transmits a message, both the
transmission counter (replication Rc) and message hop count



TABLE I
USED NOTATIONS AND QUANTITIES

No Parameters Description
1 N Number of nodes in the network
2 n Max relayed nodes in the network
3 ICT Inter-contact time
4 P (t)m Probability of single message delivery
5 TTL Time-To-Live for message
6 P (t)N Probability of message copies delivery
7 rt Number of copies of the message in the entire network at time t
8 TBUF Queue time in the node buffer
9 nr Current relayed nodes of the message
10 λm Message replication rate
11 `R(t) The rate of “infected” nodes carrying the message
12 Hc Message hop counter
13 Rc Node message replication counter
14 λc Average meeting rate between two nodes
15 Pt Probability of message replication
16 B Max number of messages in the node’s buffer
17 K Number of different applications
18 Nmax Total of current message copies in the system
19 U(m)max Utility function for dropping of the message
20 BS% Free buffer space percentage

(Hc) are increased by one. Thus, different routing protocols
may choose different messages. For this paper, we consider the
Epidemic Routing protocol as a case study for the following
reason. First, its simplicity allows us to focus on the problem
of resource consumption. Second, it can be modeled as greedy
algorithm which can be solved by an Ordinary Differential
Equation (ODE). Third, based on our knowledge, it is the
most practical routing protocol implemented by most current
empirical DTN middlewares and is recommended by DTNG.

Resource Constraints The resource constraints of our ana-
lytical model consider that each mobile node has a physical
buffer, which can store up to B different messages, which are
either self-generated or replicated by other relay nodes. The
following two problems can arise each time a new connection
is established between encountered nodes. First, the buffer
space of the encountered node, because it might be filled with
transmitted messages. Second, the order of the transmitting
messages, because the aim of scheduling messages is to max-
imize the overall delivery probability for the entire network.
In Table I, we summarize the notations and quantities that we
use throughout our model.

The main aim of our framework is to maximize the global
delivery ratio in the opportunistic network. We propose a
dynamic replication policy for the Epidemic routing protocol,
which controls when and to which neighboring nodes to
disseminate selected messages. The nodes are considered to
have a limited physical buffer size. Our proposed dynamic
replication policy determines its scheduling decisions based on
the message information and the mobility pattern of the DTN
nodes. A utility function computes for each single message
two utility values. The proposed dynamic replication policy
uses the first utility value of the messages to determine the
messages to be transmitted when contacts occur. The second
utility value of the message is used to advise which message
to drop when the node’s buffer is full.

For the computation of the utility values, we use the
variables depicted in Table I, all of them are assumed to
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Fig. 1. Transition diagram of Markov chain for finite message dissemination

be locally available to the node. Here, the message delivery
probability function (Pt(N)), which is essential in a DTN,
is the ratio between the number of message copies (rt) to the
number of total nodes (N ). The research question remains how
to estimate this value. In the context of DTNs it is difficult to
find the global number of message copies (rt) in the network.
One possibility is to use the local information a node has
and to interpolate these estimations to the whole network. But
this information only approximates the number of message
copies disseminated at an instant time in the network. In this
paper, we propose to model the ratio between the number
of the message copies (rt) and the total number of nodes in
the network (N ) through a finite-state Markov chain. We can
formulate the state diagram of Markov chains of discrete finite
state, depicted in Figure 1, as following ordinary differential
equation:

`R(t) =
∂r

∂t
= λcr(N − r) (1)

Solving equation (1) by integrating we can write the number
of message copies at instant time as:

rt =
N

1 + (N − 1)e−tNλc
(2)

In addition we can calculate the probability of message
delivery for all messages in the system as follows:

P (t)N =
N

e−tNλc +N − 1
≈ 1− e−tNλc (3)

Now from Eq. (2) we can approximate the function of
our system model where the total number of nodes in the
network equal to maximum intermediate nodes plus source and
destination of the message, therefore, N = n+2, furthermore,
the message delivery probability function is the ratio of total
number of the message copies at instant time t to total number
of the node in the network, where the message delivery
probability function rt

N changes from 1
N at t=0 to maximum

value of 1 at t =∞ where at t =∞ the number of replication
rt equal to maximum number of the nodes in the network N .

