
Lossless Arithmetic Coding of Discrete
Vehicular Trajectories

Masterarbeit
von

Matthias Radig
aus

Düsseldorf

vorgelegt am

Lehrstuhl für Rechnernetze und Kommunikationssysteme
Prof. Dr. Martin Mauve

Heinrich-Heine-Universität Düsseldorf

März 2013

Betreuer:
Dr. Markus Koegel

Zusammenfassung

Die Übertragung und Speicherung von Fahrzeugbewegungsdaten via Positionsmessungen in
regulären Intervallen führt zu einer großen Redundanz, da Fahrzeuge physikalischen Barrieren
unterliegen, die die möglichen Bewegungen stark einschränken. In einer vorhergehenden Ar-
beit wurde ein verlustbehaftetes Kompressionsverfahren vorgestellt, das die Redundanz dieser
diskreten Trajektorien erkannte und eine effiziente arithmetische Kodierung der Daten er-
möglichte. In dieser Arbeit werden die Prinzipien des verlustbehafteten Kodierers auf den
verlustfreien Fall übertragen. Dies beinhaltet unter anderem die Analyse und Lösung von
Problemen, die durch die Verwendung eines geodätischen Koordinatensystems entstehen, das
verwendet werden muss, um Informationsverlust zu vermeiden. Zudem werden verschiedene
Wahrscheinlichkeitsmodelle für den arithmetischen Kodierer vorgestellt, die unterschiedliche
Anwendungsfälle abdecken und hohe Flexibilität bieten, um Kompromisse zwischen Kompres-
sionsrate und Nutzung von Laufzeitmitteln sowie Anzahl benötigter Stichproben zu finden.
Die Modelle werden mit Hilfe von Realdaten aus dem OpenStreetMap-Projekt getestet. Die
Ergebnisse zeigen, dass die mit unserer Methode kodierten Trajektorien um etwa 20% kleiner
sind, als mit den derzeit besten anderen verlustbehafteten und -freien Kompressionsverfahren
kodierte.

Abstract

Tracking the movement of vehicles by transmitting or storing their position in regular intervals
results in a great amount of redundancy, since vehicles are bound by physical barriers that
greatly limit the possible movements. In a previous work, a lossy compression scheme was
designed that exposed the redundancy in such discrete trajectories and provided an efficient
arithmetic code for them. In this work, the principles of the lossy coder are translated to the
lossless domain. This includes the analysis and solution of challenges introduced by the usage
of a geodetic coordinate system, which is required to avoid information loss. We furthermore
introduce different probability models for the arithmetic coder that cover different use cases
and offer great flexibility in terms of resource consumption and required sample data vs.
compression. These models are evaluated using real-world data from the OpenStreetMap
project. The results show that the discrete trajectories encoded with our scheme are about
20% smaller than the encoding of the best existing lossy and lossless schemes.

iii

Acknowledgments

I wish to thank the people who supported me during the creation of this thesis: Dr. Markus
Koegel for his advice and guidance; Kristin Westermann for her encouragement during stressful
times and her financial support that allowed me to focus completely on the thesis; and René
Bartelmus for providing additional proof-reading and helpful suggestions. I also thank Dr.
Koegel, and all the other people who contributed, for the research that lead to the lossy
compression scheme which this work is based on.

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

2 Related Work 5

2.1 Innovation-based compression schemes . 6

3 The Domain of the Coder 9

3.1 The Coordinate System . 9
3.2 Formal Definition of the Domain . 11
3.3 Binary Representation of the Domain . 11

4 Arithmetic Coding 13

4.1 Information Content and Entropy . 13
4.2 Joint Ensembles . 14
4.3 Arithmetic Coding . 15

5 Probability Models 17

5.1 Grids . 17
5.1.1 Grid Zones . 19

5.2 Uniform Model . 22
5.3 Empirical Models . 23

5.3.1 Basic . 23
5.3.2 Metrical . 24

5.4 Adaptive Model . 27

6 Evaluation 31

6.1 Sample Data . 31
6.2 Parameter Optimization . 34

6.2.1 Basic Empirical Model . 34
6.2.2 Metrical Empirical Model . 35

vii

Contents

6.2.3 Adaptive Model . 37
6.3 Compression Ratios . 39

7 Conclusion 43

7.1 Future Work . 44

Bibliography 47

viii

List of Figures

2.1 Different representations of the same discrete trajectory 7

3.1 Latitude ϕ and longitude λ of a position P on the surface of the earth. 10
3.2 The covered distance on the surface of the earth when deviating by one unit of

longitude depends on the latitude. 10

5.1 A grid, as defined by its parameters. For each grid node index (i,j), the map-
pings R(i, j) (rectangles), f(i, j) (color codes), and σ(i, j) (s1, · · · , s63) are shown. 18

5.2 Schematic depiction of the different zones of a trained probability distribution.
Z0 assigns different probabilities to its different nodes. The other zones each
redistribute a single probability uniformly over their nodes. 19

5.3 Heat map of a distribution from [10] obtained from sample data. 23
5.4 A visual explanation of the parameters of the two grids and the resampling

of the probability distribution. The numbered coordinates are those from the
probability grid. The indices of the symbol grid are different. 25

6.1 Analysis of the latitude coverage in the different sets of sample data 32
6.2 The number of traces in each data set vs. the trace length 33
6.3 Compression vs. grid size for the basic empirical model 35
6.4 Compression vs. sampling resolution for the metrical empirical model 36
6.5 Compression vs. grid size for the metrical empirical model 36
6.6 Compression ratio vs. grid size for the adaptive model without grid rings 37
6.7 Compression ratio vs. growth rate α for the adaptive model with grid rings . . 38
6.8 Compression vs. grid size for the adaptive model 38
6.9 The trained distributions of the basic and metrical model 41

ix

List of Tables

6.1 The distribution of data points in the reduced sets among twelve classes of
latitude . 32

6.2 The number of total data points in each set of sample data 33
6.3 The number of parameters to be trained for the center grid and the accumulated

grid rings for different values of rlat. 37
6.4 The compression ratios on the test sets using the optimized parameters chosen

in Section 6.2 . 40

xi

Chapter 1

Introduction

There are numerous systems that measure, transmit, and store positional data of vehicles and
other moving objects. Examples include On-Board-Units that track the movement of vehicles
for billing purposes or databases that store large amounts of movement traces for the creation
of maps. The required financial and technical upkeep of such systems depends, among other
things, upon their consumption of storage space and network traffic. It is therefore beneficial
to compress this positional data as much as possible.

