
Extraction and Analysis of State
Information in Peer-to-Peer Networks

Bachelor Thesis
by

Kolja Salewski
born in
Essen

submitted to

Technology of Social Networks Lab
Jun.-Prof. Dr.-Ing. Kalman Graffi

Heinrich Heine University Düsseldorf

October 2014

Supervisors:
Jun.-Prof. Dr.-Ing. Kalman Graffi

Prof. Dr. Stefan Conrad

Abstract

This bachelor thesis is about extending the peer-to-peer (p2p) simulator PeerfactSim.KOM [Pee14]

with a database connection in order to extract detailed information concerning created or removed

nodes and connections as well as sent and received messages. The measured data should be used to

visualize the particular overlay network or parts of it in a user-configurable way in order to expand

the evaluation possibilities. Although PeerfactSim.KOM already offers visualization features, its ca-

pabilities in this area are limited as it is mainly a simulator. Examinations outside the application can

be performed by plotting generated data files but as the latter predominantly contain statistic values

it is hardly possible to retrieve information relating to a certain node or time window. Due to the

proprietary file format of PeerfactSim.KOM recordings there is no way of visualizing them without

the actual program.

I focused on the problem of subsequent analysis of executed simulations. With the published version

of the simulator it is not possible to query data about specific nodes, connections or messages of visu-

alizations created in the past. Therefore one of the main aims of my thesis was to find a user-friendly

and deeply configurable way of analyzing run simulations. I achieved this goal by automatically col-

lecting all necessary information in an adequately structured database and offering a tool to convert

the measured data to compatible inputs for already existing visualization software. Thereby it is now

possible to textually and visually evaluate simulations executed in the past. As at least one of the

visualization tools used offers various non-proprietary output formats users are from now on able to

open and change a graphical overlay representation with several applications.

iii

Acknowledgments

First of all I would like to express my deep gratitude to Jun.-Prof. Dr.-Ing. Kalman Graffi and Prof.

Dr. Stefan Conrad, who have made it possible for me to write this thesis.

Furthermore special thanks go to my advisor Tobias Amft, whose invaluable ideas, suggestions and

weekly meetings helped me a lot. This bachelor thesis would not exist without him.

Advice given by Marlis Hombergs has been a great help. Her perfectionism and ambition were very

much appreciated.

Last but not least I wish to thank my whole family and all of my friends for their inexhaustible regard

and patience during the last months.

v

Contents

List of Figures ix

List of Tables xi

Listings xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Structure . 2

2 Related Work 3

2.1 Simulation . 3

2.1.1 PeerfactSim.KOM . 3

2.2 Data Storage . 4

2.2.1 MySQL . 4

2.3 Visualization . 4

2.3.1 Graphviz . 4

2.3.2 UbiGraph . 6

3 Design 11

3.1 Database . 11

3.1.1 Name . 11

3.1.2 Tables . 12

3.2 db2vis - Database to Visualization . 15

3.2.1 Configuration . 15

3.2.2 Logging . 17

3.2.3 Visualization . 18

4 Implementation 23

4.1 PeerfactSim.KOM . 23

4.2 db2vis - Database to Visualization . 26

4.2.1 Structure . 26

vii

Contents

4.2.2 Configuration . 28

4.2.3 User Data . 31

4.2.4 Database Connection . 31

4.2.5 Logging . 31

4.2.6 Visualization . 31

5 Evaluation 43

5.1 Comparison of Programs PeerfactSim.KOM, Graphviz and UbiGraph 43

5.1.1 PeerfactSim.KOM . 43

5.1.2 Graphviz . 44

5.1.3 UbiGraph . 45

5.1.4 Facts and Figures . 46

5.2 Comparison of Programs PeerfactSim.KOM and db2vis 54

5.3 Appropriate Visualization . 54

5.4 Scalability . 55

5.4.1 PeerfactSim.KOM . 55

5.4.2 db2vis - Database to Visualization . 58

5.4.3 Graphviz . 60

6 Conclusions 69

6.1 Results . 69

6.2 Open Questions . 70

6.3 Future Work . 70

Bibliography 73

viii

List of Figures

2.1 Chord Ring Visualized by Graphviz Layout circo 6

2.2 Chord Ring Visualized by UbiGraph . 9

4.1 Hierarchical Position of Java Class Simulator . 24

4.2 Hierarchical Position of Java Package events . 25

4.3 Project Structure of Program db2vis . 26

4.4 UML Class Diagram of Program db2vis . 27

4.5 UML Sequence Diagram of Java Method visualizeGv 32

4.6 UML Sequence Diagram of Java Method readRs 34

4.7 UML Sequence Diagram of Java Method readGvNode 35

4.8 UML Sequence Diagram of Java Method readGvEdge 37

4.9 UML Sequence Diagram of Java Method readGvMsg 39

5.1 Quantity of Layouts in Programs PeerfactSim.KOM, Graphviz and UbiGraph 46

5.2 Gnutella 0.4 Overlay Visualized by Graphviz Layout dot 47

5.3 Gnutella 0.4 Overlay Visualized by Graphviz Layout circo 48

5.4 Gnutella 0.4 Overlay Visualized by Graphviz Layout neato 48

5.5 Gnutella 0.4 Overlay Visualized by Graphviz Layout twopi 48

5.6 Gnutella 0.4 Overlay Visualized by Graphviz Layout fdp 48

5.7 Quantity of Node Attributes in Programs PeerfactSim.KOM, Graphviz and UbiGraph 49

5.8 Quantity of Edge Attributes in Programs PeerfactSim.KOM, Graphviz and UbiGraph 49

5.9 Quantity of Output Formats in Programs PeerfactSim.KOM, Graphviz and UbiGraph 50

5.10 Chord Overlay Visualized by PeerfactSim.KOM . 51

5.11 Chord Overlay Visualized by Graphviz . 51

5.12 Chord Overlay Visualized by UbiGraph . 51

5.13 Gnutella 0.4 Overlay Visualized by PeerfactSim.KOM 52

5.14 Gnutella 0.4 Overlay Visualized by Graphviz . 52

5.15 Gnutella 0.4 Overlay Visualized by UbiGraph . 52

5.16 Pastry Overlay Visualized by PeerfactSim.KOM . 53

5.17 Pastry Overlay Visualized by Graphviz . 53

5.18 Pastry Overlay Visualized by UbiGraph . 53

ix

List of Figures

5.19 File Size of Graphviz Output Formats in Relation to Number of Objects, Example 1 . 65

5.20 File Size of Graphviz Output Formats in Relation to Number of Objects, Example 2 . 66

5.21 File Size of Graphviz Output Formats in Relation to Number of Objects, Example 3 . 66

5.22 File Size of Graphviz Output Formats in Relation to Number of Objects, Example 4 . 67

x

List of Tables

3.1 Example of Database/Folder Naming Convention 12

3.2 Description of Database Table node . 13

3.3 Example of Database Table node . 13

3.4 Description of Database Table edge . 14

3.5 Example of Database Table edge . 14

3.6 Description of Database Table message . 14

3.7 Example of Database Table message . 14

4.1 Configuration Settings of Program db2vis . 28

5.1 Comparison of Programs PeerfactSim.KOM and db2vis 54

5.2 Hardware Configurations Used for Performance Tests 55

5.3 Performance Impact on Program PeerfactSim.KOM by Database Connection, Ex. 1 . 56

5.4 Performance Impact on Program PeerfactSim.KOM by Database Connection, Ex. 2 . 57

5.5 Execution Time of Program db2vis, Example 1 . 58

5.6 Execution Time of Program db2vis, Example 2 . 58

5.7 Size of Files Generated by Program db2vis . 59

5.8 Creation Time Comparison of Output Formats Offered by Program Graphviz, Ex. 1 . 60

5.9 Creation Time Comparison of Output Formats Offered by Program Graphviz, Ex. 2 . 62

5.10 Size Comparison of Output Formats Offered by Program Graphviz 63

xi

Listings

2.1 Example of a gv File . 5

2.2 Example of a UbiGraph Command Set in Java . 7

3.1 Example Part of db2vis User Configuration File . 17

3.2 Begin of Shell Script for Unix . 20

3.3 End of Shell Script for Unix . 21

3.4 Begin of Batch File for Windows . 21

3.5 End of Batch File for Windows . 21

4.1 Creation of Database Table edge . 24

4.2 Insert into Database Table edge . 25

xiii

Chapter 1

Introduction

The motivation and structure of this bachelor thesis are introduced below. Section 1.1 presents the

former and Section 1.2 the latter. Necessary background information is given, the current situation as

well as the targeted one are described.

1.1 Motivation

Peer-to-peer networks are at least partially decentralized architectures and usually consist of equally

privileged nodes. Therefore typically any instance taking part in the former offers but also uses ser-

vices (like file sharing, voice over IP, instant messaging or computational capacity). This is the main

difference to client-server architectures, in which one or more servers provide resources as a cen-

tral unit and clients request them. One of the advantages of peer-to-peer networks over conventional

client-server architectures is the scalability due to the growth of resources like unused computational

power, free storage capacity or available bandwidth with each additional peer. As the shared contents

often exist multiple times, the data is kept in a redundant form. The biggest challenge of the so-called

overlays which realize different types of peer-to-peer networks is the self-organization in order to

manage the join and leave process of participants but also to assign data, tasks and resources to them.

The use of simulators for peer-to-peer networks and distributed systems enables the user to evaluate

different overlay architectures and protocols. By visualizing the generated events it is possible to get

an overview and keep track of changes without manually analyzing a huge amount of logged actions.

Although the simulator PeerfactSim.KOM already offers a lot of possibilities a user could miss the

option to select single events or small time windows which are part of very large simulations. A pos-

sibility of configuring the optical appearance or of using different layouts positioning the nodes and

their connections based on various algorithms would also be an advantage. With the help of the latter

it could be possible to recognize specific structures such as rings formed by the particular overlay

without adding fixed position information to each node.

1

Chapter 1 Introduction

1.2 Structure

Part of this bachelor thesis consisted of finding a reasonable database structure to automatically collect

all information needed for further analysis and visualization in the background while generating a

new simulation run. The main challenge was to implement a tool to visualize the measured data

with the help of existing programs. For this purpose db2vis (database to visualization) was designed

and developed, a software converting the database entries to visualization commands used by tools

Graphviz [Gra14] and UbiGraph [Ubi14b].

In Chapter 2 the software used for simulation, data storage and visualization is introduced.

Chapter 3 describes the database and software design. The generated database tables and their

columns are characterized before presenting the way db2vis is designed to be configured, to log and

visualize.

Afterwards the implementation is described in Chapter 4. This comprises a documentation of the

extensions made in PeerfactSim.KOM. The different parts of db2vis such as configuration, logging

and visualization are the main topics.

Chapter 5 evaluates the features and limitations of PeerfactSim.KOM, Graphviz and UbiGraph. The

visualization results of the three applications are compared before discussing the challenge of appro-

priate visualization. Furthermore the scalability of PeerfactSim.KOM, db2vis and Graphviz referring

to overlay size is analyzed.

Finally Chapter 6 summarizes the results, discusses open questions and provides ideas for possible

future work on db2vis and its database input.

2

Chapter 2

Related Work

In this chapter the software used for simulation (Section 2.1), data storage (Section 2.2) and visual-

ization (Section 2.3) is presented. The aims and features of each program as well as the particular

version used during this thesis are stated.

2.1 Simulation

2.1.1 PeerfactSim.KOM

PeerfactSim.KOM [Gra11] is an open source software for simulating potentially large distributed/peer-

to-peer networks. It has been developed at the Technical University (TU) Darmstadt [Tec14] and fur-

ther extended as well as maintained by the University of Paderborn (UPB) [Uni14] and the Heinrich

Heine University Düsseldorf (HHU) [Hei14]. The simulator contains various layers, of which the

peer-to-peer overlay layer covers structured, unstructured and information dissemination p2p over-

lays. Thanks to the filters offered inside the visualization window of PeerfactSim.KOM the user is

able to show just the information he or she is interested in. Different metrics can be shown in order

to compare properties of the nodes and connections. As all events follow a time line it is possible to

move forward and backward inside the whole specified simulation time.

The relevant visualization events consist of added/changed/removed nodes, added/removed edges and

sent messages. Each of these six events is defined in its own class. With each event taking place an

according object is created by calling the particular constructor. The latter expects a visual overlay

node respectively edge as argument in case of an added/removed node or edge. To change a node the

attribute object and its changed attributes need to be given as constructor parameters. The construc-

tor of a message sent event demands the message type as well as the visual overlay nodes sending

respectively receiving the message.

3

Chapter 2 Related Work

Each visual overlay node object contains information about its attributes such as net ID, overlay ID,

location, topological/schematic position, overlay and document counter. Visual overlay edge objects

at least consist of the two visual overlay nodes connected and optionally of additional attributes like

message type, payload et cetera.

All statements about PeerfactSim.KOM refer to the Community Edition released on 2013/10/17.

2.2 Data Storage

2.2.1 MySQL

MySQL [Ora14e] is a relational database management system (RDBMS) originally engineered by

MySQL AB [Saf14] (acquired by Sun Microsystems [Ora14f], in turn acquired by Oracle Corpora-

tion [Ora14a]). The community edition used for this thesis is a freely downloadable version of the

open source database. Databases and their tables can be created and accessed via several connectors

like Java Database Connectivity (JDBC) [Ora14b], an application programming interface (API) for

Java [Ora14c]. The JDBC driver for MySQL is MySQL Connector/J [Ora14d].

MySQL Server 5.6.21.1 and MySQL Connector/J 5.1.33 are the latest versions used in this thesis.

2.3 Visualization

This section introduces the visualization software used, Graphviz in Subsection 2.3.1 and UbiGraph

in Subsection 2.3.2. Inputs and outputs are shown for both tools. The former are desired to be

automatically generated by db2vis for any given simulation database created by PeerfactSim.KOM.

2.3.1 Graphviz

Graphviz [EGK+02] (short for "Graph Visualization Software") is an open source program for visual-

izing objects as well as their relations and has been initiated by AT&T Labs Research [Lab14]. It offers

several layouts, each using a different algorithm for positioning the elements to be shown. Inputs are

taken by commands in a graph description language and can be passed in the form of a text file given

as parameter. Outputs can be textual or graphical, while various file formats are supported. Graphviz

produces static two-dimensional graphs and provides numerous attributes to customize visualization.

In this bachelor thesis version 2.38 of the stable release for Windows [Mic14] and Ubuntu [Can14]

13.10 x64 was used.

4

2.3 Visualization

In Listing 2.1 one can find the content of a gv file that contains the textual Graphviz representation of a

so-called Chord Ring with five nodes and ten edges. The hexadecimal RGB triple 00ffff represents the

color cyan, 00ff00 stands for green. In this example the former is used for so-called predecessor edges

and the latter for successor ones. Subsubsection Graphviz of Subsection 3.2.3 provides additional

information about gv files.