rt
N

=
1

1 + ((n+ 2)− 1)e−tNλc
(4)



rt
N

=
1

1 + ne−tNλc + e−tNλc
(5)

In Eq. (5) the delivery probability function shows exponen-
tial behavior. From this Eq. (5), we assume that the replication
counter of the message replication at any node is Rc = e−tNλc

and the hop count of the message is Hc = ne−tNλc . As
we have always λc > λm, due to TTL < t in most cases,
we therefore calculate the delivery probability function of the
message by the following equation:

Pt =
rt
N

=
1

1 +Hc +Rc
(6)

Our system model is termed Most Of Storage and Transmis-
sion – with Replication Probability Threshold (MOST-RPT).

A. Optimal Dynamic Replication Control Strategy

We derive in this section the optimal replication policy
under the assumption that, at any instant time, all the nodes
have information about the number of relays carrying the
message as hop count and the number of relays that have
received the message as replication counter. We aim to de-
termine the optimal replication policy of each message as
function of the message delivery probability (P (t)N ), i.e., the
decision criteria according to which an infected node decides
if copying or not the message when it meets a susceptible
node. The optimization goal is to minimize the cost based on
the idea of dynamic programming which is known as optimal
cost to go [11]. Analytically, we describe the Markov decision
problem which is target to find the policy µ = µ0, ......, µT−1
that minimizes the following equation.

J = P (t)N = E[

T−1∑
t=0

gt(rt, Pt) + gT (rT )] (7)

We have the functions f0, ......, fT−1 and we have the cost
function of every stage g0, ......, gT−1, in addition we can
calculate the terminal cost gT from Eq. (3) as follows

P (t)N=1 = P (t)m = 1− e−λcTTL (8)

On one hand our model is based on the information of a
single message and on the other hand we can a prove that

P (t)m = 1− e−λcTTL ≈ λcTTL (9)

This is clear from the mathematical fact that

lim
x→0

ex − 1

x
= 1 (10)

Note that as λcTTL approaches to zero the environment will
be as sparse network. Now we can find the distributions of
independent random variables r0, w0, ........, wT−1. The whole
system can be described as dynamics of the following function

rt+1 = ft(rt, Pt, wt) (11)

From Eq. (8) and Eq. (9) we seek the state feedback policy of

Pt = µ(rt) (12)

Now from Eq. (7) and Eq. (12) we can define the Bellman
value function, as optimal cost-to-go function [11]

V ∗r = minµt,...,µT−1
E[

T−1∑
s=t

gs(rs, Ps) + gT (rT )] (13)

From Eq. (8), Eq. (9) and Eq. (13) we can minimize over
action wt and policies µt+1, ........, µT−1 where

minPt = P (t)m (14)

wt =

{
Copy Pt > λcTTL

No Copy otherwise
(15)

From Eq. (11), Eq. (13) and Eq. (15), there is an optimal
stationary policy µ(t) with a threshold behavior as

Nmax = (minPt)
−1 =

1

λcTTL
(16)

The previous equation states that the optimal policy for each
node is to copy the message every time it is possible until the
total number of infected nodes is equal to Nmax copies are
done, or the message is delivered to the destination. Note that,
the threshold value does not depend on the total number of
nodes in the network, but simply depends on their pairwise
meeting rate λc the message life time TTL as the cost function.

B. Buffer Occupancy

We assume that all the nodes of the network have the same
traffic parameters, and follow the same replication strategy,
We will turn our attention back to the buffer management of
the node, in order to investigate its optimality. The number
of message copies spread in the network at a random time
instant can be counted, assume there are K total undelivered
messages. We further assume cooperating nodes with no drop
events due to delivery or TTL expiration. They assign the
available buffer space across the whole network with N nodes,
each able to store B message copies among the copies of these
messages. Thus, we can write the following equation

k∑
i=0

ri −NB ≤ 0. (17)

Eq. (17) says that the total number of copies (for all
messages) must not exceed the available buffer space in all
N nodes. Recalling Eq. (3), we can write the expected delay
of delivered messages based on the number of message copies
as follows.