A trajectory is the path of a moving object. It describes the geometry of the motion and does
not depend on the speed of the object. A discrete trajectory, or trace, is a series of sequential,
related position measurements. The real, continuous trajectory of an object is converted into
a discrete one by sampling. This yields a sequence of points that are a subset of the continuous
trajectory. For the scope of this work, a discrete trajectory is expected to have a constant
sampling rate, i. e., the time between individual measurements is always the same and no
measurements are omitted. This allows to estimate the speed and acceleration of the object
in addition to its position and direction. We focus on vehicular movements on the surface
of the earth. Such movements are usually measured with GPS or similar methods, using a
geodetic coordinate system with latitude and longitude.

The primary goal is to specify a lossless compression scheme based on arithmetic coding for
series of geodetic coordinates, and provide an accompanying proof-of-concept implementation
to verify the viability of the scheme on real-world data. This requires us, before anything else,
to consider what the input of such a coder should be; specifically what values are possible
and how they can be represented in a computer program. Additionally, an arithmetic coder
needs a probability assigned to each value. The efficiency of the code is determined by how
accurately those probabilities reflect reality. For this reason, we propose different probability
models, discuss their use cases, and compare their compression performance. There are two
secondary goals:

1

Chapter 1 Introduction

First, the developed coding scheme should be scalable to small, embedded devices. These
devices may have limited storage space, memory, and computational power. To be used on
a variety of different device types, the algorithm should provide the possibility to sacrifice
compression performance for lower resource consumption.

Second, the proof-of-concept implementation that is part of this work should not use any
floating-point arithmetic1. Obviously, any rounding operation performed on the input data
will in general result in information loss. Apart from the input data, we will work with
probabilities. Because these probabilities only determine how coordinates are mapped to the
encoded stream and vice versa, rounding operations are safe as long as they are identical during
encoding and decoding. Unfortunately, that is not true for floating-point arithmetic either, as
the encoding and decoding processes might happen on a number of different machines with
varying rounding strategies. In essence, we need precise control over all arithmetic operations
that are part of the coding process and are therefore restricted to integer arithmetic.

For the scope of this work, we define the term “compression ratio” as

compression ratio =
size reduction

uncompressed size
= 1− compressed size

uncompressed size
.

By this definition, the compression ratio is the reduction in size relative to the uncompressed
size. Therefore, a higher compression ratio is better. This is a more intuitive metric, especially
when plotted against some parameter.

The rest of this thesis is structured as follows: in the first part of Chapter 2, other compression
schemes for discrete trajectories are discussed. The second part is a detailed look at the
workings of the existing lossy arithmetic coder that our own extends upon. We describe
the basic idea behind the existing coding scheme as well as the weaknesses that this work
intends to improve upon. In Chapter 3 we discuss the input that the coder gets. After a brief
explanation of geodetic coordinate systems, we introduce parameters that define the format
of the input data. From those parameters, we formally derive the set of possible values that
the individual elements of a discrete trajectory can assume. We call this set the domain of the
coder. In Chapter 4, necessary information theoretical concepts for the following chapters are
explained. Furthermore, examples of their application to the domain of discrete trajectories
and a high-level overview of their usage in this work are given. After the domain of the coder is
defined and the basics regarding arithmetic coding are covered, Chapter 5 focuses on the core
part of any arithmetic coding scheme: the probability distribution of the symbols to be coded.
We aim to design flexible probability models that can be trained for a specific use-case with

1Floating point arithmetic can of course be used for the parts of the implementation that are not related to
the coding scheme, i. e., the calculation of compression ratios etc.

2

sample data. We propose and evaluate three different models intended to cover a variety of
use-cases. Chapter 6 compares the proposed models using real-world vehicular traces collected
for the creation of street maps. It features a large section where the parameters of each model
are optimized for our sample data. This is not only required for the following comparison of
the compression ratios, but allows us to quantify the effects that the individual parameters
have. After parameters are chosen for each model, we compare the compression ratios of those
different configurations to each other as well as the lossy arithmetic coder and another lossless
coder for discrete trajectories. Chapter 7 concludes this thesis. We discuss ideas for future
works that extend and improve upon our probability models, and argue that the principles of
our coder might be transferable to create coders for purposes outside the vehicular domain.
We then end this work by summarizing the most important results and accomplishments.

3

Chapter 2

Related Work

A number of compression schemes for discrete trajectories have been proposed in earlier works.
They can be distinguished by a few key properties: Most of them are true to the original data
only up to a certain error threshold. They are therefore lossy compression algorithms. Others
are lossless—they do not alter the original data in any way. There are also compression
schemes that require the entirety of the data before any single part of a trace can be coded,
while others require only a certain subset. Naturally, the algorithms also differ in their runtime
complexity as well as difficulty of implementation.

One approach are line simplification algorithms: a discrete trajectory can be imagined as a
number of lines, represented by their endpoints. Line simplification seeks to eliminate points
that hold only little information. Usually, such algorithms guarantee that the deviation from
the original line is below a configurable maximum error threshold ε, with a larger value
allowing for greater compression. A prominent example is the algorithm by Douglas and
Peucker from [7]: between a start point s and end point e, the maximum distance between the
connecting line and any intermediate point p is determined. If it is below ε, the intermediate
points are omitted. If there are no intermediate points, no operation is necessary. Otherwise,
the process recursively proceeds, trying to omit points between s and p as well as p and e,
and so on, until no more points can be omitted. Since the algorithm recursively processes
intermediate points, beginning with the first and last one, the complete set of points has to
be available before the algorithm can be executed.

More complex geometrical constructs can be used, e. g., cubic splines [9] or clothoids [4,12], to
model the underlying movements with greater flexibility, resulting in increased compression
performance.