Listing 2.1: Example of a gv File

/ / < g raph type > < graph name> {
d i g r a p h G {
/ / g raph a t t r i b u t e s
/ / < a t t r i b u t e > = < va lue >
o u t p u t o r d e r = e d g e s f i r s t

/ / node a t t r i b u t e s
/ / node [< a t t r i b u t e > = < va lue >]
node [s t y l e = f i l l e d]

/ / nodes
/ / <node > [< a t t r i b u t e > = < va lue >]
" 6 5 . 1 6 0 . 4 2 . 9 6 " [l a b e l = " Germany \ nNet ID : 6 5 . 1 6 0 . 4 2 . 9 6 "]
" 6 8 . 1 6 1 . 9 2 . 9 9 " [l a b e l = " GlasgowCity \ nNet ID : 6 8 . 1 6 1 . 9 2 . 9 9 "]
" 2 0 7 . 3 7 . 2 4 3 . 1 " [l a b e l = " L a t i n A m e r i c a \ nNet ID : 2 0 7 . 3 7 . 2 4 3 . 1 "]
" 2 0 6 . 1 6 7 . 1 9 5 . 1 " [l a b e l = " Germany \ nNet ID : 2 0 6 . 1 6 7 . 1 9 5 . 1 "]
" 6 4 . 5 3 . 2 0 9 . 2 2 5 " [l a b e l = " L a t i n A m e r i c a \ nNet ID : 6 4 . 5 3 . 2 0 9 . 2 2 5 "]

/ / edges
/ / <from node > <edge type > < t o node > [< a t t r i b u t e > = < va lue >]
" 6 5 . 1 6 0 . 4 2 . 9 6 " −> " 6 8 . 1 6 1 . 9 2 . 9 9 " [c o l o r = "#00 f f f f "]
" 2 0 7 . 3 7 . 2 4 3 . 1 " −> " 6 8 . 1 6 1 . 9 2 . 9 9 " [c o l o r = "#00 f f 0 0 "]
" 6 8 . 1 6 1 . 9 2 . 9 9 " −> " 2 0 7 . 3 7 . 2 4 3 . 1 " [c o l o r = "#00 f f f f "]
" 2 0 6 . 1 6 7 . 1 9 5 . 1 " −> " 2 0 7 . 3 7 . 2 4 3 . 1 " [c o l o r = "#00 f f 0 0 "]
" 2 0 7 . 3 7 . 2 4 3 . 1 " −> " 2 0 6 . 1 6 7 . 1 9 5 . 1 " [c o l o r = "#00 f f f f "]
" 6 4 . 5 3 . 2 0 9 . 2 2 5 " −> " 2 0 6 . 1 6 7 . 1 9 5 . 1 " [c o l o r = "#00 f f 0 0 "]
" 2 0 6 . 1 6 7 . 1 9 5 . 1 " −> " 6 4 . 5 3 . 2 0 9 . 2 2 5 " [c o l o r = "#00 f f f f "]
" 6 5 . 1 6 0 . 4 2 . 9 6 " −> " 6 4 . 5 3 . 2 0 9 . 2 2 5 " [c o l o r = "#00 f f 0 0 "]
" 6 4 . 5 3 . 2 0 9 . 2 2 5 " −> " 6 5 . 1 6 0 . 4 2 . 9 6 " [c o l o r = "#00 f f f f "]
" 6 8 . 1 6 1 . 9 2 . 9 9 " −> " 6 5 . 1 6 0 . 4 2 . 9 6 " [c o l o r = "#00 f f 0 0 "]
}

As one can see the graph and therefore also the edges are meant to be directed, all node shapes are to

be filled and each one is supposed to be labeled with its location and net ID. Rendering this gv file as

PDF with the circular Graphviz layout circo produces the vector graphic shown in Figure 2.1.

5

Chapter 2 Related Work

Figure 2.1: Chord Ring Visualized by Graphviz Layout circo

LatinAmerica
Net ID: 207.37.243.1

GlasgowCity
Net ID: 68.161.92.99

Germany
Net ID: 206.167.195.1

LatinAmerica
Net ID: 64.53.209.225

Germany
Net ID: 65.160.42.96

2.3.2 UbiGraph

UbiGraph [Vel07] is a free application for visualizing dynamic graphs and is offered by Ubiety Lab,

Inc. [Ubi14a]. It talks to various programming languages, which enables direct communication. Es-

tablished standards, libraries and APIs are used for cross-language, rendering and parallelism. Various

vertex and edge attributes are supported. UbiGraph draws interactive three-dimensional graphs.

The version used for this thesis carries the number 0.2.4 and was developed for Ubuntu 8.04 x64.

In Listing 2.2 one can find the UbiGraph commands in Java [Gos00], which represent exactly the

same Chord Ring as listed in Listing 2.1 and as shown in Figure 2.1.

6

2.3 Visualization

Listing 2.2: Example of a UbiGraph Command Set in Java

/ / c r e a t e graph
U b i g r a p h C l i e n t g raph = new U b i g r a p h C l i e n t () ;

/ / s e t d e f a u l t v e r t e x s t y l e a t t r i b u t e s
/ / graph . s e t V e r t e x S t y l e A t t r i b u t e (< s t y l e ID > , < a t t r i b u t e > , <va lue >) ;
graph . s e t V e r t e x S t y l e A t t r i b u t e (0 , " shape " , " s p h e r e ") ;
g raph . s e t V e r t e x S t y l e A t t r i b u t e (0 , " s i z e " , " 0 . 1 ") ;

/ / c r e a t e edge s t y l e s and s e t t h e i r a t t r i b u t e s
/ / graph . newEdgeS ty l e (< s t y l e ID > , <p ass ed s t y l e ID >) ;
/ / graph . s e t E d g e S t y l e A t t r i b u t e (< s t y l e ID > , < a t t r i b u t e > , <va lue >) ;
/ / p r e d e c e s s o r edge
graph . newEdgeSty le (1 , 0) ;
g raph . s e t E d g e S t y l e A t t r i b u t e (1 , " c o l o r " , " #00 f f f f ") ;
g raph . s e t E d g e S t y l e A t t r i b u t e (1 , " a r r o w _ l e n g t h " , " 0 . 5 ") ;
g raph . s e t E d g e S t y l e A t t r i b u t e (1 , " ar row " , " t r u e ") ;
g raph . s e t E d g e S t y l e A t t r i b u t e (1 , " a r r o w _ p o s i t i o n " , " 1 . 0 ") ;
g raph . s e t E d g e S t y l e A t t r i b u t e (1 , " a r r o w _ r a d i u s " , " 0 . 5 ") ;
/ / s u c c e s s o r edge
graph . newEdgeSty le (2 , 0) ;
g raph . s e t E d g e S t y l e A t t r i b u t e (2 , " c o l o r " , " #00 f f 0 0 ") ;
g raph . s e t E d g e S t y l e A t t r i b u t e (2 , " a r r o w _ l e n g t h " , " 0 . 5 ") ;
g raph . s e t E d g e S t y l e A t t r i b u t e (2 , " ar row " , " t r u e ") ;
g raph . s e t E d g e S t y l e A t t r i b u t e (2 , " a r r o w _ p o s i t i o n " , " 1 . 0 ") ;
g raph . s e t E d g e S t y l e A t t r i b u t e (2 , " a r r o w _ r a d i u s " , " 0 . 5 ") ;

/ / c r e a t e v e r t e x e s and s e t t h e i r a t t r i b u t e s
/ / graph . newVer tex (< v e r t e x ID >) ;
/ / graph . s e t V e r t e x A t t r i b u t e (< v e r t e x ID > , < a t t r i b u t e > , <va lue >) ;
/ / node 6 5 . 1 6 0 . 4 2 . 9 6
graph . newVertex (1 0) ;
g raph . s e t V e r t e x A t t r i b u t e (1 0 , " l a b e l " , " Germany (Net ID : 6 5 . 1 6 0 . 4 2 . 9 6) ") ;
/ / node 6 8 . 1 6 1 . 9 2 . 9 9
graph . newVertex (2 0) ;
g raph . s e t V e r t e x A t t r i b u t e (2 0 , " l a b e l " , " GlasgowCi ty (Net ID : 6 8 . 1 6 1 . 9 2 . 9 9)

") ;
/ / node 2 0 7 . 3 7 . 2 4 3 . 1
graph . newVertex (3 0) ;
g raph . s e t V e r t e x A t t r i b u t e (3 0 , " l a b e l " , " L a t i n A m e r i c a (Net ID :

2 0 7 . 3 7 . 2 4 3 . 1) ") ;
/ / node 2 0 6 . 1 6 7 . 1 9 5 . 1
graph . newVertex (4 0) ;

7

Chapter 2 Related Work

graph . s e t V e r t e x A t t r i b u t e (4 0 , " l a b e l " , " Germany (Net ID : 2 0 6 . 1 6 7 . 1 9 5 . 1) ") ;
/ / node 6 4 . 5 3 . 2 0 9 . 2 2 5
graph . newVertex (5 0) ;
g raph . s e t V e r t e x A t t r i b u t e (5 0 , " l a b e l " , " L a t i n A m e r i c a (Net ID :

6 4 . 5 3 . 2 0 9 . 2 2 5) ") ;

/ / c r e a t e edges and change t h e i r s t y l e
/ / graph . newEdge(< edge ID > , <from v e r t e x ID > , <t o v e r t e x ID >) ;
/ / graph . c h a n g e E d g e S t y l e (< edge ID > , < s t y l e ID >) ;
/ / p r e d e c e s s o r edge from 6 5 . 1 6 0 . 4 2 . 9 6 t o 6 8 . 1 6 1 . 9 2 . 9 9
graph . newEdge (1 0 0 , 10 , 20) ;
g raph . c h a n g e E d g e S t y l e (1 0 0 , 1) ;
/ / s u c c e s s o r edge from 2 0 7 . 3 7 . 2 4 3 . 1 t o 6 8 . 1 6 1 . 9 2 . 9 9
graph . newEdge (2 0 0 , 30 , 20) ;
g raph . c h a n g e E d g e S t y l e (2 0 0 , 2) ;
/ / p r e d e c e s s o r edge from 6 8 . 1 6 1 . 9 2 . 9 9 t o 2 0 7 . 3 7 . 2 4 3 . 1
graph . newEdge (3 0 0 , 20 , 30) ;
g raph . c h a n g e E d g e S t y l e (3 0 0 , 1) ;
/ / s u c c e s s o r edge from 2 0 6 . 1 6 7 . 1 9 5 . 1 t o 2 0 7 . 3 7 . 2 4 3 . 1
graph . newEdge (4 0 0 , 40 , 30) ;
g raph . c h a n g e E d g e S t y l e (4 0 0 , 2) ;
/ / p r e d e c e s s o r edge from 2 0 7 . 3 7 . 2 4 3 . 1 t o 2 0 6 . 1 6 7 . 1 9 5 . 1
graph . newEdge (5 0 0 , 30 , 40) ;
g raph . c h a n g e E d g e S t y l e (5 0 0 , 1) ;
/ / s u c c e s s o r edge from 6 4 . 5 3 . 2 0 9 . 2 2 5 t o 2 0 6 . 1 6 7 . 1 9 5 . 1
graph . newEdge (6 0 0 , 50 , 40) ;
g raph . c h a n g e E d g e S t y l e (6 0 0 , 2) ;
/ / p r e d e c e s s o r edge from 2 0 6 . 1 6 7 . 1 9 5 . 1 t o 6 4 . 5 3 . 2 0 9 . 2 2 5
graph . newEdge (7 0 0 , 40 , 50) ;
g raph . c h a n g e E d g e S t y l e (7 0 0 , 1) ;
/ / s u c c e s s o r edge from 6 5 . 1 6 0 . 4 2 . 9 6 t o 6 4 . 5 3 . 2 0 9 . 2 2 5
graph . newEdge (8 0 0 , 10 , 50) ;
g raph . c h a n g e E d g e S t y l e (8 0 0 , 2) ;
/ / p r e d e c e s s o r edge from 6 4 . 5 3 . 2 0 9 . 2 2 5 t o 6 5 . 1 6 0 . 4 2 . 9 6
graph . newEdge (9 0 0 , 50 , 10) ;
g raph . c h a n g e E d g e S t y l e (9 0 0 , 1) ;
/ / s u c c e s s o r edge from 6 8 . 1 6 1 . 9 2 . 9 9 t o 6 5 . 1 6 0 . 4 2 . 9 6
graph . newEdge (1 0 0 0 , 20 , 10) ;
g raph . c h a n g e E d g e S t y l e (1 0 0 0 , 2) ;

Executing these UbiGraph commands in Java produces the graph shown in Figure 2.2.

8

2.3 Visualization

Figure 2.2: Chord Ring Visualized by UbiGraph

9

Chapter 3

Design

This chapter gives an overview of the design decisions made. Just as a reminder: The intention

of extending PeerfactSim.KOM with a database connection is to store state information collected

during simulation. Hereby a textual examination both manually and automatically is proposed to be

possible. Consequently the purpose of db2vis is to use the measured data for visualizing overlays in a

configurable way with the help of the visualization tools Graphviz and UbiGraph.

In Section 3.1 the database naming convention and table structures are described, Section 3.2 details

the design of the software configuration, logging and visualization. The criteria of each decision were

usability, performance and compatibility. As there were often several alternatives, the reasons for the

one chosen are presented.

3.1 Database

The database design including its naming convention and table structures is presented in Subsec-

tions 3.1.1 and 3.1.2, respectively. In each simulation run executed by PeerfactSim.KOM a new

database on the locally hosted MySQL [WA02] server is created to separate the measured data be-

tween the different simulations.

3.1.1 Name

In order to achieve a usability as intuitive as possible the database name is similar to the output folder

name generated by PeerfactSim.KOM (<timestamp>__<overlay>__seed_<seed_no.>). The only dif-

ference is the symbol ’_’ instead of ’-’ inside the timestamp due to MySQL database naming conven-

tions, as can be seen in Table 3.1.

11

Chapter 3 Design

Table 3.1: Example of Database/Folder Naming Convention

Name Used by

2014-09-18_15-51-36__chord__seed_5342083169705674899 PeerfactSim.KOM

2014_09_18_15_51_36__chord__seed_5342083169705674899 Database

3.1.2 Tables

Inside the database three tables are created named node, edge and message. This separation reduces

table size and redundant data. Each table is designed to contain as much data as necessary but as little

as possible to gain all relevant information while minimizing the performance impact. As a result

table node does not contain any information like the number of neighbors or a counter for sent and

received messages as these factors can already be retrieved by appropriate queries of the other two

tables. As another consequence of this database design tables edge and message do not save any other

node data than the affected net IDs. The allowed length of the particular field value is designed to

contain exactly the necessary information - not more, not less. Fields containing net IDs for example

allow up to 15 characters: Three dots plus at most twelve numerals. The type of field considers the

desired content in order to force correct input and improve storage efficiency as well as usefulness for

queries. A good example is the time field, which expects inputs compatible with MySQL data type

time(3) in order to prevent not or falsely interpretable time formats and to be able to sort the table

chronologically ascending or descending, to compare different time values et cetera.

Although MySQL is a relational DBMS as already mentioned in Subsection 2.2.1, its relational fea-

tures do not have to be used as they are sometimes neither necessary nor suitable. One of these cases

is the database connection between PeerfactSim.KOM and db2vis. As the database is supposed to not

only contain the latest overlay state but also all previous ones in order to be able to visualize the over-

lay process and not only its final condition, all three tables potentially contain more than one entry

representing the same node, edge or message. Changes as well as removals of nodes and edges must

not be logged by simply updating or deleting the particular table entries but by inserting additional

ones. Even messages which of course cannot be changed or removed once they are sent have to cause

a new table entry each time they are sent - even if sender, receiver and type are identical as not only

the latest occurrence is supposed to be visualized but also each previous one. In consequence none of

the tables contains any primary or foreign key as actually no field holds exclusively unique values but

potentially also duplicates. Due to the insertion of the particular simulation time in each table entry

the latter can be distinguished without any difficulty even if all other columns are identical. This is

for example the case if the same node or edge is added, then removed and finally added again. Due to

the fact that entries are inserted by PeerfactSim.KOM during the simulation run they are automatically

ordered by simulation time.

12

3.1 Database

Below one can find the structure of all three database tables. Column Field of each description table

contains the field names, Type the particular MySQL data type, Null specifies if it is allowed to insert

a new entry in that database table without giving the particular field any value or the value (not string)

null which stands for nothing. At last column Description explains the intention of that field.