E(t)N =
1− e−tNλc

λc
(18)

Because the buffer size is equal for all nodes in the network
we estimate the buffer space as ratio of the expected delay and
the message TTL (Eq. (17) and (18)).



BS% =
E(t)N
TTL

(19)

With these deduction, we eventually formulate the forward-
ing and drop policy used in MOST-RPT. As we mentioned in
Eq. (11) and Eq. (13), the forwarding policy is based on FIFO
with the replication threshold decision calculated as follows:

send− queue =

{
FIFO Pt > λcTTL

0 otherwise
(20)

To improve the performance of our system model, we
consider two cases in which messages are dropped from the
buffer. In the first case, the message is dropped when the buffer
is full and in the second case, the message’s TTL is expired
based on Eq. (11), (16) and (19) as follow

U(m)max = TBUFP
−1
t (21)

Expired =

{
Pt <= λcTTL buffer < BS%

TTL <= 0 otherwise
(22)

With Eq. 20 we define our forwarding policy and with
Eq. 21 and 22 the dropping policy of our model.

IV. EXPERIMENT AND RESULTS

To evaluate our proposed policies MOST-RPT, we use
following metrics in the comparison with other policies.

1) Delivery Ratio is the ratio of the number of delivered
messages to the total number of generated messages.

2) Overhead Ratio is the average number of intermediate
nodes used for one delivered message.

3) Average Delay is the average delay of all messages
delivered successfully.

To reflect different traffic situations, we consider 3 scenarios.
Scenario 1 only considers 80 pedestrians with a buffer size of
5MB, a message creation interval of 25s to 35s and message
size ranging from 500KB to 1 MB. In Scenario 2, in addition
to those 80 pedestrians from Scenario 1 also 40 cars join
in. The scenario reflects a information-centric use case in
which small (64KB - 512KB and 512B - 2KB) messages
are quickly exchanged. Here the cars have a message creation
interval of 1s - 5s. Finally, in Scenario 3 we investigate the
effects of larger files and even faster nodes. 80 Pedestrians
generate 1MB - 5MB large messages every 60s to 120s. 40
cars generate at an interval of 25s to 35s messages of 64KB
to 512KB, while 6 nodes in trains generate every 1s to 5s
messages of size 512B to 2KB. During our three different
simulation scenarios we change the message TTL from 100 to
500 minutes. Through the variety of scenarios, in combination
with the 5 values for the TTL we are able to fully reflect the
quality of MOST-RPT in comparison to other policies.

The performance of proposed MOST-RPT is conducted with
5 different dropping policy of Epidemic routing algorithm.
MOST-RPT uses the send queue based on the Eq. (20) and the

dropping policy which is applied based on the Eq. (21) and
Eq. (22). For comparison we select the dropping policies of
FIFO which is selects the message with the minimum arrival
time, SHLI which is based on minimum TTL, MOFO which
selects the message with the maximum replication counter
using the higher hop count as tie breaker. In addition, we
look at MaxHop, the policy which selects the message with
the maximum hop count and MaxRep, which considers the
maximum replication. We compare those 5 different dropping
policies with the proposed MOST-RPT policy.

We run all six drop policies using the same three scenarios
with the listed parameters in Table II and compare their perfor-
mance with regards to the three above mentioned metrics under
different message TTL values and different traffic patterns.
The different three traffic patterns were simulated with the
default settings of the ONE Simulator [12], [13], using the
Epidemic routing protocol with the FIFO replication strategy
(send queue) as shown in Table II. From the settings of the
scenarios listed in Table II we can calculate the average of TTL
as 300 minutes. In addition we run the scenarios to measure
the inter-contact time (ICT) between encountered nodes in the
scenario. This ICT, in all scenarios, was approximately 5880
seconds long; from the measured ICT we can calculate the
meeting rate in the system, this rate λc was equal to 0.00017.

From Eq. (9) we can calculate the minimum probability of
delivery for a single message which is equal to 0.05. We use
it as stopping rule as explained in Eq. (12) to Eq. (14).