The algorithms referenced above aim to find a geometric pattern in a complete data set
and simplify it using geometrical models. Contrarily, the authors of [10] use a kinematic

5

Chapter 2 Related Work

model to estimate the result of the next position measurement, given its predecessors. The
difference between estimate and actual position, called the innovation by Koegel et al., is
then arithmetically coded using an appropriate probability model. This lossy compression
scheme successively encodes individual measurements, i. e., it can operate on data streams,
and therefore, on traces of arbitrary length. It offers the currently best compression ratios.

The lossless compression of discrete trajectories has received less attention. In [6], Diesterhöft
proposes an alternative representation of discrete trajectories using byte-aligned difference
vectors. This reduces the size of the trajectory and exposes the remaining redundancy such
that general-purpose compression algorithms like deflate or Prediction by Partial Matching
(PPM) can be used to compress even more. This method yields compression ratios comparable
to the results in [10]. In contrast to [10], the coder from [6] uses neither a kinematic model
nor a compression algorithm specific to its domain.

2.1 Innovation-based compression schemes

This work extends on the ideas and findings of [10]. The following section provides an overview
of the compression scheme developed by Koegel et al. We describe the algorithm as it behaves
with optimized parameter values. Koegel et al. evaluated a number of different diverse
configurations; for instance, different kinematic models were tried, but the description below
considers only the model of constant motion, as it resulted in the best compression ratios.

The coder operates on the individual points of discrete trajectories. It needs only the previous
measurements to encode a point, not the complete trajectory. Therefore, it acts as if the
discrete trajectory were a data stream. This allows to actually implement a stream-based
coder that works efficiently on long traces whose total size would exceed a system’s memory.
Another use case would be the real-time encoding of a trajectory while the vehicle that is
being tracked is still in transit.

In the following, we describe how the algorithm encodes the individual positions of a trace.
The first two positions p1 and p2 are written uncompressed, as the used kinetic model—that
of constant motion—requires the last two positions to calculate a prediction. These positions
are referred to as the initialization vector. The predicted next position p′n is then calculated
as

p′n = pn−1 +
pn−1 − pn−2

∆t
·∆t = 2 · pn−1 − pn−2 .

The velocity pn−1−pn−2

∆t is estimated from the previous two measurements, multiplied by the
time ∆t between measurements (the inverse of the sampling rate), and then added to the

6

2.1 Innovation-based compression schemes

(a) Positions are encoded as vectors relative to the
origin

(b) Positions are encoded as sum of previous posi-
tion (points), next expected offset (dashed ar-
rows) and innovation (solid arrows)

Figure 2.1: Different representations of the same discrete trajectory

latest known position pn−1. The actual position pn can be represented by the innovation,
i. e., the difference I = pn − p′n. Since the estimate p′n is extrapolated from previous data
points, it is known by both the encoding and decoding side. Thus, I contains all necessary
information to obtain pn.

The advantage of using the innovation over the original vector is best demonstrated by an
example. Figure 2.1 shows the two different representations of the same discrete trajectory. In
Figure 2.1a the vectors are comparatively large and pairwise distinct. Figure 2.1b shows the
alternative representation of the same trajectory. The dashed arrows denote the previously
described estimated next position, while the solid arrows denote the innovation. Points p1 and
p2 are the initialization vector, coded as absolute positions, since the kinetic model requires
the previous two positions to give an estimate for the next one. All following points can
then be represented solely by the innovation vectors, i. e., the solid arrows, which are notably
smaller in size than their counterparts from Figure 2.1a. Note that when the measured object
moves with constant velocity, p′n = pn and therefore I = pn − p′n = 0. Zero vectors are
omitted in the image. The most important property of innovation vectors in comparison
to absolute positions is their tendency to repeat. Figure 2.1b demonstrates this nicely with
points p3 and p5, for whom the innovation is zero, and p7 followed by p8 that have the
same non-zero innovation. This tendency to repeat is easily explained: vehicles have a set of
frequent behaviors—accelerating, moving straight-forward, decelerating, taking turns—that
result in similar innovations. For example, moving with a constant velocity means that the
corresponding innovation is zero, as is the case with point p3 and p5. Contrarily, we could
expect the same kind of repetition from absolute positions only if the vehicle was driving
repeatedly through a circular pattern.

7

Chapter 2 Related Work

Exposing the redundancy in the data set is only the first step. It still remains to define an
efficient code for the innovation vectors. Koegel et al. used an arithmetic code for their
efforts. The compression performance of such a code can be almost optimal, given that the
underlying probability model is a close approximation of reality. The best of the evaluated
probability models is an empirically determined one, i. e., probabilities that were assigned to
possible innovation vectors by statistical evaluation of a set of sample traces.

In this work, we will build on the efforts of Koegel et al. to create a lossless compression
scheme. This poses unique challenges that are not encountered in the lossy counterpart:

1. The lossy coder works with Cartesian coordinates represented as floating point numbers.
The geodetic input data are converted prior to the compression procedure. This conversion in-
volves real-number operations and therefore—on a finite machine—rounding. That cannot be
allowed in a lossless compression algorithm. The nature of geodetic coordinate systems and an
appropriate binary representation are discussed in Chapter 3. The exclusion of floating point
numbers is not discussed in detail—it is simply a technical detail of our implementation.

2. Because rounding operations that affect the data points need to be avoided, the translation
of metrical distances in Geodetic coordinate systems is challenging. However, it seems natural
to assign the same probability to the same metrical deviation in the domain of vehicles,
independent of the current position. Possible solutions are proposed in Chapter 5.

8

Chapter 3

The Domain of the Coder

3.1 The Coordinate System

To design a compression scheme for discrete trajectories it is imperative to consider the prop-
erties of the coordinate system used for position measurements. Vehicular movements are
most commonly measured using a geodetic coordinate system. Such systems usually use two
angles, latitude ϕ and longitude λ, to indicate the horizontal position in parallel to the sur-
face of the earth. A third component indicates the elevation, i. e., the vertical position. As
vehicles usually move along the surface of the earth, our coding scheme focuses on latitude
and longitude.

Given a point P , ISO 19111 [3] defines the latitude ϕ to be the angle from the equatorial plane
to the perpendicular through P and the longitude λ as the angle from the prime meridian
plane to meridian plane of P (Figure 3.1). For coordinates to be meaningful, a geodetic datum
is required that positions the coordinate system in relation to the earth and usually includes
a reference ellipsoid to model the earth’s surface. For instance, GPS uses the World Geodetic
System 1984 (WGS 84) [2].