Database Table node

Table 3.2 describes database table node. Fields overlayId and doc_count allow null as some overlay

implementations within PeerfactSim.KOM do not provide information about these node attributes.

Table 3.2: Description of Database Table node

Field Type Null Description

time time(3) No Current simulation time (<hhh>:<mm>:<ss>.<fff>)

netId varchar(15) No Net ID (text, max. 15 characters)

overlayId varchar(19) Yes Overlay ID (text, max. 19 characters)

location varchar(12) No Location (text, max. 12 characters)

topological_pos varchar(22) No Topological position (text, max. 22 characters)

schematic_pos varchar(25) No Schematic position (text, max. 25 characters)

overlay varchar(10) No Used overlays (text, max. 10 characters)

overlay_raw varchar(23) No Overlays, class names (text, max. 23 characters)

doc_count int(11) Yes Number of documents (integer, max. 11 numerals)

action varchar(7) No Action executed (added/changed/removed expected)

Table 3.3 represents a node with its attributes that was added after ten seconds of simulation.

Table 3.3: Example of Database Table node

time netId overlayId location topological_pos

00:00:10.000 64.70.178.2 97e9b..26134 Germany (1296.3049,1318.0181)

schematic_pos overlay overlay_raw doc_count action

(0.27848208,0.16693869) [Chord] [ChordNode] 0 added

Database Table edge

Table 3.4 describes database table edge.

13

Chapter 3 Design

Table 3.4: Description of Database Table edge

Field Type Null Description

time time(3) No Current simulation time (<hhh>:<mm>:<ss>.<fff>)

nodeA varchar(15) No Net ID of node A (text, max. 15 characters)

nodeB varchar(15) No Net ID of node B (text, max. 15 characters)

type varchar(22) No Type (text, max. 22 characters)

action varchar(7) No Action executed (added/removed expected)

In Table 3.5 one can find an example of a so-called successor edge between the nodes 64.70.178.2

and 209.180.6.41 that was added at 1 m 467 ms.

Table 3.5: Example of Database Table edge

time nodeA nodeB type action

00:01:00.467 64.70.178.2 209.180.6.41 successor added

Database Table message

Table 3.6 describes database table message.

Table 3.6: Description of Database Table message

Field Type Null Description

time time(3) No Current simulation time (<hhh>:<mm>:<ss>.<fff>)

nodeA varchar(15) No Net ID of node A (text, max. 15 characters)

nodeB varchar(15) No Net ID of node B (text, max. 15 characters)

type varchar(24) No Type (text, max. 24 characters)

An example of a so-called retrieve successor message sent by node 64.70.178.2 to node 209.180.6.41

at 1 m 530 ms can be found in Table 3.7.

Table 3.7: Example of Database Table message

time nodeA nodeB type

00:01:00.530 64.70.178.2 209.180.6.41 RetrieveSuccessorMsg

14

3.2 db2vis - Database to Visualization

3.2 db2vis - Database to Visualization

In this section the design of the db2vis configuration (Subsection 3.2.1), logging (Subsection 3.2.2)

and visualization (Subsection 3.2.3) is detailed.

db2vis is written in Java as is PeerfactSim.KOM for three main reasons:

1. Harmonize the way of database access between the two applications

2. Make extensions which are necessary in both programs as simple as possible

3. Be able to talk to UbiGraph

db2vis uses three classes, out of which class Db2Vis contains the main method. The other ones

are Node and GvLayout which represent an overlay node and a Graphviz layout, respectively, each

containing specific attributes. This way an unlimited number of according objects can be created as

well as differentiated.

To successfully run the program the user has to specify the complete path to the configuration file

(including filename) to be used:

run.<script file extension> <user configuration path>

Example:

run.sh config/chord.cfg

As a consequence of this users are able to create multiple configuration files and switch between them

when executing db2vis.

3.2.1 Configuration

The program first reads the user configuration file, checks its syntax and saves its attributes and values.

The configuration is designed hierarchically in order to simplify recognizing which part the particular

setting belongs to. The file offers three main sections, namely general, graphviz and ubigraph. These

sections start with a headline consisting of ### and the particular section name:

<section>

Example:

general

15

Chapter 3 Design

All subsections until the next section start with ## and a convenient title:

<title>

Example: ## connection colors & names

If additional information is needed to understand the expected syntax of the particular attribute or

if an example is provided there is at least one subsubsection line beginning with # followed by an

explanation or example:

<explanation/example>

Example:

format: hex rgb triple, blank, comma- & blank-separated names

The actual inputs given by the user are expected in the line(s) below the respective (sub)subsection.

If an attribute as well as at least one value should be given, the typed line has to have the following

syntax:

<attribute> <value1>, <value2>, ...

Example:

00ff00 successor

In case no attribute is estimated the value(s) is/are expected to be (as above) simply typed one after

another separated by a comma and a blank:

<value1>, <value2>, ...

Example:

successor, predecessor

The examples provided above together with some additional lines could look like Listing 3.1 in the

user configuration file.

16

3.2 db2vis - Database to Visualization

Listing 3.1: Example Part of db2vis User Configuration File

g e n e r a l
c o n n e c t i o n c o l o r s & names
f o r m a t : hex rgb t r i p l e , b lank , comma− & blank−s e p a r a t e d names
example (w i t h o u t #) :
0 a1b2c c o n n e c t i o n 1 , c o n n e c t i o n 2
00 f f 0 0 s u c c e s s o r
00 f f f f p r e d e c e s s o r
c0c0c0 f i n g e r

As the user has the possibility to configure if a log file should be created and if Graphviz, UbiGraph

or both tools should be used for visualization, these elemental functionalities are presented next.

3.2.2 Logging

In case of activated logging a new folder outputs is created in the directory from which db2vis is run.

Furthermore db2vis creates a subfolder logging within the output folder. In this logging folder another

subdirectory is created and named like the output folder name of PeerfactSim.KOM (see Table 3.1):

outputs/logging/<timestamp>__<overlay>__seed_<seed_no.>/

Example:

outputs/logging/2014-09-18_15-51-36__chord__seed_0/

A new log file whose name consists of the current system timestamp followed by .log is created within

the folder of the particular simulation each time it is visualized:

<system timestamp>.log

Example:

2014-09-19_13-03-21.235.log

Each line of the log file consists of the current system timestamp followed by the performed action:

<system timestamp> <action>

Example:

2014-09-19 13:03:24.330 connected to database 2014_09_18_15_51_36__chord__seed_0

17

Chapter 3 Design

In case anything went wrong suitable warning and error messages are written into the log file as well

as the system console. They begin with warning: or error:, respectively, and are highlighted by an

empty line above and below. While warnings do not force the program to exit, errors do.

Example:

2014-09-21 15:55:50.626 warning: could not remove UbiGraph predecessor edge from 69.21.148.41

to 69.21.148.41 at simulation time 000:01:00.930 because self-edges are not yet allowed by Ubi-

Graph.

As all events are logged at the time of occurrence the log lines are chronologically ordered. At the end

of the log users are informed if db2vis terminated successfully to detect an unexpected termination.

Example:

2014-09-21 15:56:34.920 finished visualization

3.2.3 Visualization

If both visualization tools are specified to be used, the program begins with Graphviz and then executes

the UbiGraph commands. Independently of the tool used db2vis then starts to read all three database

tables in chronological order by reading line after line of each table and comparing their time fields.

The earliest event is visualized first. Each time db2vis reads an added node in the database, a new

object of class Node is created.

Graphviz

The Graphviz part of the program creates a subfolder named outputs in the directory from which

db2vis is run if it does not already exist due to activated logging. In this output folder another subdi-

rectory is created and named like the output folder name of PeerfactSim.KOM (see Table 3.1). Finally

a last folder is created named by the particular system timestamp. Thus the output folder name does

not change if the same simulation is visualized multiple times, whereas its subfolder is only used once

because of the new system time. So the whole path to the output files has the following structure:

outputs/<timestamp>__<overlay>__seed_<seed_no.>/<system timestamp>/

Example:

outputs/2014-09-18_15-51-36__chord__seed_0/2014-09-19_13-03-21.235/

18

3.2 db2vis - Database to Visualization

Each user-configured layout produces its own outputs by creating files in the following format:

<simulation time>_<extension>_<layout>.gv

<simulation time> is the particular time of the database entry read at the moment of file creation.

<extension> is used to be able to differentiate between more than one event at the same simulation

time if the user configured db2vis to create more than one output file. <layout> contains the particular

user-specified layout name.

Example:

000-02-56.294_0_dot.gv

Each gv file starts with either graph G { for an undirected graph or digraph G { for a directed one

depending on the layout chosen by the user. Configured graph attributes are listed next and follow this

principle:

<attribute> = <value>

Example:

outputorder = edgesfirst

Below that the configured node attributes are presented in the following way:

node [<attribute1> = <value1>, <attribute2> = <value2>, ...]

Example:

node [style = filled, shape = circle]

Then the actual edges between nodes follow. An edge always consists of two nodes called nodeA and

nodeB as well as the type of edge, namely – for undirected edges or -> for directed ones. Additionally

multiple edge attributes can be given according to the configuration. A whole edge line is structured

as follows:

"<nodeA>" <edgeType> "<nodeB>" [<attribute1> = <value1>, <attribute2> = <value2>, ...];

Example:

"209.180.6.41" -> "64.70.178.2" [color = "#0000ff", style = "dashed", label = "JoinReply"];

After all edge lines the node-specific labels with user-activated metrics are shown:

"<node>" [label = "<metric1>\n<metric2>\n ..."];

19

Chapter 3 Design

Example:

"210.208.37.62" [label = "Germany\nNet ID: 210.208.37.62"];

The terminate symbol \n is interpreted as a new line by Graphviz. Therefore each metric is shown in

its own line within the node shape.

The gv files can be rendered by the particular Graphviz layout (see Listing 2.1 respectively Fig-

ure 2.1).

Users are able to let db2vis create scripts (batch file for Windows and/or shell script for Unix [The14])

and also to let them be executed automatically to generate the user-specified output formats. The

scripts are named as follows:

render_layouts.<script file extension>

<script file extension> is either bat (batch file for Windows) or sh (shell script for Unix). A created

shell script starts with the lines of Listing 3.2.

Listing 3.2: Begin of Shell Script for Unix

! / b i n / bash

echo " P l e a s e w a i t u n t i l t h e s h e l l s c r i p t was e x e c u t e d . Warnings and
e r r o r s a r e d i s p l a y e d i n c a s e a n y t h i n g went wrong . The bash prompt i s
shown when t h e e x e c u t i o n has f i n i s h e d . C l o s i n g t h i s window b e f o r e

s t o p s t h e s c r i p t . "

s e t −v # echo on

The first line is the so-called shebang and specifies which shell should be used to interpret the script -

in this case the bash [Fre14] shell. Then a user information follows and the echo is activated to show

all following commands in a terminal in order to enable the user to track the script process. Below

that the Graphviz commands are listed:

<layout> -T<output format> <input file> -o <output file>

Example:

dot -Tpng 000-02-56.294_0_dot.gv -o 000-02-56.294_0_dot.png

At the end of the file another user information is provided as shown in Listing 3.3.

20

3.2 db2vis - Database to Visualization

Listing 3.3: End of Shell Script for Unix

echo " P l e a s e check above i f t h e s h e l l s c r i p t was e x e c u t e d s u c c e s s f u l l y .
Warnings and e r r o r s a r e d i s p l a y e d i n c a s e a n y t h i n g went wrong . "

The batch file for Windows begins similarly to the shell script for Unix as one can see in Listing 3.4.

Listing 3.4: Begin of Batch File for Windows

@echo . & @echo " P l e a s e w a i t u n t i l t h e b a t c h f i l e was e x e c u t e d . Warnings
and e r r o r s a r e d i s p l a y e d i n c a s e a n y t h i n g went wrong . The cmd

prompt i s shown when t h e e x e c u t i o n has f i n i s h e d . C l o s i n g t h i s window
b e f o r e s t o p s t h e s c r i p t . "

After using the same Graphviz commands as in the shell script for Unix the batch file for Windows

also ends similarly as can be seen from Listing 3.5.

Listing 3.5: End of Batch File for Windows

@echo . & @echo " P l e a s e check above i f t h e b a t c h f i l e was e x e c u t e d
s u c c e s s f u l l y . Warnings and e r r o r s a r e d i s p l a y e d i n c a s e a n y t h i n g
went wrong . "

Generated output files are named similarly to the gv files:

<simulation time>_<extension>_<layout>.<output format>

Example:

000-02-56.294_0_dot.png

UbiGraph

In contrast to the Graphviz functionality no files are created by UbiGraph. Instead a UbiGraph server

has to be started and at least one client should connect to it. This client is shown as a window

containing the current graph. If the user did not start the server himself db2vis does so. Afterwards

a new client is established and connected to the running server. Then db2vis creates a new graph and

inserts all nodes and edges during runtime. The graph changes dynamically so that one can keep track

of events as they happen.

21

Chapter 4

Implementation

The implementation had to be done in two parts - extending PeerfactSim.KOM as stated in Section 4.1

on the one hand and developing db2vis as described in Section 4.2 on the other hand. The database

is the interface between both: PeerfactSim.KOM creates it and its tables node, edge and message but

also inserts the according entries, db2vis reads and visualizes the data.

4.1 PeerfactSim.KOM

The source files of PeerfactSim.KOM are structured hierarchically in the form of various packages as

one can see in Figure 4.1.

23

Chapter 4 Implementation

Figure 4.1: Hierarchical Position of Java Class Simulator

Quick Access JavaJava Java Type HierarchyJava Type Hierarchy

org.peerfact.impl.simengine

Simulator

log : Logger

MICROSECOND_UNIT : long

MILLISECOND_UNIT : long

SECOND_UNIT : long

MINUTE_UNIT : long

HOUR_UNIT : long

scenario : Scenario

hausarbeit_Schnitker_Jan-Niklas

hausarbeit_Stiebel_Jennifer

Heapsort_ab

Heapsort_auf

Inkrement

Inv

LAS

Millionaer

peerfactsimkom-community

src

org.peerfact

api

impl

analyzer

application

churn

common

isolation

network

overlay

scenario

service

simengine

queues

Scheduler.java

SimulationEvent.java

Simulator.java

package.html

transport

util

package.html

Find

ObjectAid UML Explorer

File Edit Source Refactor Navigate Search Project Run Window Help

Class Simulator loads the JDBC driver and connects with its help to the locally hosted MySQL

database server. Then it creates the database and the three tables node, edge and message. Listing 4.1

exemplarily shows the creation of database table edge according to Table 3.4.

Listing 4.1: Creation of Database Table edge

s t m t . e x e c u t e U p d a t e ("CREATE TABLE edge ("
+ " t ime TIME (3) NOT NULL, "
+ " nodeA VARCHAR(1 5) NOT NULL, "
+ " nodeB VARCHAR(1 5) NOT NULL, "
+ " t y p e VARCHAR(2 2) NOT NULL, "
+ " a c t i o n VARCHAR(7) NOT NULL) ") ;

The six classes used for inserting data are by name NodeAdded, AttributesChanged, NodeRemoved,

EdgeAdded, EdgeRemoved and MessageSent. They are part of package events as can be seen from

Figure 4.2.