For all applied scenarios, based on the idea of the MOST-
RPT implementation, which considers the replication criteria
as resource concentrate, we apply the send-queue based on
FIFO sorting which is based on arrival time (oldest buffered
message), as every message will be transmitted as replicated
message Rc and stored in the buffer Hc as the arrival or
buffering time stays greater than zero. Clearly the buffering
time will be equal to zero when the message is not yet received
or the message is already dropped from the buffer by the node
itself, but for our MOST-RPT we use FIFO with replication
stopping rule as explained in Eq. (15) and Eq. (20). From
the condition of the replication stopping rule we can find
that the maximum number of replication based on the criteria
of minimum delivery probability, we formulate the minimum
probability which is based on message information and node
mobility by using Eq. (6), Eq. (14) and Eq. (16). From those
equations we can calculate that Nmax is equal to 20 copies.

For the evaluation of the dropping policies we apply six
different drop policies to analyze the performance of Epidemic
Routing when using FIFO as replication policy for send-queue.
In addition we apply our proposed model of MOST-RPT but
with different drop polices as shown in Eq. (21) and Eq. (22).
We consider the buffer occupancy to improve the performance
of proposed MOST-RPT as shown in Eq. (18) and Eq. (19), we
can see that the criteria of the stopping rule should be applied
when the node buffer space will be less than 25%.

1) Delivery Ratio: The delivery ratio of the proposed
MOST-RPT is compared with other scenarios which use
scheduling based on FIFO for send queue and different



TABLE II
SIMULATION SETTINGS

No Settings Map of downtown Helsinki, Finland
1 Simulation time 12 h
2 Number of devices (n) 126

3 Group Type with Speed
80 Pedestrians (0.5-1.5 km/h)
40 Cars (10-80 km/h )
6 Trains (10-80 km/h)

4 Simulation area Helsinki, Finland Map
5 Routing protocols Epidemic
6 Interface type Simple Broadcast
7 Transmission range 250 m
8 Bandwidth 250 KBps
9 Drop policies used FIFO, MOFO, SHLI, MaxHop, MaxRep

10 Message size ranges
Scenario 1: 0.5-1 MB
Scenario 2: 64-512 KB & 0.5-2 KB
Scenario 3: 1-5 MB & 64-512 KB & 0.5-2 KB

11 Message creation interval
Scenario 1: 25-35 s
Scenario 2: 25-35 s & 1-5 s
Scenario 3: 60-120 s & 25-35 s & 1-5 s

12 Time-to-live (TTL) 100, 200, 300, 400, 500 min

13 Default buffer size Pedestrians: 5 MB
Cars, Trains: 50 MB

dropping policies, namely FIFO, SHLI, MOFO, MaxHop and
MaxRep as shown in Figure 2. From Scenario 1 the delivery
ratio of MOST-RPT is close to the delivery ratio of the MOFO
dropping policy, as the traffic pattern of Scenario 1 is low as
shown as in Table II. The high delivery ratio of MOST-RPT
can also be seen in Scenarios 2 and 3, which have a high traffic
rate. The delivery ratio of MOST-RPT has improved as well in
comparison to the other dropping policies. From Figure 2, we
can see that the delivery ratio efficiency is low, when using
MaxRep or FIFO dropping policies, because mostly as the
messages stay longer in the buffer there is a chance to have a
higher replication counter.

2) Overhead Ratio: The main performance factor to com-
pare MOST-RPT with other different buffer managements is
the Overhead Ratio, as this factor is related to the resources
of both a single node and the network. Due to the unlimited
replication of the messages, the Epidemic Router is suffering
from the consumption of those resources. Therefore, MOST-
RPT considers the resource consumption in terms of storage
and transmission. Figure 3 shows that MOST-RPT has the
lowest overhead when compared to the others, as the send
queue policy (FIFO) of MOST-RPT is controlled by the repli-
cation stopping rule based on the probability of the message
delivery. This message delivery probability is calculated as
a function of hop count (as storage metric) and replication
counter (as transmission metric) of the message. Furthermore
from Scenario 1 of Figure 3 we notice that MOST-RPT has
a stable and minimum overhead ratio. This stability derives
from the mathematically proved optimality of both the applied
stopping rule and the dropping policy. The main idea of
replication and dropping decisions should be considered as
a trade-off to achieve the desired message delivery. While the
message replication will improve the delivery ratio, at the same
time we should mention that the dropping rate of the message
will increase when using a limited node buffer. This limitation
of the buffer space leads to higher overhead and resource
consumption. Even when increasing the message creation in

Scenario 2 and 3 of Figure 3 we can see that MOST-RPT still
has a lower overhead ratio and at the same time higher delivery
ratio when compared to the others.