One aspect that will become important in Chapter 5 is the metrical irregularity of the system:
the metrical distance travelled on the surface of the earth when deviating by one unit of
longitude depends on the latitude. As demonstrated in Figure 3.2, when the latitude increases,
the length of units of longitude on the surface of the earth decreases.

9

Chapter 3 The Domain of the Coder

Figure 3.1: Latitude ϕ and longitude λ of a position P on the surface of the earth.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 10 20 30 40 50 60 70 80 90

U
n
i
t

l
e
n
g
t
h

i
n

m

φ in degrees

(a) The length of a line projected on the surface of the
earth by one unit of longitude, on different circles of
latitude. In this case, one unit of longitude refers to
an angle of 10−6 degrees.

(b) Arc lengths on different circles of latitude
for the same longitude λ, as seen from a
top-down view.

Figure 3.2: The covered distance on the surface of the earth when deviating by one unit of
longitude depends on the latitude.

10

3.2 Formal Definition of the Domain

3.2 Formal Definition of the Domain

A GPS measurement module provides latitude and longitude in degrees, using a certain radix
r and fractional precision p. The radix would usually be either two or ten but the proposed
algorithm allows any natural number except one. The fractional precision is typically between
5 (meter-perfect) and 7 (centimeter-perfect) for radix 10. These two parameters dictate the
domain of our coder:

Dlat =
{n
d
∈ Q | d = rp, n ∈ {−90 · d, . . . , 90 · d}

}
Dlon =

{n
d
∈ Q | d = rp, n ∈ {−180 · d, . . . , 180 · d− 1}

}
D = Dlat ×Dlon

Notably, Dlon does not include 180. In a geodetic coordinate system, 180 and -180 are equiv-
alent, since the longitude is circular. Which one of the values is included is simply a matter
of convention. Contrarily, Dlat includes 90 as well as -90 because they represent different
positions—the north and the south pole.

The coder maps the absolute positions to an innovation vector, which is the difference between
a reference position and the actual position that is coded. Both the absolute positions and the
innovations are elements of D. However, it is important to keep in mind that the probability
models discussed in Chapter 5 are designed to code innovations and not absolute positions.

3.3 Binary Representation of the Domain

Each position consists of two rational numbers that share a common denominator with each
other as well as with other positions. Since the base and precision are the same for all positions,
the denominator can be discarded and a position can be digitally stored using a pair of integers,
holding the value of the respective numerators. This is also known as fixed-point notation with
a scaling factor of rp.

11

Chapter 4

Arithmetic Coding

4.1 Information Content and Entropy

While we use a model of constant velocity to predict the next position of a vehicle, there are
additional influences that cannot be predicted: the input of the driver and the noise introduced
by the GPS measurements themselves. The innovation is therefore the subject of a random
process, that we model as follows:

“An ensemble X is a triple (x,AX ,PX), where the outcome x is the value of a random variable,
which takes on one of a set of possible values, AX = {a1, a2, . . . , ai, . . . , aI}, having probabil-
ities PX = {p1, p2, . . . , pI}, with P (x = ai) = pi, pi ≥ 0 and

∑
ai∈AX

P (x = ai) = 1.” [11]

In the context of coding, s ∈ AX is called a symbol, while AX is called the alphabet.

In our case, the outcome x denotes the next position in a discrete trajectory, given as the
innovation, i. e., the difference between expected and actual position. The alphabet AX is the
set of all possible innovations, which corresponds to the set D defined in Section 3.2, plus
some control symbols, like a symbol that marks the end of a trajectory. The frequency of
occurrence of each innovation vector is then given by PX . This is, in essence, the same model
that the authors of [10] used, with the difference that we use the geodetic coordinate system of
the input data whereas they converted the input data to Cartesian coordinates. This results
in different alphabets.

For a given ensemble X, information theory offers a concept to quantify the amount of infor-
mation that a certain outcome contains, and the average information content over all possible
symbols: The Shannon information content h(x) of an outcome x and the average information

13

Chapter 4 Arithmetic Coding

content or entropy H(X) are defined as

h(x) = log2

1

P (x)

H(X) =
∑

x∈AX

P (x)h(x) =
∑

x∈AX

P (x)log2

1

P (x)

For the special case P (x) = 0, 0 · log(1
0) is defined to be 0. [11]

The entropy serves as a lower bound for the average symbol size of any code of AX . These
concepts were introduced by Claude E. Shannon in [13], but we use the notation and definitions
from [11], which differ in some places.

4.2 Joint Ensembles

Given two ensembles X and Y , XY is called the joint ensemble which has outcomes xy with
x ∈ AX and y ∈ AY . It has the joint probability distribution P (x, y) with

P (x = a, y = b) = P (x = a) · P (y = b|x = a)

= P (y = b) · P (x = a|y = b)

and if x and y are independent

P (x = a, y = b) = P (x = a) · P (y = b) . [11]

In this work, joint ensembles have two applications: First, a discrete trajectory consists of
multiple consecutive points that need to be encoded individually. It seems natural then to
think of each point as the outcome of a different ensemble, while the whole trajectory is the
joint ensemble of those.

Second, an ensemble X that represents a single measurement can be factorized into ensembles
Y and Z such that the alphabet size is reduced and the individual probabilities are increased.
Consider the example

X = (x, {000, . . . , 999},PX) with PX(x) = 10−3.

14

4.3 Arithmetic Coding

We can define two other ensembles

Y = (y, {0, . . . , 9},PY) with PY (y) = 10−1

Z = (z, {00, . . . , 99},PZ) with PZ(z) = 10−2

resulting in the joint ensemble

Y Z = (yz, {000, . . . , 999},PY Z) with PY Z(yz) = PY (y) · PZ(z) = PX(yz).

Y Z is thus equivalent to X. However, the individual alphabets AY and AZ are smaller and
the probabilities are higher. Therefore, by cleverly subdividing ensembles, fixed-size data
types can be used to represent symbols and probabilities even when alphabet sizes become
very large and probabilities become very small.