24

4.1 PeerfactSim.KOM

Figure 4.2: Hierarchical Position of Java Package events

Quick Access JavaJava Java Type HierarchyJava Type Hierarchy

ObjectAid UML Explorer

org.peerfact.impl.analyzer.visualization2d.model.eve

NodeAdded

serialVersionUID : long

node : VisOverlayNode

NodeAdded(VisOverlayNode)

makeHappen() : void

undoMakeHappen() : void

Connect Mylyn

Find

LAS

Millionaer

peerfactsimkom-community

src

org.peerfact

api

impl

analyzer

csvevaluation

dbevaluation

metric

visualization2d

analyzer

api

controller

gnuplot

metrics

model

events

AttributesChanged.java

EdgeAdded.java

EdgeFlashing.java

EdgeRemoved.java

Event.java

MessageSent.java

NodeAdded.java

NodeRemoved.java

RectangleAdded.java

RectangleRemoved.java

flashevents

overlay

File Edit Source Refactor Navigate Search Project Run Window Help

Each time an object of one of these classes is

created, the according constructor is called and

an entry in the particular database table inserted.

This happens during simulation after selecting a

launch configuration. The code for inserting an

added edge into the database can be seen from

Listing 4.2. It needs to be mentioned that time,

nodeA, nodeB and type are variables containing

the actual values.

Listing 4.2: Insert into Database Table edge

S i m u l a t o r . s t m t . e x e c u t e U p d a t e (" INSERT edge VALUES (’ "
+ t ime + " ’ , ’ "
+ nodeA + " ’ , ’ "
+ nodeB + " ’ , ’ "
+ t y p e + " ’ , ’ "
+ " added " + " ’) ") ;

25

Chapter 4 Implementation

4.2 db2vis - Database to Visualization

This section presents the implementation of the software db2vis that was developed during this bach-

elor thesis. Subsection 4.2.1 starts with the structure, followed by the configuration in 4.2.2, the user

data in 4.2.3, the database configuration in 4.2.4, the logging in 4.2.5 and eventually the visualization

in 4.2.6.

4.2.1 Structure

As one can see in Figure 4.3 the Eclipse [Ecl14] project db2vis consists of the identically named

package containing the three Classes Db2Vis, GvLayout and Node. Several libraries are referenced to

communicate with UbiGraph and MySQL servers.

Figure 4.3: Project Structure of Program db2vis

Quick Access JavaJava

Warnings (100 of 2214 items)

DescriptionDescription ResourceResource PathPath LocationLocation TypeType

0 errors, 2.214 warnings, 0 others (Filter matched 100 of 2214 items)

An outline is not available.

Connect Mylyn

Find

_peerfactsimkom-community-5ed65c19fd17

A8.2.2

A8.3

Bin_Suche_It

Bin_Suche_Rek

Brent

Bubblesort_ab

Bubblesort_auf

db2vis

src

db2vis

Db2Vis.java

GvLayout.java

Node.java

Referenced Libraries

commons-logging-1.1.jar

ubigraph.jar

ws-commons-util-1.0.2.jar

xmlrpc-client-3.1.3.jar

xmlrpc-common-3.1.3.jar

xmlrpc-server-3.1.3.jar

mysql-connector-java-5.1.33-bin.jar

JRE System Library [java-7-openjdk-amd64]

config

lib

outputs

ClassDiagram.png

ClassDiagram.ucls

ExampleThread2

gruppe23

hausarbeit_Schnitker_Jan-Niklas

hausarbeit_Stiebel_Jennifer

File Edit Source Refactor Navigate Search Project Run Window Help

26

4.2 db2vis - Database to Visualization

Figure 4.4 shows the non-static attributes as well as all provided methods of each class.

Figure 4.4: UML Class Diagram of Program db2vis

<<Java Class>>

Node

db2vis

overlayId: String

location: String

topolPos: String

schemPos: String

overlay: String

overlay_raw: String

doc_count: int

msgsOut: int

msgsIn: int

neighbors: HashMap<String,Integer>

Node(String,String,String,String,String,String,int)

<<Java Class>>

Db2Vis

db2vis

Db2Vis()

main(String[]):void

addNeighbor():void

createUgVertex(int,String):void

createUgEdgeStyle(int,String,String,String):void

checkGeneralCfg():void

checkGvCfg():void

checkUgCfg():void

checkEmptyLine():void

checkLayoutAttrs(String):void

checkText(String):void

changeGvNodeLabel(String,String,int,int):void

changeUgNodeLabel(String):void

getNodeAttrs():void

getEdgeAttrs():void

getMsgAttrs():void

getGvNodeLabel(String):void

getUgNodeLabel(String):void

queryNodes():void

queryEdges(ArrayList<String>):void

queryMsgs():void

readGvNode():void

readGvEdge():void

readGvMsg():void

readUgNode():void

readUgEdge():void

readUgMsg():void

readNextLine():void

readRs(String):void

removeNeighbor():void

setFlag():boolean

showCfgError(String):void

showError(String,Exception,boolean):void

showWarning(String):void

updateSimTime():void

visualizeGv():void

visualizeUg():void

writeLog(String):void

writeGvScripts(String,String):void

<<Java Class>>

GvLayout

db2vis

connEdgeAttrs: String

msgEdgeAttrs: String

name: String

graphType: String

line: String

_simTime: String

removeLines: HashSet<String>

addLines: HashSet<String>

graphAttrs: HashMap<String,String>

nodeAttrs: HashMap<String,String>

edgeType: char

file: File

bw: BufferedWriter

br: BufferedReader

GvLayout(String,String)

addOldMins():void

create(boolean):void

createFile(boolean):void

createBw(boolean):void

exit():void

removeLine(String):void

write(HashMap<String,String>,String):void

-nodes

0..*

-gvLayouts

0..*

As can be seen from Figure 4.4 class Db2Vis contains the main method and provides a lot of other

methods to reduce redundancy on the one hand and to structure and modularize its source code on

the other hand. Methods exclusively used for Graphviz or UbiGraph contain Gv respectively Ug in

their identifiers. The abbreviation Attrs in the identifiers of affected methods and variables represents

Attributes, similarly to that Msg means Message, Rs denotes Result set, doc_count stands for document

counter, topol represents topological, schem means schematic, Pos denotes Position and Cfg stands

for Configuration.

27

Chapter 4 Implementation

4.2.2 Configuration

Corresponding to the acronyms explained above the methods checkGeneralCfg, checkGvCfg and

checkUgCfg screen the three sections of the user configuration file (see Subsection 3.2.1). While

doing so they use the methods checkEmptyLine, checkLayoutAttrs, checkText, readNextLine, setFlag

and showCfgError. In Table 4.1 the extensive possibilities of configuration can be found.

Table 4.1: Configuration Settings of Program db2vis

Setting Attributes/Values

General

Database server IP/Hostname of the machine hosting the

MySQL server

Database name Any database generated by PeerfactSim.KOM

Create log file containing detailed informa-

tion about internal program behavior

yes / no

Visualization tools graphviz / ubigraph / both

Desired beginning time of the simulation <hhh>:<mm>:<ss>.<fff>, leading zeros in

each case and fractional seconds are optional,

maximum: 838:59:59.999

Desired ending time of the simulation <hhh>:<mm>:<ss>.<fff>, leading zeros in

each case and fractional seconds are optional,

maximum: 838:59:59.999

Show hosts’ net ID yes / no

Show hosts’ overlay ID yes / no

Show hosts’ topological position yes / no

Show hosts’ schematic position yes / no

Show hosts’ used overlays yes / no

Show hosts’ overlays, class names yes / no

Show hosts’ number of documents yes / no

Show hosts’ number of neighbors yes / no; Only shown connection edges are

considered

Show hosts’ number of sent messages yes / no; Ignored if no shown message edges

specified; Only shown message edges are

considered

Show hosts’ number of received messages yes / no; Ignored if no shown message edges

specified; Only shown message edges are

considered

28

4.2 db2vis - Database to Visualization

Connection edges to be shown Comma- and blank-separated names; Op-

tional if message edges to be shown are spec-

ified

Message edges to be shown Comma- and blank-separated names; Op-

tional if connection edges to be shown are

specified

Show message edge labels containing their

particular type

yes / no

Connection colors and names Hexadecimal RGB triple, blank, comma- and

blank-separated names

Message colors and names Hexadecimal RGB triple, blank, comma- and

blank-separated names

Graphviz

Layouts All layouts listed at http://www.

graphviz.org/Documentation.php

Layout-specific attributes All attributes listed at http://www.

graphviz.org/content/attrs;

Optional

Output file formats All output formats listed at http:

//www.graphviz.org/content/

output-formats

Generate new gv and output file every x min-

utes

Positive integer; Optional

Generate new gv and output file when new in-

formation about specified edge type(s) has oc-

curred

Comma- and blank-separated names; Op-

tional

Generate new gv and output file when speci-

fied action has occurred

added / removed; Ignored if no edge type is

specified above

Should the generated gv and output files con-

tain only the particular simulation minute or

also all previous ones?

particular / all; Ignored if only one gv file

Generate Windows batch file for Graphviz yes / no

Generate Unix shell script for Graphviz yes / no

Run the generated Windows batch file for

Graphviz

yes / no; Ignored if not generated

Run the generated Unix shell script for

Graphviz

yes / no; Ignored if not generated

29

http://www.graphviz.org/Documentation.php
http://www.graphviz.org/Documentation.php
http://www.graphviz.org/content/attrs
http://www.graphviz.org/content/attrs
http://www.graphviz.org/content/output-formats
http://www.graphviz.org/content/output-formats
http://www.graphviz.org/content/output-formats

Chapter 4 Implementation

UbiGraph

Complete path to binary file ubigraph_server Relative or absolute path

Factor accelerating edge visualization Integer

Factor accelerating message visualization Integer

Vertex attributes All vertex attributes listed at http:

//www.ubietylab.net/ubigraph/

content/Docs/index.html#

vertexattributes; Optional

Connection edge attributes All edge attributes listed at http:

//www.ubietylab.net/ubigraph/

content/Docs/index.html#

edgeattributes; Optional

Message edge attributes All edge attributes listed at http:

//www.ubietylab.net/ubigraph/

content/Docs/index.html#

edgeattributes; Optional

The support of all Graphviz layouts and output formats as well as all attributes of Graphviz and

UbiGraph was explicitly not realized by including each of them in db2vis. That would be a huge

effort and not future-proof.

Instead a new object of class GvLayout is created for each user-configured Graphviz layout and added

to the hash map gvLayouts for later reference. Since the according constructor demands the name and

graph type (directed/undirected) of the particular layout and both details have to be declared by the

user, db2vis does not limit the supported layouts. The graph type can be used to determine the edge

type in the layout-specific gv file thanks to the fact that each gvLayout contains references to its own

files. Similarly the layout names as well as the user-specified output formats are just forwarded to the

generated script files that specify which layout should read and write which files.

The different attributes and values are supported by considering not their semantics but common

syntax. Each pair of attribute and value is passed on to Graphviz and UbiGraph, respectively, in the

format expected by the particular visualization tool. Therefore db2vis itself interprets neither attributes

nor values.

Due to the limitation of the MySQL data type TIME(3) the desired beginning or ending time of the

simulation must not surmount 838:59:59.999.

30

http://www.ubietylab.net/ubigraph/content/Docs/index.html#vertexattributes
http://www.ubietylab.net/ubigraph/content/Docs/index.html#vertexattributes
http://www.ubietylab.net/ubigraph/content/Docs/index.html#vertexattributes
http://www.ubietylab.net/ubigraph/content/Docs/index.html#vertexattributes
http://www.ubietylab.net/ubigraph/content/Docs/index.html#edgeattributes
http://www.ubietylab.net/ubigraph/content/Docs/index.html#edgeattributes
http://www.ubietylab.net/ubigraph/content/Docs/index.html#edgeattributes
http://www.ubietylab.net/ubigraph/content/Docs/index.html#edgeattributes
http://www.ubietylab.net/ubigraph/content/Docs/index.html#edgeattributes
http://www.ubietylab.net/ubigraph/content/Docs/index.html#edgeattributes
http://www.ubietylab.net/ubigraph/content/Docs/index.html#edgeattributes
http://www.ubietylab.net/ubigraph/content/Docs/index.html#edgeattributes

4.2 db2vis - Database to Visualization

4.2.3 User Data

If the configuration was successfully checked the user is asked for his or her username and password

of the database specified in the configuration file. The system console is used if available in order

to hide the entered password. Otherwise (for example when running db2vis in Eclipse [Dau04]) a

scanner is necessary to read the password, which cannot mask or hide it. In that case the user is

warned about this security risk in the password prompt.

4.2.4 Database Connection

After reading the necessary credentials the program loads the JDBC driver and connects via JDBC to

the given MySQL database. This API is provided by package java.sql. The binary for MySQL Con-

nector/J (mysql-connector-java-5.1.33-bin.jar) is referenced by db2vis as one can see in Figure 4.3.

4.2.5 Logging

In case of a successfully established connection the log directory and file are created if the logging

feature is enabled by the user (see Subsection 3.2.2). In that case all relevant events like input/output

operations or warning/error messages are logged from this moment on by calling method writeLog.

4.2.6 Visualization

If both visualization tools are specified to be used, db2vis starts with Graphviz by calling method vi-

sualizeGv and then executes UbiGraph commands by applying visualizeUg. In case of only one tool

to be used the method of the other one is skipped.

31

Chapter 4 Implementation

Graphviz

Figure 4.5: UML Sequence Diagram of Java Method visualizeGv

opt

opt

opt

opt

opt

opt

[showMsgEdges]

[showConnEdges]

[createGvBat]

[runGvSh]

[runGvBat]

[createGvSh]

Runtime.:.Runtime

gvShFile.:.java.io.File

gvBatFile.:.java.io.File

:.java.io.File

:.Db2Vis

getRuntimeyN

getRuntimeyN

readRsyN

queryMsgsyN

queryEdgesyN

queryNodesyN

mkdirsyN

visualizeGvyN

32

4.2 db2vis - Database to Visualization

At the beginning of visualizeGv (see Figure 4.5) the output directory including its subfolders is created

(see Subsection 3.2.3). After that the necessary nodes, edges and messages are queried by using the

methods queryNodes / queryEdges / queryMsgs. To reduce the performance impact due to MySQL in-

teraction only the edge and message types specified by the user (see Table 4.1) are queried. If the user

did not specify either edges or messages the respective table is not queried at all to further improve

the performance. Analogously only the time window between the desired beginning and ending time

of the simulation (see Table 4.1) is queried.

In case of activated script generation the according script files are created next (see Subsubsec-

tion Graphviz of Subsection 3.2.3). Due to the potentially time-consuming gv file creation process,

the user is briefly informed by the console message Started creating Graphviz files...

When that is done, the result sets are read in chronological order by executing readRs.

33

Chapter 4 Implementation

Figure 4.6: UML Sequence Diagram of Java Method readRs

[nodesRemainz||zedgesRemainz||zmsgsRemain]

[nodesRemainzMM
E:edgesRemainz||znodeTime.beforeEedgeTimeNz||znodeTime.equalsEedgeTimeNNzMM

E:msgsRemainz||znodeTime.beforeEmsgTimeNz||znodeTime.equalsEmsgTimeNN]

loop

[edgesRemainzMM
E:msgsRemainz||zedgeTime.beforeEmsgTimeNz||zedgeTime.equalsEmsgTimeNN]

opt

opt

opt

alt

alt

alt

[msgsRemain]

alt

[visTool.equalsEDubigraphDN]

[visTool.equalsEDgraphvizDN]

[visTool.equalsEDubigraphDN]

[visTool.equalsEDgraphvizDN]

[visTool.equalsEDubigraphDN]

[visTool.equalsEDgraphvizDN]

[msgsRemain]

[edgesRemain]

[nodesRemain]

Timestampz:zTimestamp:zDb2Vis

readUgMsgEN

readGvMsgEN

readUgEdgeEN

readGvEdgeEN

readUgNodeEN

readGvNodeEN

msgRs.getStringEDtimeDN

edgeRs.getStringEDtimeDN

nodeRs.getStringEDtimeDN

readRsEN

34

4.2 db2vis - Database to Visualization

As can be seen from Figure4.6 this method starts to read all three database tables in chronological

order by reading line after line of each table and comparing their time fields. The earliest event is

visualized first by calling either readGvNode, readGvEdge or readGvMsg.