3) Delay: In this section we look at the end-to-end average
delay, this metric is used as a performance metric for different
DTN applications and scenarios. Scenario 1 of Figure 4 shows
that MOST-RPT has a lower delay compared to the others,
because we consider the buffer time as a dropping policy
when the buffer is highly occupied with many messages. The
message TTL is the sum of all buffer times and transmission
times, the buffer times have the highest impact on the message
TTL. A message that is held in the buffer will have a higher
chance of replication, therefore, we consider the message
buffer time as main criteria of the storage and transmission
metrics. These functions of replication stopping rule and
dropping policy will improve the performance of Epidemic
Routing. The performance of Epidemic Routing is optimized
as greedy replication problem by MOST-RPT. Moreover, we
can see that when we increase the rate of message creation as
shown in Scenario 2 and 3 of Figure 4 respectively, MOST-
RPT has lower delay when compared to the other policies.

V. CONCLUSION AND FUTURE WORK

This paper studies the replication in Epidemic Routing in
DTN environments by formulating the problem of replication
control as a Markov chain model. The paper here considers the
replication in Epidemic Routing as heuristic problem to obtain
the optimal policy as stopping rule. We solve the problem
based on an ordinary differential equation approximation for
finding the optimally controlled Markov chain, under differ-
ent network sizes. The proposed MOST-RPT forwarding and
dropping policy is constructed based on an analytic study
which considers the trade-off between delivery probability
and resource consumption for Epidemic Routing as optimal
stopping rule of replication in DTNs. The numerical results
of this paper show that, based on an our scenarios, it gives
help to design new forwarding scheme for utility based routing
protocols to achieve better performance, namely in obtaining
the best delivery ratio in our evaluation while having the lowest
message overhead and delay.

For the future, we aim to extend our model beyond the idea
of ordinary differential equations, which is based on the fact
that all nodes in the opportunistic network are homogeneous.
This assumption is made to simplify the function formulation
of some issues in opportunistic networks such as message
dissemination, congestion control and utility based forwarding
decisions. This assumption built on the fact that the inter-
contact time of pair wise node interactions is approximated
and exponentially distributed. But in some DTN scenarios the
mobility pattern is different inside the same group which yields
to different contact and mobility modeling instead of i.i.d.
modeling. Therefore, as future work will study and look at
the modeling of heterogeneous modeling based on Markov
Chain to optimize the solution of problems in opportunistic
network issues and challenges.



0

0.2

0.4

0.6

0.8

1

100 150 200 250 300 350 400 450 500

D
el

iv
er

y 
R

at
io

 (
%

)

TTL (min)

MOST-RPT
FIFO
SHLI

0

0.2

0.4

0.6

0.8

1

100 150 200 250 300 350 400 450 500

D
el

iv
er

y 
R

at
io

 (
%

)

TTL (min)

MOFO
MaxHop
MaxRep

(a) Scenario 1

0

0.2

0.4

0.6

0.8

1

100 150 200 250 300 350 400 450 500

D
el

iv
er

y 
R

at
io

 (
%

)

TTL (min)

MOST-RPT
FIFO
SHLI

0

0.2

0.4

0.6

0.8

1

100 150 200 250 300 350 400 450 500

D
el

iv
er

y 
R

at
io

 (
%

)

TTL (min)

MOFO
MaxHop
MaxRep

(b) Scenario 2

0

0.2

0.4

0.6

0.8

1

100 150 200 250 300 350 400 450 500

D
el

iv
er

y 
R

at
io

 (
%

)

TTL (min)

MOST-RPT
FIFO
SHLI

0

0.2

0.4

0.6

0.8

1

100 150 200 250 300 350 400 450 500

D
el

iv
er

y 
R

at
io

 (
%

)

TTL (min)

MOFO
MaxHop
MaxRep

(c) Scenario 3
Fig. 2. Delivery Ratio
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(c) Scenario 3
Fig. 3. Overhead Ratio
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Fig. 4. Delay
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