4.3 Arithmetic Coding

In this section, an arithmetic coder is described as a black box. It is explained what function-
ality it provides but not how it works. Understanding the internals of arithmetic coding may
be helpful but is not required to understand the following chapters. Detailed explanations of
arithmetic coding and the prerequisite information theoretical concepts can be found in [11].

Given an ensemble X = (x,AX ,PX), an arithmetic coder takes a string of symbols s =

s1s2 . . . sm ∈ A∗X as input and outputs a bit string b such that

length(b) ≤
m∑
i=1

h(si) + 2 .

This means that an arithmetic coder generates at most a constant overhead of 2 bits compared
to an optimal encoding, where the length of the coded string equals the information content
of the source string. [11]

In practice however, it is impossible to determine PX exactly. The efficiency of an arithmetic
code depends on how well the probability model reflects the underlying real-world process. In
Chapters 5 and 6 we focus on the proposition and evaluation of different probability models
for the domain of vehicular trajectories.

In the above explanation, the different symbols of the source string are independent and
identically distributed. This is not a requirement of an arithmetic coder. A source string s

15

Chapter 4 Arithmetic Coding

can be seen as the outcome of a joint ensemble S, i. e.,

S = X1 . . . Xn, s = x1 . . . xn

where the individual probability distributions are given by

PXi(xi) = P (xi|x1, . . . , xi−1) . [11]

In simpler terms, a probability model for arithmetic coding may use the previously coded
symbols to compute the probability distribution for the next symbol. In the case of vehicular
trajectories, this is an absolute requirement as most of the redundancy is caused by the relative
proximity of consecutive measurement points.

We use Bob Carpenter’s Java implementation [5] of the arithmetic coding algorithm. It is
generic, so we can employ our own probability models implemented as Java objects. The
different probability models are described in Chapter 5.

In this specific implementation, the int primitive type is used to represent probabilities and
symbols. Since probabilities are not discrete, they are represented by intervals defined via
three positive integers: the lower and upper bound of the cumulative probability interval and
the total cumulative probability. For example, the triple (5, 10, 20) represents the cumulative
probability interval [5

20 ; 10
20] = [1

4 ; 1
2]. Each symbol is assigned a unique probability interval.

The usage of a fixed-size data type places hard limits on the alphabet size (232) and minimum
usable probability (1

231−1
). These limits can be circumvented using joint ensembles, as demon-

strated in Section 4.2. In Section 5.1.1, we provide specifics on how to apply joint ensembles
to the problem of coding innovation vectors.

16

Chapter 5

Probability Models

In the following, we propose probability models for the innovation vectors. These models are
based on some assumptions made about the probability distribution of innovation vectors. We
assume that the distribution peaks at the origin, and decreases exponentially in all directions.
This is supported by the findings in [10]. Furthermore, we assume that the distribution is, to
a certain extent, radially symmetric. Our models do not take the orientation of the vehicle
into account, and therefore deviations in all directions are equally possible.

5.1 Grids

All of the models described in this chapter, with the exception of the uniform model from
Section 5.2 use one or two discrete grids. Grids serve two different functions: first, a grid is
able to map a 2-dimensional innovation vector to a symbol. A grid that is used this way in a
model is called the symbol grid of that model. Second, a grid is needed to provide geometrical
context to a probability distribution. Such a grid is then referred to as the probability grid
of a distribution or model. For most models, the same grid serves as symbol and probability
grid. Both types of grids can also be used to determine a corresponding rectangular area for
a symbol or probability.

Some properties are common to all grids: they are rectangular shaped and aligned such that
the horizontal axis corresponds to the longitude and the vertical axis to the latitude. The
number of grid nodes along each axis is odd, so that there is always one grid node that can
be identified as the center of the grid. Having a clear center makes sense, since we assume
the probability distribution of the innovations to peak at the center. The way a grid is sized
depends on the respective probability model. For a detailed description of the models, it is
necessary to formally name the defining parameters of a grid.

17

Chapter 5 Probability Models

Figure 5.1: A grid, as defined by its parameters. For each grid node index (i,j), the mappings
R(i, j) (rectangles), f(i, j) (color codes), and σ(i, j) (s1, · · · , s63) are shown.

The vertical and horizontal length of grid nodes uh and uv are called the horizontal and vertical
unit. The number of grid nodes along each axis is given in dependence of the grid radii rh and
rv as 2rh + 1 and 2rv + 1. In consequence, the geometrical length of the axes are (2rh + 1)uh

and (2rv + 1)uv.

Grid nodes are identified via indices (i, j) ∈ {−rh, · · · , rh} × {−rv, · · · , rv} =: I where (0, 0)

always denotes the center node. With this index set, three utility functions for the grid can
be defined:

The frequency mapping f : I → N0 maps a grid node to the frequency with which it is
encountered. For convenience, we name the sum over all grid nodes ftotal =

∑
i∈I f(i). The

probability of a grid node can then be calculated by normalization of the frequency values
f(i,j)
ftotal

.

The rectangle mapping R : I → P(R2) maps a grid node to the geometrical area that it covers.
This is necessary to resample the frequency mapping f from one grid to another with different
dimensions, as done by the metrical model that is subject of Section 5.3.2.

The symbol mapping σ : I → AX maps a grid node to a symbol. Its inverse σ−1 maps each
symbol that represents a grid node to the corresponding index. The symbol mapping does
not necessarily have to be defined. The grid’s purpose may be limited to provide frequencies
for its nodes, and the associated areas. σ is defined for a grid if and only if it is a symbol grid.
In this case, the frequency for a symbol is given by f ◦ σ−1 : AX → N0.

To be used in an arithmetic coder, usually at least one additional control symbol, called the

18

5.1 Grids

Figure 5.2: Schematic depiction of the different zones of a trained probability distribution.
Z0 assigns different probabilities to its different nodes. The other zones each
redistribute a single probability uniformly over their nodes.

end-of-file (EOF) symbol, is required, because the size of the trace is generally not known.
This is omitted from the formal description of the grid and the models, because it introduces
unnecessary clutter. For example, the symbol mapping σ would not be invertible without
limitation, as the EOF symbol does not have a corresponding grid node. In an implementation,
the addition of an EOF symbol is easy: first, another counter cEOF is defined, which holds
the frequency of the EOF symbol. All that remains is to replace ftotal with ftotal + cEOF

when calculating the probabilities. The remaining probability interval of cEOF
ftotal+cEOF

is then
assigned to the EOF symbol. Other control symbols may be added this way, if required by a
specific implementation.