Figure 4.7: UML Sequence Diagram of Java Method readGvNode

alt

[action.equalsyIremovedI_]

[action.equalsyIchangedI_]

[action.equalsyIaddedI_]

nodes2:2java.util.HashMap:2Db2Vis

removeynetId_

getGvNodeLabely_

changeGvNodeLabely_

getynetId_

getGvNodeLabely_

putynetId,2new2NodeyoverlayId,2location,
topological_pos,2schematic_pos,2overlay,2overlay_raw,

doc_count__

getNodeAttrsy_

readGvNodey_

readGvNode (see Figure 4.7) first reads the node attributes by applying getNodeAttrs. One of three

possible strings in table field action is expected, namely added, changed or removed (see Table 3.2).

35

Chapter 4 Implementation

In case of added a new object of class Node is created by using the according constructor with all

other field values of the particular database entry as arguments. To keep a reference to this object it is

added to the hash map nodes. With the help of getGvNodeLabel the label containing all user-activated

attributes for the respective node is constructed. By adding the built Graphviz line to the hash set

addLines and removing it from the hash set removeLines of each user-given layout the node-specific

attributes are saved for later insert into the current gv file.

If the action field equals changed the affected value of the particular node is updated. Subsequently

the label is changed with the help of changeGvNodeLabel.

The third and last possible event is removed, which revokes the added operation by adding the accord-

ing Graphviz line to the hash set removeLines and removing it from the hash set addLines as well as

the hash map nodes.

36

4.2 db2vis - Database to Visualization

Figure 4.8: UML Sequence Diagram of Java Method readGvEdge

[].createOneGvyAAynewMinLgvStepy>yoldMinLgvStephyy||y].createOneGvDyAAymonitorEdgeType
AAy]]actionfequals]qaddedqhyAAymonitorAddedGvhyy||y]actionfequals]qremovedqhyAAymonitorRemovedGvhhh]

opt

[actionfequals]qremovedqhyAAyshowEdgeType]

[]createOneGvy||y].createOneGvyAA
newMinLgvStepy==yoldMinLgvStephh

AAy]createOneGvDy||y].createOneGvDyAA
].monitorEdgeTypey||y]monitorEdgeTypeyAA

.monitorRemovedGvhhhh]

[actionfequals]qremovedqhyAAyshowEdgeType]

[actionfequals]qaddedqhyAAyshowEdgeType]

opt

opt

opt

[showNeighborsyAAyshowEdgeTypeyAAy.nodeAfequals]nodeBh]

alt

loop

[actionfequals]qremovedqh]

[actionfequals]qaddedqh]

loop

[foryeachygvLayoutsfentrySet]h]

opt

loop

[foryeachygvLayoutsfentrySet]h]

[foryeachygvLayoutsfentrySet]h]

opt

loop

[foryeachygvLayoutsfentrySet]h]

entryy:yjavafutilfMapfEntryentryy:yjavafutilfMapfEntryentryy:yjavafutilfMapfEntryentryy:yjavafutilfMapfEntry:yDbDVis

changeGvNodeLabel]h

removeNeighbor]h

changeGvNodeLabel]h

addNeighbor]h

getValue]h

getValue]h

getValue]h

getValue]h

getEdgeAttrs]h

readGvEdge]h

Method readGvEdge gains the edge attributes via getEdgeAttrs as can be seen from Figure 4.8. Ex-

pected values for action are either added or removed (see Table 3.4).

37

Chapter 4 Implementation

added can cause different operations depending on the configuration file. For each edge type the user

can define if it is to be shown, produce a new gv file when a specified action occurs (so-called moni-

tored connection edges) or even both (see Table 4.1). In case of an edge to be shown it is written into

the current gv file by executing method write of each layout in the hash map gvLayouts. If the edge

type and action are expected to finish the current gv file and generate a new one, method create of all

defined layouts is called with its parameter set to true in order to not only create a new file but also

close the old one (in contrast to the first file created with this method). If the user has enabled the

counting of neighbors and the examined edge is meant to be shown, method addNeighbor is called

and the node’s label changed with the help of changeGvNodeLabel.

The other possible action is removed and also differentiates between shown and monitored edges. If

the edge type is shown and the action not supposed to be monitored, the according Graphviz line is

marked to be removed in the current gv file by calling removeLine of each specified layout. In the

case of monitoring removed edges of the particular type, similarly to the monitored edges added a

new gv file is created. If the edge is a shown one, it is removed from the new (but not old) file in

order to detect the difference when comparing both time windows. Analogously to the added action

the neighbor counter is updated if it and the particular edge are to be shown, but this time by applying

removeNeighbor before changing the node label with changeGvNodeLabel.

Apart from the configuration of shown edges as well as monitored edge types and actions, the user

can configure a time interval, after which a new gv file should be created (see Table 4.1). For that

purpose the program compares the previous simulation minute at which a new file was created with

the current one. If it is at least as long ago as the defined step-width the next file begins.

38

4.2 db2vis - Database to Visualization

Figure 4.9: UML Sequence Diagram of Java Method readGvMsg

[(createOneGv.jj.newMinAgvStep.>.oldMinAgvStep]

opt

opt

loop

[for.each.gvLayoutsBentrySetHD]

loop

[for.each.gvLayoutsBentrySetHD]

[showMsgsOut.||.showMsgsIn]

entry.:.javaButilBMapBEntry entry.:.javaButilBMapBEntrynodes.:.javaButilBHashMap:.Db2Vis

getValueHD

getValueHD

changeGvNodeLabelHD

changeGvNodeLabelHD

getHnodeBD

getHnodeAD

getMsgAttrsHD

readGvMsgHD

In case method readGvMsg (see Figure 4.9) is called, the message attributes are read with the help of

getMsgAttrs. After that msgsOut of the sender and msgsIn of the receiver are incremented and their

labels updated if the user configured these message counters to be shown (see Table 4.1). Similarly

to method readGvEdge described above a new gv file is created each time the user-configured time

interval has passed. If this happens, the occurred message is written into the new file, otherwise into

the old one.

After reading the whole result set and writing all necessary text lines into the gv files and scripts,

another brief user information is provided: Finished creating Graphviz files. Eventually the scripts

can optionally be started to render the generated gv files (see Table 4.1).

39

Chapter 4 Implementation

UbiGraph

visualizeUg first clears the nodes hash map if Graphviz has used it before. Analogously to visualizeGv

the three database tables are queried with queryNodes, queryEdges and queryMsgs, the latter two in

dependence of the user configuration (see Table 4.1). As before the creation of gv files the user gets

a short status message when the UbiGraph visualization begins. Then the UbiGraph server is started

and a new graph created. Setting the user-configured vertex attributes (see Table 4.1) and reading the

result set via readRs are the subsequent steps. As detailed at the beginning of Subsubsection Graphviz

this method reads all three database tables in chronological order by reading line after line of each table

and comparing their time fields. This time the methods readUgNode, readUgEdge and readUgMsg

are used to examine the particular table entry.

Like readGvNode method readUgNode first requests the node attributes by using getNodeAttrs. Since

the methods for Graphviz and UbiGraph use the same three database tables, readUgNode also expects

added, changed or removed in the action field of the node table.

Also analogously to readGvNode the particular node is added to the nodes hash map if the action de-

mands this. In addition method createUgVertex is called to create the UbiGraph vertex after building

the node label with the help of getUgNodeLabel.

In case of a table entry marked as changed the according node attribute and vertex label are updated.

The removal of a node has to be done in two steps - first by removing its vertex from the graph and

second by removing it from the nodes hash map.

readUgEdge of course first calls getEdgeAttrs and also expects the particular edge to be either added or

removed. In contrast to readGvEdge method readUgNode can optionally slow down the visualization

by pausing the main thread for the same time span as the difference between the simulation time of

the previous and current event divided by the factor given in the user configuration file (see Table 4.1).

Whereas that would not make sense while writing the Graphviz lines into the according files, it helps

the user keep track of dynamic graph changes during the UbiGraph visualization.

In case of an edge to be added it is created in the graph and styled on the basis of the user-defined

connection edge attributes (see Table 4.1). For both purposes UbiGraph provides according methods.

Removing an edge is as simple as it seems: Just call the correspondent method provided by UbiGraph.

If the node’s number of neighbors is to be shown it is updated by executing removeNeighbor and

changeUgNodeLabel.

40

4.2 db2vis - Database to Visualization

Method readUgMsg begins with retrieving the message attributes via getMsgAttrs as one might have

already expected. As in readGvMsg the message counters are updated if necessary. Afterwards a

new message edge is drawn and styled by suitable UbiGraph methods as defined in the message edge

attributes of the user configuration file (see Table 4.1). The time of message edge visualization can

be extended by the same principle as used in readUgEdge, but with its own factor as one can see

in Table 4.1. When the sleeping thread wakes up the message edge is removed, therefore it is only

temporary in contrast to the connection edges drawn by readUgEdge. This behavior is similar to that

of PeerfactSim.KOM, where messages produce so-called flashing edges.

To inform the user about the finish of the UbiGraph visualization a final short information message is

provided.

41

Chapter 5

Evaluation

This chapter compares PeerfactSim.KOM with Graphviz and UbiGraph in Section 5.1 on the one

hand and with db2vis in Section 5.2 on the other hand. The challenge of appropriate visualization is

discussed in Section 5.3, whereas Section 5.4 examines the scalability referring to the overlay size.

5.1 Comparison of Programs PeerfactSim.KOM, Graphviz and

UbiGraph

In this section the visualization capabilities of PeerfactSim.KOM (Subsection 5.1.1), Graphviz (Sub-

section 5.1.2) and UbiGraph (Subsection 5.1.3) are compared. Both the features and limitations are

considered. Subsection 5.1.4 offers facts and figures about the three tools.

As PeerfactSim.KOM mainly is a simulator and not primarily a visualization tool, it offers fewer

graphical possibilities than Graphviz and UbiGraph. On the other hand the latter two of course do

not provide any simulation functionalities. Therefore the three programs have different aims, which

needs to be considered.

5.1.1 PeerfactSim.KOM

Features

PeerfactSim.KOM [GLS+10] handles the most important visualization features like independently

filtering single or multiple message and edge types as well as node- and edge-specific metrics. Edges

and metrics are mostly shown in different colors in order to distinguish them.

43

Chapter 5 Evaluation

A legend informs users about the mapping. A very useful feature is the possibility of rewinding or

fast-forwarding the visualization in configurable steps and moving within the simulation time with a

horizontal scroll bar. Users can specify the play speed, zoom in and out, switch between a schematic

and topological view, set the font size, save and load recordings and let the nodes be sized relatively

to different metrics. Connections are drawn as solid permanent edges, messages as dashed temporary

ones.

Limitations

As quite a few different message and edge types use the same color and can only be mapped in the

source code, there is room for improvement. The stroke type of the edges (like solid, dashed, dotted,

...) cannot be configured by the user. Users are not able to jump to a specific moment of the simulation

by entering a concrete time. Recordings can only be saved in the proprietary file format peerfact and

therefore be opened exclusively by PeerfactSim.KOM. Apart from several generated statistics which

can be plotted by gnuplot [Tho14], there is no textual output. Therefore it is not possible for example

to search for specific events or list each neighbor of a certain node, all messages between two nodes

and so on.

5.1.2 Graphviz

Features

Graphviz [EGK+04] features lots of graph, node and edge attributes, several layouts as well as var-

ious node and arrow shapes. As the software is only as good as its inputs the results depend on the

commands given, in this case by db2vis. In contrast to PeerfactSim.KOM any of 16.7 million colors

can be separately assigned to any edge and message type in the user configuration file. The shape of

nodes, connection and message edges can also be configured by the user. Another benefit of Graphviz

in combination with db2vis is the possibility of saving the graphs in different output formats. This

guarantees compatibility and portability. As all outputs base upon text inputs, simulations or parts

of them can be analyzed by text-based scripts. Due to the fact that Graphviz does not only support

its own output formats like dot, but also popular ones for vector and raster graphics like svg and

png, respectively, as well as the Portable Document Format (PDF) the diagrams can be viewed by

any compatible program. In consequence a lot of features like zooming, turning et cetera no longer

depend on Graphviz or db2vis.

44

5.1 Comparison of Programs PeerfactSim.KOM, Graphviz and UbiGraph

Limitations

A shortfall of Graphviz (at least in combination with db2vis) is that unlike PeerfactSim.KOM there is

no legend containing the mapping of edge types to colors beneath the generated drawings. Therefore

users have to either activate the labeling of edges or create a legend on their own. Usually this is only a

disadvantage if the author of the configuration file is not the (only) one who views the diagrams as the

edge types and colors are manually mapped and the user therefore should be aware of the mapping.

Since there is no legend, the node labels have to contain not only the metric values but also their names

in order to distinguish them. In addition the different metrics are presented with the same font color,

as each node holds just one label and no possibility could be found to use different font colors within

the same node label.

A problem connected with the static graph design is that events cannot be visualized temporarily. This

affects the so-called flashing edges which are used for message visualization. In order to make them

disappear shortly after their occurrence two new gv files would have to be created each time a message

is sent - one containing the edge and another minus the edge. This way a huge number of files would

be produced. In order to avoid such storage consumption messages like connections are permanently

visualized. Thanks to the possibility of creating a new output file each time a configurable time

interval has passed or specific events have occurred, messages can at least be illustrated exclusively in

the diagrams created since the moment of transmission.

5.1.3 UbiGraph

Features

UbiGraph enables the user to view the particular graph from different perspectives due to its three-

dimensional presentation. This makes it possible to recognize plastic formations formed by the partic-

ular overlay. As the graph is dynamic, all objects like nodes and edges can be removed without much

effort which makes it possible to visualize messages temporarily. Various vertex and edge attributes

are provided.

Limitations

Often some nodes or edges are not visible as other ones hide them. Probably caused by the alpha

status of UbiGraph a few attributes like the edge width have no effect. While working on this thesis

no way could be found to break lines in node labels. Therefore all node attributes have to be listed

one after another in a single line, separated by semicolons.

45

Chapter 5 Evaluation

Like in Graphviz neither a legend nor different colors within the same node label seem to be supported

by UbiGraph. As there is no possibility of saving a graph, it needs to be regenerated each time the

user wants to visualize it.

In contrast to Graphviz there seems to be no way of changing the color of the black background.

Sometimes this makes it hard to detect dark-colored temporary message edges and of course impos-

sible to see any black ones. The UbiGraph server is not yet ported to Windows.

Some attributes exclude each other even if they should not. A good example is the simultaneous acti-

vation of the message attributes spline and arrow, which only produces the same undirected splines as

it would if arrows were not enabled. Without activated splines, the arrow flag causes directed edges

as expected. Multiple arrows between the same two nodes overlap each other.

As the latest UbiGraph version was released 2008, the software appears to be no longer maintained.

5.1.4 Facts and Figures

This subsection contains on the one hand quantitative comparisons of the layouts, node and edge at-

tributes as well as output formats offered by PeerfactSim.KOM, Graphviz and UbiGraph. On the other

hand the quality of different Graphviz layouts is presented.

Furthermore the appearance of identical overlays visualized by PeerfactSim.KOM, Graphviz and Ubi-

Graph is compared between the three programs.

Quantity of Layouts in Programs PeerfactSim.KOM, Graphviz and UbiGraph

Figure 5.1 is a quantitative comparison of the layouts offered by PeerfactSim.KOM, Graphviz and

UbiGraph.

Figure 5.1: Quantity of Layouts in Programs PeerfactSim.KOM, Graphviz and UbiGraph

Peer f actSim.KOM Graphviz UbiGraph

1

2

3

4

5

2

5

1

Q
ua

nt
ity

PeerfactSim.KOM provides a schematic and

topological view. Users of Graphviz can

choose between the layouts circo, dot, fdp,

neato and twopi. UbiGraph only offers the

default arrangement.

46

5.1 Comparison of Programs PeerfactSim.KOM, Graphviz and UbiGraph

Quality of Layouts in Program Graphviz

One can find a Gnutella 0.4 overlay with five nodes, 18 connections and two messages in Figures 5.2

to 5.6. It is visualized by all five Graphviz layouts in the form of gray filled node shapes labeled with

the particular node location and net ID, blue solid connection edges and red dashed message edges

labeled with their type.

It has to be mentioned that even the same layout can produce very different arrangements depending

on how many and which nodes are connected with each other.

dot is a hierarchical layout with directed edges:

Figure 5.2: Gnutella 0.4 Overlay Visualized by Graphviz Layout dot

QueryHitMessage

QueryHitMessage

France
Net ID: 80.8.89.5

Idaho
Net ID: 129.101.71.1

Minnesota
Net ID: 199.17.161.1

Germany
Net ID: 139.18.205.254

Queensland
Net ID: 202.68.163.98

47

Chapter 5 Evaluation

circo is a circular layout after Six and Tollis

with directed edges:

Figure 5.3: Gnutella 0.4 Overlay Visualized

by Graphviz Layout circo

QueryHitMessage

QueryHitMessage

France
Net ID: 80.8.89.5

Idaho
Net ID: 129.101.71.1

Minnesota
Net ID: 199.17.161.1

Germany
Net ID: 139.18.205.254

Queensland
Net ID: 202.68.163.98

neato is a spring model layout using the

Kamada-Kawai-algorithm with undirected

edges:

Figure 5.4: Gnutella 0.4 Overlay Visualized

by Graphviz Layout neato

QueryHitMessage

QueryHitMessage

France
Net ID: 80.8.89.5

Idaho
Net ID: 129.101.71.1

Minnesota
Net ID: 199.17.161.1

Germany
Net ID: 139.18.205.254

Queensland
Net ID: 202.68.163.98

twopi is a radial layout after Graham Wills

with directed edges:

Figure 5.5: Gnutella 0.4 Overlay Visualized

by Graphviz Layout twopi

QueryHitMessage

QueryHitMessage

France
Net ID: 80.8.89.5

Idaho
Net ID: 129.101.71.1

Minnesota
Net ID: 199.17.161.1

Germany
Net ID: 139.18.205.254

Queensland
Net ID: 202.68.163.98

fdp is a spring model layout using the

Fruchterman-Reingold-heuristic with undi-

rected edges:

Figure 5.6: Gnutella 0.4 Overlay Visualized

by Graphviz Layout fdp

QueryHitMessage

QueryHitMessage

France
Net ID: 80.8.89.5

Idaho
Net ID: 129.101.71.1

Minnesota
Net ID: 199.17.161.1

Germany
Net ID: 139.18.205.254

Queensland
Net ID: 202.68.163.98

48

5.1 Comparison of Programs PeerfactSim.KOM, Graphviz and UbiGraph

Quantity of Node Attributes in Programs PeerfactSim.KOM, Graphviz and UbiGraph

The number of node attributes provided by PeerfactSim.KOM, Graphviz and UbiGraph can be com-

pared in Figure 5.7.

Figure 5.7: Quantity of Node Attributes in Programs PeerfactSim.KOM, Graphviz and UbiGraph

Peer f actSim.KOM Graphviz UbiGraph

0

10

20

30

40

50

3

47

10

Q
ua

nt
ity

PeerfactSim.KOM provides labels, config-

urable font size and dynamic node size.

Users of Graphviz can configure color, font

color/size/name, height, label, width, shape

and many other node attributes. In Ubi-

Graph the color, font color/size/family, la-

bel, size, shape and a few other vertex at-

tributes can be specified.

Quantity of Edge Attributes in Programs PeerfactSim.KOM, Graphviz and UbiGraph

In Figure 5.8 one can compare the quantity of edge attributes offered by PeerfactSim.KOM, Graphviz

and UbiGraph.

Figure 5.8: Quantity of Edge Attributes in Programs PeerfactSim.KOM, Graphviz and UbiGraph

Peer f actSim.KOM Graphviz UbiGraph

0

20

40

60

2

65

17

Q
ua

nt
ity

PeerfactSim.KOM provides labels and dy-

namic size. Users of Graphviz can config-

ure color, font color/size/name, label, pen

width and many other edge attributes. In

UbiGraph the color, font color/size/fam-

ily, label, width and several other edge at-

tributes can be specified.

49

Chapter 5 Evaluation

Quantity of Output Formats in Programs PeerfactSim.KOM, Graphviz and UbiGraph

In Figure 5.9 a quantitative comparison of the output formats offered by PeerfactSim.KOM, Graphviz

and UbiGraph can be found.

Figure 5.9: Quantity of Output Formats in Programs PeerfactSim.KOM, Graphviz and UbiGraph

Peer f actSim.KOM Graphviz UbiGraph

0

20

40

1

51

0

Q
ua

nt
ity

PeerfactSim.KOM exclusively provides its

own file format peerfact. Users of Graphviz

can generate bmp, gif, jpg, pdf, png, svg, tif

and many other output files. In UbiGraph

the user cannot export/save the visualiza-

tion.

Same Overlays Visualized by Programs PeerfactSim.KOM, Graphviz and UbiGraph

Figures 5.10 to 5.12 compare the same Chord setup with shown predecessor (cyan), successor (green)

and finger (grey) edges between PeerfactSim.KOM, Graphviz and UbiGraph at simulation minutes 4,

9 and 14. The same Gnutella 0.4 setup with shown routing table entry (grey) edges at simulation

minutes 1, 3 and 7 is compared in Figures 5.13 to 5.15. Figures 5.16 to 5.18 compare the same Pastry

setup with shown routing table entry (orange), leaf set entry (yellow) and neighborhood set entry

(grey) edges at seconds 1, 2 and 3 of simulation minute 8. Each overlay contains five nodes and was

simulated for 60 minutes while selecting the most relevant situations for visualization comparison.

All three programs are of course capable of visualizing much bigger overlays, but these would be

even less readable in this document. The shown visualizations are only examples as the same overlay

can be visualized by the same tool in many different ways thanks to various settings. In addition it

needs to be considered that the UbiGraph perspective can be changed within the application. Actual

visualizations of PeerfactSim.KOM, Graphviz and UbiGraph could be zoomed in and out. Due to the

limited respectively non-existing visualization export features of PeerfactSim.KOM and UbiGraph,

their graphs had to be saved in the form of snapshots which causes rasterization and therefore quality

loss. The non-changeable black background of the UbiGraph window (stated in Subsubsection Limi-

tations of Subsection 5.1.3) as well as the white font color have been inverted within the snapshots.

50

5.1 Comparison of Programs PeerfactSim.KOM, Graphviz and UbiGraph

Figure 5.10: Chord Overlay Visualized by PeerfactSim.KOM

(a) Simulation Minute 4 (b) Simulation Minute 9 (c) Simulation Minute 14

Figure 5.11: Chord Overlay Visualized by Graphviz

GlasgowCity
Net ID: 68.161.92.99

Germany
Net ID: 206.167.195.1

LatinAmerica
Net ID: 207.37.243.1

Germany
Net ID: 65.160.42.96

LatinAmerica
Net ID: 64.53.209.225

(a) Simulation Minute 4

GlasgowCity
Net ID: 68.161.92.99

Germany
Net ID: 206.167.195.1

LatinAmerica
Net ID: 207.37.243.1

Germany
Net ID: 65.160.42.96

LatinAmerica
Net ID: 64.53.209.225

(b) Simulation Minute 9

GlasgowCity
Net ID: 68.161.92.99

Germany
Net ID: 206.167.195.1

LatinAmerica
Net ID: 207.37.243.1

Germany
Net ID: 65.160.42.96

LatinAmerica
Net ID: 64.53.209.225

(c) Simulation Minute 14

Figure 5.12: Chord Overlay Visualized by UbiGraph

(a) Simulation Minute 4 (b) Simulation Minute 9 (c) Simulation Minute 14

51

Chapter 5 Evaluation

Figure 5.13: Gnutella 0.4 Overlay Visualized by PeerfactSim.KOM

(a) Simulation Minute 1 (b) Simulation Minute 3 (c) Simulation Minute 7

Figure 5.14: Gnutella 0.4 Overlay Visualized by Graphviz

France
Net ID: 138.231.71.1

Idaho
Net ID: 216.83.72.27

Queensland
Net ID: 203.217.12.99

Minnesota
Net ID: 128.101.115.254

LatinAmerica
Net ID: 200.232.242.253

(a) Simulation Minute 1

France
Net ID: 138.231.71.1

Idaho
Net ID: 216.83.72.27

Queensland
Net ID: 203.217.12.99

Minnesota
Net ID: 128.101.115.254

LatinAmerica
Net ID: 200.232.242.253

(b) Simulation Minute 3

France
Net ID: 138.231.71.1

Idaho
Net ID: 216.83.72.27

Queensland
Net ID: 203.217.12.99

Minnesota
Net ID: 128.101.115.254

LatinAmerica
Net ID: 200.232.242.253

(c) Simulation Minute 7

Figure 5.15: Gnutella 0.4 Overlay Visualized by UbiGraph

(a) Simulation Minute 1 (b) Simulation Minute 3 (c) Simulation Minute 7

52

5.1 Comparison of Programs PeerfactSim.KOM, Graphviz and UbiGraph

Figure 5.16: Pastry Overlay Visualized by PeerfactSim.KOM

(a) Simulation Minute 8, Second 1 (b) Simulation Minute 8, Second 2 (c) Simulation Minute 8, Second 3

Figure 5.17: Pastry Overlay Visualized by Graphviz

Germany
Net ID: 205.153.101.1

GlasgowCity
Net ID: 212.22.161.1

LatinAmerica
Net ID: 192.76.21.1

LatinAmerica
Net ID: 192.76.21.2

Germany
Net ID: 208.133.217.1

(a) Simulation Minute 8, Second 1

Germany
Net ID: 205.153.101.1

GlasgowCity
Net ID: 212.22.161.1

LatinAmerica
Net ID: 192.76.21.1

LatinAmerica
Net ID: 192.76.21.2

Germany
Net ID: 208.133.217.1

(b) Simulation Minute 8, Second 2

Germany
Net ID: 205.153.101.1

GlasgowCity
Net ID: 212.22.161.1

LatinAmerica
Net ID: 192.76.21.1

LatinAmerica
Net ID: 192.76.21.2

Germany
Net ID: 208.133.217.1

(c) Simulation Minute 8, Second 3

Figure 5.18: Pastry Overlay Visualized by UbiGraph

(a) Simulation Minute 8, Second 1 (b) Simulation Minute 8, Second 2 (c) Simulation Minute 8, Second 3

53

Chapter 5 Evaluation

5.2 Comparison of Programs PeerfactSim.KOM and db2vis

As can be seen in Table 5.1 PeerfactSim.KOM and db2vis without the specific features for Graphviz

and UbiGraph have comparable visualization capabilities.

Table 5.1: Comparison of Programs PeerfactSim.KOM and db2vis

Feature PeerfactSim.KOM db2vis

Show net IDs Yes Yes

Show overlay IDs Yes Yes

Show used overlays Yes Yes

Show overlays, class names Yes Yes

Show number of documents Yes Yes

Show number of neighbors Yes Yes

Show number of sent messages No Yes

Show number of received messages No Yes

Show number of messages per second Yes No

Show message edge labels Yes Yes

Filter for connection edges Yes Yes

Configurable connection edge colors No Yes

Filter for message edges Yes Yes

Configurable message edge colors No Yes

Scenario statistics Yes No

Dynamic node size Yes No

Dynamic edge size Yes No

Sum 13/17 13/17

5.3 Appropriate Visualization

The goal of any visualization is to present as much information as necessary but as little as possible.

Related to peer-to-peer overlays it means visualizing many nodes, edges and attributes while keeping

the graphics relatively compact and readable.

One challenge for example is to avoid overlapping objects in order to still recognize each individual

one of them. Methods to bypass or at least reduce the amount of crossing edges are curves/splines

instead of straight lines but also algorithms calculating optimal node positioning. Graphviz and Ubi-

Graph offer both possibilities, users of PeerfactSim.KOM can at least switch between the two views.

54

5.4 Scalability

As each Graphviz layout uses a specific algorithm, the user has several alternatives. Though Ubi-

Graph users cannot influence the arrangement of the objects, they have the possibility of changing the

point of view in the three-dimensional space to detect hidden nodes or edges.

An important factor in using the available drawing space as efficiently as possible is the minimization

of redundant information. Therefore at best the node attributes are formatted in different colors while

presenting their mapping in a single legend instead of mentioning the same attribute names in each

node label. A similar method should be used to distinguish different edge types. PeerfactSim.KOM

achieves that while still offering the possibility of labeling messages type-dependently due to their

short appearance in the form of flashing edges. As already mentioned in the sections about the limita-

tions of Graphviz and UbiGraph these tools do not seem to offer a straightforward way of showing a

legend within the visualization or of using different font colors in the same label.

5.4 Scalability

Subsection 5.4.1 examines the performance impact on PeerfactSim.KOM by the database connec-

tion. The performance and disk space usage of db2vis are analyzed in Subsection 5.4.2, the ones of

Graphviz in Subsection 5.4.3. As the UbiGraph performance mainly depends on the one of db2vis,

the standalone performance of the former cannot be measured. Due to the fact that UbiGraph does

not generate any output files, its disk space usage is limited to the actual program size and does not

depend on inputs given.

All performance tests have been run on the two hardware configurations described in Table 5.2.

Table 5.2: Hardware Configurations Used for Performance Tests

Number CPU RAM SSD

1 Intel Core i7-3517U (2 cores

@ up to 3.0 GHz, 4 Threads)

4 GB DDR3 PC3-12800 CL11

(1,600 MHz, 25.6 GB/s)

ADATA XM11

2 Intel Core i7-3770 (4 cores

@ up to 3.9 GHz, 8 Threads)

8 GB DDR3 PC3-17000 CL9

(2,133 MHz, 34 GB/s)

Samsung SSD 830

5.4.1 PeerfactSim.KOM

As the particular database as well as its three tables are created and filled during the actual simulation,

the database connection only influences the computation time before the visualization of Peerfact-

Sim.KOM. Therefore the reaction time while using any visualization function is not affected.

55

Chapter 5 Evaluation

To measure the performance impact during computation 24 simulations have been executed, each of

the four overlays Chord, Gnutella 0.4, Pastry and Parallel Pastry for three times on two different

hardware configurations. In Table 5.3 one can see the performance impact on the first machine.

The relatively huge number of events in overlays Pastry and Parallel Pastry is caused by a bug of

PeerfactSim.KOM that produces multiple EdgeRemoved events of edges which have been already

removed.