5.1.1 Grid Zones

Due to constraints given by the number of training data as well as the available memory, it is
not feasible to empirically determine the probability of every possible node in a large grid. A
grid node that is very improbable would require enormous amounts of sample data. Consider
a grid node with an actual probability of 10−10: we would need sample traces with a total
length of about 7 billion position measurements to have a probability of 1

2 to encounter the

19

Chapter 5 Probability Models

grid node at least once1. In the actual implementation, the frequency mapping f will only be
partially calculated from training data.

We propose to divide grids into multiple disjunctive zones centered around the origin, as
illustrated by Figure 5.2. The size of the center grid Z0 is chosen small enough that the
available training set provides a good approximation of the distribution. Ideally, every node
from the zone is encountered at least once during training. Those probabilities are used “as
is”; each grid node is assigned an individual probability. Around the center zone, multiple
concentric grid rings Z1, . . . , Zm−1 are laid out. Grid nodes that are part of a grid ring are not
assigned an individual frequency. Instead, they share the accumulated frequency of themselves
and their peers. The remaining part of the grid is called the outer grid Zm. Like the grid
rings, it uses a shared frequency count for its nodes.

Formally, the zone Zj is defined as the set of indices of the grid nodes that are part of the
zone, such that

Zj ⊂ I
m⋃
j=0

Zj = I

∀j, k = 0, . . . ,m : j 6= k ⇔ Zj ∩ Zk = ∅ .

Using these different zones, we can define a probability distribution that requires knowledge
about only a certain subset of f . For an ensemble N = (n, I,PN), where n resembles a grid
node, the probability that the outcome lies in Zj is

P (n ∈ Zj) =
1

ftotal

∑
i∈Zj

f(i) .

We can then approximate the probability of a grid node i ∈ I with

pi =


f(i)

ftotal
if i ∈ Z0

P (n ∈ Zj)

|Zj |
if i ∈ Zj , j = 1, · · · ,m

.

To learn this distribution from test data, |Z0| + m counters are required instead of |I|; for
all zones except Z0, only the accumulated frequency of the nodes in the zone is required
to calculate P (n ∈ Zj). Since the number and size of the zones can be varied, zone based
probability models offer great flexibility for finding a sufficient trade-off between compression

11− 10−10 to the power of 7 billion is approximately 1
2
.

20

5.1 Grids

performance, size of the training set, and required runtime resources.

Zones also circumvent the problem of very large alphabets in combination with fixed-size data
types. Consider the ensemble X = (x,AX ,PX). In this case, the grid is required to have a
symbol mapping. Otherwise there would be no relation between the alphabet and the grid.
For each zone Zj , we define an ensemble Xj = (xj ,AXj ,PXj):

AXj = {s ∈ AX |σ−1(s) ∈ Zj}

∀si ∈ AXj : pi = P (xj = si) = P (x = si|σ−1(x) ∈ Zj) ,

where σ−1 is the inverse symbol mapping described in Section 5.1. The ensemble Xj then is
a model for the case that it is certain that the next position lies in zone Zj . We can define an
additional multiplexer ensemble M = (k, {0, . . . ,m},PM) where k is the outcome of a random
variable dependent on x, whose value denotes the zone that x lies in:

k = j ⇔ σ−1(x) ∈ Zj .

The probability distribution of k is simply the sum of the probabilities of each member of a
zone:

P (k = j) = P (σ−1(x) ∈ Zj) =
1

ftotal

∑
i∈Zj

f(i) .

The joint ensemble MXk can now be used to factorize the original ensemble X. For a symbol
s with σ−1(s) ∈ Zj , we first code the symbol j with P (k = j) and then s with P (xj = s):

P (k = j) · P (xj = s) = P (σ−1(x) ∈ Zj) · P (x = s|σ−1(x) ∈ Zj)

= P (x = s) · P (σ−1(x) ∈ Zj |x = s)

= P (x = s) .

Every symbol s ∈ AX is split into two code symbols, using the ensembles M and the ap-
propriate Xj . When decoding, the correct ensemble Xj is chosen after the outcome of M
has been decoded. Since P (k = j) · P (xj = s) = P (x = s), the codes are equivalent. This
factorization allows small probabilities and large alphabets to be represented by products of
larger probabilities and conjunctions of smaller alphabets, and the limitations of fixed-size
data types can be circumvented.

All of our models that use empirically determined probability distributions split their grid
into zones to avoid the need for an unrealistic amount of sample data. A separation into
center grid and outer grid is usually enough for a model to work properly. The usage of grid
rings is optional, but may improve compression ratio and reduce resource consumption. Using

21

Chapter 5 Probability Models

several grid rings instead of a larger center grid adds two kinds of bias to the model: First,
the distribution is expected to exhibit some radial symmetry, and second, symbols that are
close to each other geometrically are assumed to be close in probability as well. From another
perspective, models using grid rings assume a relation between grid nodes in proximity to each
other as well as nodes that have a similar distance from the center. This relation is exploited
to gather information about multiple grid nodes from an individual sample datum.

5.2 Uniform Model

The uniform model assigns the same probability to each code symbol. An arithmetic coder
utilizing a uniform distribution is very similar to an uncompressed representation where all
symbols are represented as different bit strings of minimal equal length.

Let AX be an alphabet with |AX | = n. The bit length of an uncompressed symbol is dlog2(n)e.
The size of an encoded symbol is log2(1/p). In this case, the probability p = 1

n resulting in a
symbol size of log2(n). It clearly follows that

dlog2(n)e − 1 < log2(n) ≤ dlog2(n)e .

With a uniform distribution, the average length of a code symbol can be reduced by at most
1 bit. Since the alphabet that encodes positions in a geo coordinate system with sufficient
precision is quite large, the compression ratio achieved by a uniform probability model can be
expected to be low. For example, using base 10 and a precision of 6 decimal places, |Dlat| =
180 · 106 + 1 and |Dlon| = 360 · 106, resulting in an uncompressed bit size of dlog2(Dlat)e +

dlog2(Dlon)e = 57 for a single coordinate. Using arithmetic coding with a uniform distribution,
the average bit length per symbol is given by log2(Dlat)+log2(Dlon) ≈ 55.8548 resulting in an
estimated compression ratio of 1− 55.8548

57 ≈ 2%. Nonetheless, a uniform model is still useful
for transmitting the starting position of a trajectory.