Table 5.3: Performance Impact on Program PeerfactSim.KOM by Database Connection, Ex. 1

Measurement Without DB With DB Factor

Chord, 11 Nodes, 15,766 events

1 8 s 18 s 2.25

2 8 s 17 s 2.125

3 8 s 17 s 2.125

Average 8 s 17 s 333 ms 2.166

Gnutella 0.4, 14 Nodes, 15,108 events

1 10 s 18 s 1.8

2 10 s 18 s 1.8

3 10 s 17 s 1.7

Average 10 s 17 s 666 ms 1.766

Pastry, 32 Nodes, 78,923 events

1 6 s 51 s 8.5

2 6 s 51 s 8.5

3 6 s 51 s 8.5

Average 6 s 51 s 8.5

Parallel Pastry, 32 Nodes, 194,038 events

1 6 s 1 m 58 s 19.66

2 6 s 1 m 58 s 19.66

3 7 s 1 m 58 s 16.86

Average 6 s 666 ms 1 m 58 s 17.7

Dividing the particular number of events by the average computation time when using the database

connection results at each of the four overlay simulations in between round about 850 and 1650

database inserts per second.

One can see the correlation between the number of events (not nodes) and the impact of the database

connection due to the fact that each event is inserted into the database.

56

5.4 Scalability

The performance impact on the second machine can be seen in Table 5.4.

Table 5.4: Performance Impact on Program PeerfactSim.KOM by Database Connection, Ex. 2

Measurement Without DB With DB Factor

Chord, 11 Nodes, 15,766 events

1 4 s 55 s 13.75

2 4 s 54 s 13.5

3 4 s 53 s 13.25

Average 4 s 54 s 13.5

Gnutella 0.4, 14 Nodes, 15,108 events

1 6 s 54 s 9

2 5 s 53 s 10.6

3 5 s 51 s 10.2

Average 5 s 333 ms 52 s 666 ms 9.875

Pastry, 32 Nodes, 78,923 events

1 3 s 3 m 55 s 78.33

2 3 s 3 m 57 s 79

3 3 s 3 m 58 s 79.33

Average 3 s 3 m 56 s 666 ms 78.88

Parallel Pastry, 32 Nodes, 194,038 events

1 4 s 9 m 26 s 141.5

2 3 s 9 m 30 s 190

3 3 s 9 m 29 s 189.66

Average 3 s 333 ms 9 m 28 s 333 ms 170.5

Dividing the particular number of events by the average computation time when using the database

connection results at each of the four overlay simulations in between round about 285 and 340

database inserts per second.

The HDD/SSD used has to be capable of as many write operations per second as possible, as this is

the limiting factor of the database performance at least in both hardware configurations tested. As can

be seen from the two tables above, the CPU and RAM mainly affect the computation time without

the database connection. Due to the better SSD performance of the first hardware configuration the

impact by the database connection during simulations is much smaller than in the second one.

Other systems of course can have different bottlenecks - more than ever if PeerfactSim.KOM and

the database do not run on the same machine. Then not only the two machines can hold limiting

components but also the connection between them.

57

Chapter 5 Evaluation

5.4.2 db2vis - Database to Visualization

Performance

Tables 5.5 (hardware configuration 1) and 5.6 (hardware configuration 2) compare the db2vis execu-

tion time used for creating logs, gv files and scripts for the Graphviz layouts dot, neato, fdp, circo

and twopi of the four overlays shown in Tables 5.3 and 5.4. Each run was measured twice in order

to exclude unusual punctual workload caused by other processes. Only a subset of all simulated and

stored edge/message types was configured to be queried and visualized to avoid overloaded graphs.

Table 5.5: Execution Time of Program db2vis, Example 1

Overlay Nodes Events Measurement Execution Time (in ms)

Chord 11 176
1 391

2 313

Gnutella 0.4 14 546
1 562

2 468

Pastry 32 76,870
1 5,581

2 5,456

Parallel Pastry 32 189,718
1 11,467

2 11,290

Table 5.6: Execution Time of Program db2vis, Example 2

Overlay Nodes Events Measurement Execution Time (in ms)

Chord 11 176
1 313

2 168

Gnutella 0.4 14 546
1 1,331

2 296

Pastry 32 76,870
1 4,114

2 6,037

Parallel Pastry 32 189,718
1 8,288

2 8,383

As in Tables 5.3 and 5.4 the performance mainly depends on the number of events (not nodes). The

simple reason is that PeerfactSim.KOM inserts all events into the database and db2vis queries each

(user-specified) one of them.

58

5.4 Scalability

The execution time of db2vis in combination with UbiGraph does not need to be measured for two

main reasons:

1. As db2vis communicates directly with UbiGraph the performance of the former depends mainly

on the performance of the latter - in contrast to the Graphviz functionality of db2vis, which

prepares the gv files (and optionally the scripts) without any interaction with Graphviz. Instead

Graphviz is executed afterwards and works on its own.

2. The purpose of UbiGraph is visualizing changes of a graph dynamically and in a reasonable

speed to keep track of them. Therefore UbiGraph should not be used for getting the final state

of a certain overlay as fast as possible. According to that users of db2vis can define the Ubi-

Graph visualization speed, even separately for connection and message edges.

Storage

Table 5.7 compares the size of the gv and log files generated by db2vis for the Graphviz layouts dot,

neato, fdp, circo and twopi of the four overlays shown in Tables 5.3 and 5.4.

Table 5.7: Size of Files Generated by Program db2vis

Overlay Nodes Events
Average File Size (in KB)
Script gv Log

Chord 11 176 3 10 273

Gnutella 0.4 14 546 3 28 677

Pastry 32 76,870 3 53 65,827

Parallel Pastry 32 189,718 3 58 159,872

As one can see the size of the generated script files does not depend on the number of nodes or events.

Instead the relevant factors for their size are the number of Graphviz layouts, output formats and gv

files as for each combination a script line has to be written. Due to the fact that all three parameters are

identical in all four overlays shown in Table 5.7, the file size of the scripts does not change either. Each

script contains 35 Graphviz commands: five layouts multiplied by seven output formats multiplied by

one gv file. Should one configure db2vis to create a new gv file every x minutes or each time a specific

event has occurred (see Table 4.1) the number of gv files would be increased.

59

Chapter 5 Evaluation

5.4.3 Graphviz

Performance

Tables 5.8 (hardware configuration 1) and 5.9 (hardware configuration 2) compare the creation time of

seven popular output file formats distributed over the five Graphviz layouts and separated by the four

overlays simulated above. Within each overlay the layouts and output formats are sorted by average

creation time in ascending order. Each layout output was measured twice in order to exclude unusual

punctual workload caused by other processes.

The following attributes have been used:

Graph: Output edges first, scale in case of overlapping node shapes

Nodes: Filled shapes, label with location and net ID

Connection edges: Solid

Message edges: Dashed, label with message type

Table 5.8: Creation Time Comparison of Output Formats Offered by Program Graphviz, Ex. 1

Layout Measurement
Creation Time (in s)

Vector Graphics Raster Graphics

pdf svg jpg bmp tif gif png

Chord, 11 nodes, 85 connection edges, 40 message edges

fdp
1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

neato
1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

twopi
1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

circo
1 0 0 0 1 0 0 1

2 0 0 0 0 0 0 1

dot
1 0 0 0 0 1 1 1

2 0 0 0 0 1 1 1

60

5.4 Scalability

Gnutella 0.4, 14 nodes, 166 connection edges, 176 message edges

fdp
1 0 0 0 0 0 0 1

2 0 0 0 0 0 0 1

neato
1 0 0 0 0 0 0 1

2 0 0 0 0 0 0 1

twopi
1 0 0 0 0 0 0 1

2 0 0 0 0 0 0 1

circo
1 0 0 1 1 1 1 1

2 0 0 1 1 1 1 1

dot
1 3 4 5 5 5 6 7

2 4 3 5 5 5 6 7

Pastry, 32 nodes, 630 connection edges, 229 message edges

fdp
1 1 1 1 1 1 1 2

2 1 1 1 1 1 1 2

neato
1 0 0 1 1 1 1 3

2 0 0 1 1 1 1 3

twopi
1 0 0 1 2 2 2 4

2 0 0 1 1 2 2 4

circo
1 34 34 36 36 37 37 39

2 35 35 36 36 37 37 39

dot
1 83 86 92 99 97 95 103

2 88 87 96 91 89 99 103

Parallel Pastry, 32 nodes, 772 connection edges, 96 message edges

fdp
1 1 1 1 1 1 1 2

2 1 1 1 1 1 1 2

neato
1 0 0 1 1 1 1 2

2 0 0 1 1 1 1 2

twopi
1 0 0 1 1 1 2 3

2 0 0 1 1 1 2 3

circo
1 18 18 19 20 20 20 22

2 18 18 19 19 20 20 22

dot
1 108 102 117 114 112 113 120

2 104 108 111 113 108 110 121

61

Chapter 5 Evaluation

Table 5.9: Creation Time Comparison of Output Formats Offered by Program Graphviz, Ex. 2

Layout Measurement
Creation Time (in s)

Vector Graphics Raster Graphics

pdf svg jpg bmp tif gif png

Chord, 11 nodes, 85 connection edges, 40 message edges

fdp
1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

neato
1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

twopi
1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

circo
1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

dot
1 0 0 0 0 0 0 1

2 0 0 0 0 0 0 1

Gnutella 0.4, 14 nodes, 166 connection edges, 176 message edges

fdp
1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

neato
1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

twopi
1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

circo
1 0 0 0 1 0 1 1

2 0 0 0 1 0 1 1

dot
1 2 2 3 3 3 4 5

2 3 3 3 3 4 4 5

Pastry, 32 nodes, 630 connection edges, 229 message edges

fdp
1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1

neato
1 0 0 1 1 1 1 2

2 0 0 1 1 1 1 2

twopi
1 0 0 1 1 1 1 3

2 0 0 1 1 1 1 3

circo
1 26 26 27 27 28 28 30

2 26 26 28 28 27 28 30

dot
1 50 50 51 58 53 58 57

2 55 46 62 57 51 55 61

62

5.4 Scalability

Parallel Pastry, 32 nodes, 772 connection edges, 96 message edges

fdp
1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1

neato
1 0 0 1 1 1 1 2

2 0 0 1 1 1 1 2

twopi
1 0 0 1 1 1 1 2

2 0 0 1 1 1 1 2

circo
1 14 14 15 15 15 15 16

2 14 13 14 15 15 15 16

dot
1 55 61 66 60 71 66 69

2 63 73 71 67 67 74 75

As the creation time does not only consist of writing the data onto the HDD/SSD but also of computing

the particular layout, both the output file formats and especially the layouts differ in some cases

considerably in creation time within the same overlay.

Storage

The size of all generated output files can be compared in Table 5.10.

Table 5.10: Size Comparison of Output Formats Offered by Program Graphviz

Layout Measurement
File Size (in KB)

Vector Graphics Raster Graphics

pdf svg gif jpg png tif bmp

Chord, 11 nodes, 85 connection edges, 40 message edges

neato
1 32 41 97 160 355 352 3,744

2 32 41 97 160 355 352 3,744

fdp
1 32 41 112 186 386 407 4,574

2 33 41 117 172 471 323 5,582

twopi
1 36 56 117 195 444 448 4,127

2 36 56 117 195 444 448 4,127

circo
1 36 56 221 354 821 806 9,071

2 36 56 221 354 821 806 9,071

dot
1 42 70 253 458 857 881 20,785

2 42 70 251 472 804 884 20,282

63

Chapter 5 Evaluation

Gnutella 0.4, 14 nodes, 166 connection edges, 176 message edges

fdp
1 40 115 292 500 883 914 4,139

2 40 115 263 336 736 667 4,649

neato
1 40 115 394 513 1,239 1,201 7,883

2 40 115 394 513 1,239 1,201 7,883

twopi
1 49 154 424 513 1,319 1,292 8,241

2 49 154 424 513 1,319 1,292 8,241

circo
1 50 154 631 856 2,075 1,984 13,078

2 50 154 631 856 2,075 1,984 13,078

dot
1 84 236 1,270 2,418 4,013 3,762 81,818

2 88 240 1,322 2,365 3,983 3,940 78,471

Pastry, 32 nodes, 630 connection edges, 229 message edges

fdp
1 56 236 627 698 2,089 2,613 13,826

2 56 236 593 679 2,107 2,411 14,818

neato
1 57 236 1,464 1,673 5,267 6,163 38,429

2 57 236 1,464 1,673 5,267 6,163 38,429

twopi
1 82 336 1,936 2,154 7,058 8,500 34,618

2 82 336 1,936 2,154 7,058 8,500 34,618

circo
1 82 336 2,786 3,232 10,101 12,132 61,840

2 82 336 2,786 3,232 10,101 12,132 61,840

dot
1 177 541 4,814 8,130 17,140 20,897 306,124

2 168 537 4,661 8,075 18,161 20,992 299,606

Parallel Pastry, 32 nodes, 772 connection edges, 96 message edges

fdp
1 58 254 661 791 2,299 2,760 15,298

2 58 254 661 800 2,204 2,535 14,271

neato
1 59 254 1,381 1,935 5,150 5,893 42,744

2 59 254 1,381 1,935 5,150 5,893 42,744

twopi
1 84 353 1,839 2,341 6,986 8,340 35,475

2 84 353 1,839 2,341 6,986 8,340 35,475

circo
1 84 353 2,262 3,168 8,367 10,241 61,387

2 84 353 2,262 3,168 8,367 10,241 61,387

dot
1 176 575 4,510 9,039 16,545 19,996 356,650

2 191 579 4,526 9,037 17,035 20,463 352,379

64

5.4 Scalability

As one can see the file size varies highly within the same overlay, not only between the output formats

but also between the layouts. It stands out that unlike the other three overlays the Chord one tested

is most efficiently visualized by Graphviz layout neato. Apart from that the nondeterministic file

size of the fdp and dot outputs attracts attention. The order of disk space usage between the output

formats png and tif does not only differ between the overlays and their layouts, but also between both

measurements within the same layout of the same overlay as can be seen in the fdp row of the Chord

overlay.

As vector graphics typically can be saved much more efficiently than raster ones and offer lossless

scalability as well as searchable/copyable text fields, they are most suitable for the visualizing purpose

of db2vis in combination with Graphviz. In addition svg files can be analyzed or customized textually.

It has to be mentioned that although the file size between vector and raster graphics differs highly

within the same layout of the same overlay, generating both graphic types takes nearly the same time

as can be seen in Tables 5.8 and 5.9. Most of the creation time is spent by computing the particular

layout and this does not depend on the file format.

One can see in Figures 5.19, 5.20 and 5.21 that the average file size of the Graphviz output formats

usually scales super-linearly in relation to the number of visualized objects. The latter was increased

several times within the particular overlay. Each time the graph was visualized as pdf, svg, gif, jpg,

png, tif and bmp by the Graphviz layouts fdp, neato, dot, twopi and circo. The average size of all

generated files was calculated separately for each visualization run.

Figure 5.19: File Size of Graphviz Output Formats in Relation to Number of Objects, Example 1

20 40 60 80 100 120 140

0

2

4

6

8

Number of Visualized Objects

A
ve

ra
ge

Fi
le

Si
ze

in
M

B

Nine Chord rings with their nodes as well

as successor and predecessor edges were

visualized. Each visualization contained n

nodes, 2n edges and therefore 3n objects. n

started with 5 and was increased by 5 each

run.

65

Chapter 5 Evaluation

Figure 5.20: File Size of Graphviz Output Formats in Relation to Number of Objects, Example 2

0 200 400 600 800

0

5

10

Number of Visualized Objects

A
ve

ra
ge

Fi
le

Si
ze

in
M

B

Six Gnutella 0.4 overlays with their nodes

and routing table entry edges were visual-

ized. Each visualization contained n nodes,

n2 − n edges and therefore n2 objects. n

started with 5 and was increased by 5 each

run.