The uniform model is the only one in this chapter that does not use a grid. A uniform
distribution over the complete alphabet is a special case that allows a different method of
factorizing an ensemble. The geo coordinates are represented as integers with a certain amount
of digits. We can split these into smaller numbers, e.g. groups of 3 digits, and then encode
them individually with a uniform distribution. On the decoding side, the groups are decoded
and then concatenated, yielding the original number. This is possible only because for a
uniform distribution, the probabilities of the individual digits are independent of each other.
This type of factorization was already demonstrated by the example in Section 4.2.

22

5.3 Empirical Models

longitudinal dimension

la
te

ra
l
d
im

e
n
s
io

n

 0

 0.01

 0.02

 0.03

 0.04

p
ro

b
a
b
ili

ty

Figure 5.3: Heat map of a distribution from [10] obtained from sample data.

5.3 Empirical Models

In [10], Koegel et al. evaluate multiple innovation-based probability models and achieve the
best results with distributions that are calculated empirically, i. e., from sample data. Using a
training set of traces, the innovation of each measurement is calculated and counted, resulting
in a frequency mapping for symbols f ′ : AX → N0 assigning a probability of

pi =
f ′(si)

f ′total
with f ′total =

∑
s∈AX

f(s)

for each symbol si ∈ AX . A resulting distribution is shown in Figure 5.3.

Our formal definition of grids distinguishes between grid nodes and symbols. Specifically, the
frequency mappings used by our models are of the form f : I → N0; their domain differs
from that of f ′. This allows us to describe probability distributions without direct relation to
the alphabet. In our notation, the equivalent to the frequency mapping f ′ would be f ◦ σ−1,
i. e., using the inverse symbol mapping σ−1 to get the grid node of a symbol, and then the
frequency mapping f to obtain the assigned probability.

5.3.1 Basic

The basic model uses only a single grid. It maps probabilities directly to its symbols, i. e., the
possible innovation vectors:

23

Chapter 5 Probability Models

pi =
f(σ−1(si))

ftotal

where f is the frequency mapping, σ−1 is the inverse of the symbol mapping of the grid, and
ftotal denotes the number of training data. When training the probability distribution for the
basic model, no complicated calculations are required.

However, the simplicity of the basic model has a price: The deviation from the expected
position is calculated in units of latitude and longitude, i. e., as angles. Since the metrical
distance that corresponds to a unit of longitude depends on the current latitude (as illustrated
in Figure 3.2 in Section 3.1), two geometrically different deviations might yield the same
outcome. From another perspective, the probability to deviate 10 m to the east from the
expected position would depend on the current latitude.

It is intuitive to expect that the movement and steering behavior of vehicles is not, in fact,
dependent on the latitude. Therefore, a model that does measure deviations in metrical units
is discussed in the next section.

5.3.2 Metrical

A solution to the problem of latitude-dependent geometry is to calculate the innovation in
metrical distance instead of angular distance. Metrically similar innovations are mapped to
the same outcome. This results in a probability distribution that is more in check with how a
vehicle is expected to behave. However, the coder may not use metrical deviations; converting
geo coordinates to Cartesian coordinates would generally result in loss of information. Instead
of converting the coordinates, we devise an algorithm that converts the universally applicable
metrical model into a locally applicable geodetic model.

In contrast to the basic model, the probability grid is defined in metrical units. The area
that each grid node covers is therefore constant; previously, the units ulon and ulat were used,
whose actual size measured in meters is dependent on the current latitude. This means that
the probability grid is independent from the position that is to be encoded. However, it
does not assign probabilities to the code symbols; instead, it provides the probability that a
measurement falls into a certain area.

The probability for a symbol has to be calculated individually for each reference position. At
a specific reference position, the abstract units ulon and ulat have a real, metrical equivalent.
Using those values in combination with the dimensions of the probability grid, a symbol grid

24

5.3 Empirical Models

(a) The probability grid with a trained prob-
ability distribution

(b) The symbol grid, missing a distribution

(c) The symbol grid, with the distribution of
the probability grid in the background

(d) The symbol grid, with the distribution ras-
terized to the grid nodes

Figure 5.4: A visual explanation of the parameters of the two grids and the resampling of the
probability distribution. The numbered coordinates are those from the probability
grid. The indices of the symbol grid are different.

25

Chapter 5 Probability Models

with dimensions similar to the probability grid’s can be created. The last step is a resampling
of the probabilities from the probability grid to the raster of the symbol grid. The result is
a distribution over the elements of the symbol grid, i. e., the code symbols. This process is
illustrated by Figure 5.4.

Before the algorithm is explained in more detail, we name the necessary values for both grids,
using the same scheme as in Section 5.1, but with different indices:

For the probability grid we use the index p as well as x for the horizontal axis and y for the
vertical axis. ux and uy denote the length of grid nodes; rx and ry are the radii such that the
area that the grid covers is given by (2rx + 1)ux × (2ry + 1)uy. The indices of the grid nodes
form the set Ip, which is the domain of the rectangle mapping Rp : Ip → P(R2) and frequency
mapping fp : Ip → N0. As with the basic model, fp is trained from sample data.

The symbol grid has the same parameters with the indices s for the grid, and lon, and lat

for its horizontal and vertical axis. However, none of these parameters are chosen. They are
calculated depending on the reference position and the parameters of the probability grid. We
start with the units:

ulat =
π ·Re

|Dlat| − 1
=
π ·Re

180 · rp

ulon =
2π ·Re cosϕe

|Dlon|
=
π ·Re cosϕ

180 · rp

where Re is the radius of the earth and rp is the radix to the power of the precision, i. e., the
number of fractions that each degree is split into. For demonstration purposes, a spherical
model of the earth is used. Since the implementation is aimed towards GPS measurements,
the formulas used there are for the reference ellipsoid from WGS 84 [2]. ulat is the approximate
metrical distance projected on the surface of the earth while traversing one unit of latitude.
ulon measures the same for the longitude, at the current latitude ϕ. The corresponding grid
sizes (2rlat+1)ulat and (2rlon+1)ulon are chosen to get the largest possible symbol grid whose
area is completely contained in the probability grid. We start with a formula that gives a
real-valued radius, such that the dimensions would match exactly:

(2ra + 1)ua = (2rb + 1)ub ⇔ ra =
(2rb + 1)ub

2ua
− 1

2
.