Figure 5.21: File Size of Graphviz Output Formats in Relation to Number of Objects, Example 3

100 200 300 400 500
0

5

10

15

Number of Visualized Objects

A
ve

ra
ge

Fi
le

Si
ze

in
M

B

Eight Pastry overlays with their nodes and

leaf set entry edges were visualized. Each

visualization contained n nodes, 10n edges

and therefore 11n objects. n started with 10

and was increased by 5 each run.

66

5.4 Scalability

As can be seen from Figure 5.22 sometimes a higher number of visualized objects can even produce

smaller graphics depending on the particular node arrangement. The latter influences the compactness

of the graph. The nondeterministic file size caused by the Graphviz layouts fdp and dot as described

further above is explicitly not responsible for this exception. On the one hand the difference of 62

MB between the overall (not average) output size of the eighth and ninth run would be too big, on the

other hand only the twopi outputs were affected due to its specific algorithm. Visualizing the ninth

simulation a second time produces the same effect.

Figure 5.22: File Size of Graphviz Output Formats in Relation to Number of Objects, Example 4

100 200 300 400 500 600 700

0

10

20

30

Number of Visualized Objects

A
ve

ra
ge

Fi
le

Si
ze

in
M

B

Eleven Parallel Pastry overlays with their

nodes and leaf set entry edges were visual-

ized. Each visualization contained n nodes,

10n edges and therefore 11n objects. n

started with 10 and was increased by 5 each

run.

67

Chapter 6

Conclusions

In this chapter the conclusions of this thesis are presented. Section 6.1 summarizes the results, open

questions are discussed in Section 6.2 and eventually Section 6.3 provides ideas for possible future

work on db2vis and its database input.

6.1 Results

In summary, one can say that extending PeerfactSim.KOM with a database connection on the one hand

helps textually analyzing the simulation but on the other hand slows down the process of computing

the simulation (see Subsection 5.4.1).

Once the events are inserted into the database, they can be visualized as often and as customized as de-

sired with the help of db2vis. Due to its extensive configuration possibilities users can define required

time windows of the simulation, select node metrics and edges to be shown et cetera (see Table 4.1).

Thanks to the support of both visualization tools Graphviz and UbiGraph it is now possible to set a lot

of graph, node and edge attributes in order to improve the usefulness of the created diagrams. As the

two programs offer very different kinds of visualization, the same simulation can be examined from

various perspectives with just one execution of db2vis.

69

Chapter 6 Conclusions

6.2 Open Questions

Although support for fractional seconds in the MySQL data type TIME has already been introduced

in version 5.6.4 released on 2011/12/20, method getTime of package com.mysql.jdbc.ResultSetImpl

still cuts them off when the time column is given as argument. Using method getString of the same

package throws the SQL exception "Bad format for Time".

The only possible workaround in db2vis was to cast the time field as binary in the SELECT query be-

fore reading it with getString. In contrast creating the database table field time TIME(3) and inserting

times with fractional seconds out of PeerfactSim.KOM was possible without any problems.

Since java.sql.Time objects in contrast to java.sql.Timestamp ones still do not support fractional sec-

onds, the latter ones had to be used in db2vis. As the Timestamp constructor does not only expect a

time but also a date, each object was created with the dummy date 1970-1-1. In each output of db2vis

only the actual simulation time is shown, since it is not a time of day, but a time span.

In rare cases tif files generated by Graphviz are empty. This phenomenon occurred for example when

the number of objects in the evaluation described in Figure 5.20 was further increased to 1,225 or

more while using Graphviz layout dot. Surprisingly increasing the number of objects in the evaluation

described in Figure 5.21 to 550 while using Graphviz layout twopi caused the same problem, whereas

increasing it further to 605 objects solved it.

6.3 Future Work

To reduce the size of log files when visualizing huge simulations with the help of db2vis (see Table 5.7)

different levels of logging could be provided. Levels only logging warning and/or error messages

would be suitable as well as ones which only log specific events or exclusively Graphviz / UbiGraph

actions.

Overlay-specific node attributes like the number of so-called fingers when using Chord or the number

of so-called leaves and RT neighbors when using Pastry would also be an improvement of db2vis. To

realize such a feature the database design would have to be changed as there are no according fields

in the node table yet (see Table 3.2). This could not be implemented by simply adding a fixed number

of columns as each overlay contains a different amount of specific node attributes. In consequence

db2vis would also have to act flexibly according to the particular overlay used.

70

6.3 Future Work

In order to interact with db2vis a graphical user interface (GUI) could be offered. With its help the

user should at least be able to pause/stop the creation of gv files as well as the visualization within

UbiGraph. In addition the possibility of rewinding and fast-forwarding the latter interactively as

offered by PeerfactSim.KOM (see Subsection 5.1.1) could be an option.

If still no way can be found to place a legend within the Graphviz and UbiGraph visualization (see

Subsections 5.1.2 and 5.1.3), db2vis could generate one in the form of a separate graphics file.

To satisfy the specific needs of storing overlays a graph database could be used as their data structure

consists of nodes, edges and attributes - instead of tables as is the case in classic relational databases.

Graph databases provide specialized algorithms to simplify complex queries. They offer for example

algorithms for finding all direct and indirect neighbors of a node, calculating the shortest path between

two nodes or identifying hot spots of exceptionally high-meshed graph regions. Neo4j [Neo14] would

probably be suitable as it is open source, written in Java and therefore cross-platform-compatible.

To improve the Graphviz performance in case of generating multiple output formats (see Subsubsec-

tion Performance of Subsection 5.4.3), it could be investigated if they can be passed as arguments of

one single command line instead of using a new command for each output format (see Subsubsec-

tion Graphviz of Subsection 3.2.3). Of course it would have to be analyzed if this avoids computing

the same layout again and again for each output format as is the case at the moment.

Another approach to accelerating the output process of Graphviz could be parallelizing it by creating

and executing multiple script files. The latter could be for example separated by layouts. Multi-

processor respectively multi-core systems would benefit from this as they no longer have to sequen-

tially compute the different layouts.

Eventually db2vis might support additional visualization tools in order to provide further alternatives

to Graphviz and UbiGraph.

71

Bibliography

[Can14] CANONICAL: The leading OS for PC, tablet, phone and cloud | Ubuntu. http://www.

ubuntu.com/, 2014.

[Dau04] DAUM, Berthold: Java-Entwicklung mit Eclipse 3. In: Heidelberg: dpunkt. verlag (2004).

[Ecl14] ECLIPSE FOUNDATION, INC.: Eclipse - The Eclipse Foundation open source community

website. http://www.eclipse.org/, 2014.

[EGK+02] ELLSON, John; GANSNER, Emden; KOUTSOFIOS, Lefteris; NORTH, StephenC.; WOOD-

HULL, Gordon: Graphviz— Open Source Graph Drawing Tools. Version: 2002. http:

//dx.doi.org/10.1007/3-540-45848-4_57. In: MUTZEL, Petra (Hrsg.);

JÜNGER, Michael (Hrsg.); LEIPERT, Sebastian (Hrsg.): Graph Drawing Bd. 2265.

Springer Berlin Heidelberg, 2002. DOI 10.1007/3–540–45848–4_57. ISBN 978–3–540–

43309–5, 483-484.

[EGK+04] ELLSON, John; GANSNER, EmdenR.; KOUTSOFIOS, Eleftherios; NORTH, StephenC.;

WOODHULL, Gordon: Graphviz and Dynagraph — Static and Dynamic Graph Drawing

Tools. Version: 2004. http://dx.doi.org/10.1007/978-3-642-18638-7_6.

In: JÜNGER, Michael (Hrsg.); MUTZEL, Petra (Hrsg.): Graph Drawing Software. Springer

Berlin Heidelberg, 2004 (Mathematics and Visualization). DOI 10.1007/978–3–642–

18638–7_6. ISBN 978–3–642–62214–4, 127-148.

[Fre14] FREE SOFTWARE FOUNDATION: Bash - GNU Project - Free Software Foundation.

https://www.gnu.org/software/bash/, 2014.

[GLS+10] GROSS, C.; LEHN, M.; STINGL, D.; KOVACEVIC, A.; BUCHMANN, A.; STEINMETZ, R.:

Towards a Common Interface for Overlay Network Simulators. In: Parallel and Distributed

Systems (ICPADS), 2010 IEEE 16th International Conference on, 2010. ISSN 1521–9097,

S. 59–66.

[Gos00] GOSLING, James: The Java language specification. Addison-Wesley Professional, 2000

73

http://www.ubuntu.com/
http://www.ubuntu.com/
http://www.eclipse.org/
http://dx.doi.org/10.1007/3-540-45848-4_57
http://dx.doi.org/10.1007/3-540-45848-4_57
http://dx.doi.org/10.1007/978-3-642-18638-7_6
https://www.gnu.org/software/bash/

Bibliography

[Gra11] GRAFFI, K.: PeerfactSim.KOM: A P2P system simulator; Experiences and lessons learned.

In: Peer-to-Peer Computing (P2P), 2011 IEEE International Conference on, 2011. ISSN

2161–3559, S. 154–155.

[Gra14] GRAPHVIZ: Graphviz | Graphviz - Graph Visualization Software. http://www.

graphviz.org/, 2014.

[Hei14] HEINRICH-HEINE-UNIVERSITÄT DÜSSELDORF: Universität Düsseldorf: Startseite.

http://www.uni-duesseldorf.de/, 2014.

[Lab14] LABS, AT&T INC.: AT&T Labs Fosters Innovative Technology | AT&T Labs. http:

//www.att.com/labs/, 2014.

[Mic14] MICROSOFT CORPORATION: Windows - Microsoft Windows. http://windows.

microsoft.com/de-DE/windows/home, 2014.

[Neo14] NEO TECHNOLOGY: Neo4j - The World’s Leading Graph Database. http://www.

neo4j.org/, 2014.

[Ora14a] ORACLE: Oracle | Hardware and Software, Engineered to Work Together. http://www.

oracle.com/, 2014.

[Ora14b] ORACLE CORPORATION: Java SE Technologies - Database. http://www.oracle.

com/technetwork/java/javase/jdbc/index.html, 2014.

[Ora14c] ORACLE CORPORATION: Java Software | Oracle. https://www.oracle.com/

java/index.html, 2014.

[Ora14d] ORACLE CORPORATION: MySQL :: MySQL Connector/J Developer Guide. https:

//dev.mysql.com/doc/connector-j/en/, 2014.

[Ora14e] ORACLE CORPORATION: MySQL :: The world’s most popular open source database.

http://www.mysql.com, 2014.

[Ora14f] ORACLE CORPORATION: Oracle and Sun Microsystems | Strategic Acquisitions. http:

//www.oracle.com/us/sun/, 2014.

[Pee14] PEERFACTSIM.KOM: PeerfactSIM.KOM. https://sites.google.com/site/

peerfactsimkom/, 2014.

[Saf14] SAFARI BOOKS ONLINE: What Is MySQL AB? - MySQL Reference Man-

74

http://www.graphviz.org/
http://www.graphviz.org/
http://www.uni-duesseldorf.de/
http://www.att.com/labs/
http://www.att.com/labs/
http://windows.microsoft.com/de-DE/windows/home
http://windows.microsoft.com/de-DE/windows/home
http://www.neo4j.org/
http://www.neo4j.org/
http://www.oracle.com/
http://www.oracle.com/
http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://www.oracle.com/technetwork/java/javase/jdbc/index.html
https://www.oracle.com/java/index.html
https://www.oracle.com/java/index.html
https://dev.mysql.com/doc/connector-j/en/
https://dev.mysql.com/doc/connector-j/en/
http://www.mysql.com
http://www.oracle.com/us/sun/
http://www.oracle.com/us/sun/
https://sites.google.com/site/peerfactsimkom/
https://sites.google.com/site/peerfactsimkom/

Bibliography

ual. https://www.safaribooksonline.com/library/view/

mysql-reference-manual/0596002653/ch01s03.html, 2014.

[Tec14] TECHNISCHE UNIVERSITÄT DARMSTADT: Home – Technische Universität Darmstadt.

http://www.tu-darmstadt.de/, 2014.

[The14] THE OPEN GROUP: The UNIX System, UNIX System. http://www.unix.org/,

2014.

[Tho14] THOMAS WILLIAMS, COLIN KELLEY, RUSSELL LANG, DAVE KOTZ, JOHN CAMP-

BELL, GERSHON ELBER, ALEXANDER WOO ET AL.: gnuplot homepage. http:

//www.gnuplot.info/, 2014.

[Ubi14a] UBIETY LAB, INC.: Ubiety Lab, Inc. http://ubietylab.net/, 2014.

[Ubi14b] UBIETY LAB, INC.: Ubigraph: Free dynamic graph visualization software. http://

ubietylab.net/ubigraph/index.html, 2014.

[Uni14] UNIVERSITÄT PADERBORN: Universität Paderborn. http://www.

uni-paderborn.de/, 2014.

[Vel07] VELDHUIZEN, Todd: UbiGraph: Free dynamic graph visualization software. 2007.

[WA02] WIDENIUS, Michael; AXMARK, David: MySQL reference manual: documentation from

the source. " O’Reilly Media, Inc.", 2002

75

https://www.safaribooksonline.com/library/view/mysql-reference-manual/0596002653/ch01s03.html
https://www.safaribooksonline.com/library/view/mysql-reference-manual/0596002653/ch01s03.html
http://www.tu-darmstadt.de/
http://www.unix.org/
http://www.gnuplot.info/
http://www.gnuplot.info/
http://ubietylab.net/
http://ubietylab.net/ubigraph/index.html
http://ubietylab.net/ubigraph/index.html
http://www.uni-paderborn.de/
http://www.uni-paderborn.de/

Ehrenwörtliche Erklärung

Hiermit versichere ich, die vorliegende Bachelorarbeit selbstständig verfasst und keine anderen als die

angegebenen Quellen und Hilfsmittel benutzt zu haben. Alle Stellen, die aus den Quellen entnommen

wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in gleicher oder ähnlicher Form

noch keiner Prüfungsbehörde vorgelegen.

Düsseldorf, 21. Oktober 2014 Kolja Salewski

77

This DVD contains:

• A pdf version of this bachelor thesis

• All LATEXand graphic files that have been used, as well as the corresponding scripts

• The source code of the software that was created during the bachelor thesis

• The measurement data that was created during the evaluation

• The referenced websites and papers

• A manual for db2vis describing its requirements, installation, configuration, execution and out-

puts

• The software required for db2vis

	Title Page
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Motivation
	1.2 Structure

	2 Related Work
	2.1 Simulation
	2.1.1 PeerfactSim.KOM

	2.2 Data Storage
	2.2.1 MySQL

	2.3 Visualization
	2.3.1 Graphviz
	2.3.2 UbiGraph

	3 Design
	3.1 Database
	3.1.1 Name
	3.1.2 Tables

	3.2 db2vis - Database to Visualization
	3.2.1 Configuration
	3.2.2 Logging
	3.2.3 Visualization

	4 Implementation
	4.1 PeerfactSim.KOM
	4.2 db2vis - Database to Visualization
	4.2.1 Structure
	4.2.2 Configuration
	4.2.3 User Data
	4.2.4 Database Connection
	4.2.5 Logging
	4.2.6 Visualization

	5 Evaluation
	5.1 Comparison of Programs PeerfactSim.KOM, Graphviz and UbiGraph
	5.1.1 PeerfactSim.KOM
	5.1.2 Graphviz
	5.1.3 UbiGraph
	5.1.4 Facts and Figures

	5.2 Comparison of Programs PeerfactSim.KOM and db2vis
	5.3 Appropriate Visualization
	5.4 Scalability
	5.4.1 PeerfactSim.KOM
	5.4.2 db2vis - Database to Visualization
	5.4.3 Graphviz

	6 Conclusions
	6.1 Results
	6.2 Open Questions
	6.3 Future Work

	Bibliography