With the help of that formula, we determine the appropriate integer values for the radii

rlat =

⌊
(2ry + 1)uy

2ulat
− 1

2

⌋
, rlon =

⌊
(2rx + 1)ux

2ulon
− 1

2

⌋
.

This completes the symbol grid for the reference position. Each index has a corresponding

26

5.4 Adaptive Model

symbol via the symbol mapping σs : Is → AX and rectangle via the rectangle mapping
Rs : Is → P(R2). The only thing missing to assign probabilities to symbols is the frequency
mapping fs : Is → N0 of the symbol grid.

For each index is ∈ Is, we have a corresponding area Rs(is) that intersects one or more
elements from the range of Rp. That enables us to redistribute the frequency count fp from
the probability grid to the nodes of the symbol grid, using the area of the intersecting rectangles
as weight:

fs(is) =

∑
ip∈Ip

fp(ip) ·
area(Rs(is) ∩Rp(ip))

area(Rp(ip))


With the frequency count fs, each symbol si is assigned a probability pi as before:

pi =
fs(σ

−1
s (si))

ftotal

In reality, the grid of latitudes and longitudes is, of course, not rectangular. However, in the
vehicular domain, the innovation vectors are mostly in the order of magnitude of up to 15
meters long. The circumference of the circles of latitude and longitude on the surface of the
earth is usually—depending on the latitude—much higher, such that the bend of the surface
is negligible. In very close proximity to the poles, the circles of latitude become very small,
and the metrical model will be unable to estimate usable probabilities as well.

It might be counter-intuitive that this model, designed for lossless coding, features an explicit
rounding operation when rescaling the frequency count. However, this rounding is performed
only on the frequency count and therefore affects the probabilities assigned to symbols, not the
symbols themselves. In essence, the values of the probabilities are irrelevant to the correctness
of the coding process, as long as the resulting probabilities are exactly the same for the
encoding and decoding step. They are, however, very relevant to the compression performance
of the coding process.

5.4 Adaptive Model

Instead of using a static, pre-determined distribution, a probability model could approximate
the distribution “on-the-fly”. The adaptive model we propose uses the same grid layout as
the basic empirical model from Section 5.3.1. However, the counters are all initialized to one
at the start of the coding process and are appropriately increased each time a data point is

27

Chapter 5 Probability Models

coded. In consequence, the approximation of the real distribution gets better the longer the
coding process runs. In general, we expect the performance of the model to increase with the
size of the trace that is encoded.

The fact that the model has none of its data in the beginning and only gradually learns how
to efficiently code its alphabet complicates the relationship between parameter values and
compression ratios. For the empirical models, a suitable size for the innermost zone Z0 can
be determined by evaluating the sample data. For a large enough data set, like the one we
use for the evaluation in Chapter 6, even large grids with dimensions of 40m × 40m can be
improved by an even larger grid. The same is not true for the adaptive model. The larger Z0

is, the more expensive are the first few symbols.

Since the frequency mapping is mutable, we write fj for the frequency mapping after j − 1

symbols have been coded. Similarly, we write (pi)j for the probability of grid node i and
corresponding symbol σ−1(i). Symbols in Z0 are initially distributed uniformly, i. e.,

∀i ∈ Z0 : f0(i) = 1 and (pi)0 =
1

|Z0|
.

More generally, for the j-th symbol that is to be coded, the distribution is given by

∀i ∈ Z0, j = 0, 1, 2, . . . : (pi)j =
fj(i)

|Z0|+ j
.

For each step j that codes the symbol sj = σ(i), the frequency count for sj is increased:

fj+1(i) = fj(i) + 1 ⇒ (pi)j+1 =
fj(i) + 1

|Z0|+ j + 1
.

The impact that a single data point has on the adaptive distribution therefore depends on
|Z0|. This dependency weakens with increasing j and fj(i). Choosing the size of Z0 means
choosing a trade-off in compression performance between shorter and longer traces.

While the previously examined properties of the adaptive model lead us to expect generally
lower compression ratios than the empirical models on a set of diverse traces, it also has
some advantages. There is no predetermined probability distribution that has to be learned
and stored. This leads to a smaller and slightly simpler implementation. Unlike the basic
empirical model, distances can be measured in angles without significant risk of skewing the
probability distribution as long as all data points of a trace are comparatively close in latitude.
We assume that this is generally true for the vehicular domain, with occasional fringe cases
caused by measurement or processing errors. There are some other variables that could have
an impact on the distribution: the driver of the vehicle, the vehicle itself, or the quality of the

28

5.4 Adaptive Model

GPS module used. The empirical models cannot differentiate between these variables, but the
adaptive model can.

We expect the adaptive model to have the least problems in proximity of the poles. It avoids
the problems of the basic model, since its distribution is —for the vehicular domain—trained
by data from nearby latitudes only. It also sidesteps the problems of the metrical model, since
it does not use any geometrical approximations, but samples the distributions for its symbols
directly.

29

Chapter 6

Evaluation

6.1 Sample Data

We used a set of 30540 vehicular traces, obtained from the OpenStreetMap project (OSM) [1].
All traces share the sampling rate of 1Hz. They vary in length from 100 to 125435 data points,
i. e., individual position measurements.

For the scope of this evaluation, we randomly divided the sample traces into three disjunctive
sets of 10180 traces each: the training set, the cross-validation set (CV), and the test set. The
training set is used to determine the distributions for empirical models. Other models do not
use it. The cross-validation set is used to find good values for the different parameters of the
models. It is important to keep this separate from the test set, which is used to compare the
models to each other as well as the coders from [10] and [6]. Using the same set of traces for
parameter optimization and comparison could give an unrealistic advantage to our models as
the parameters would be optimized for the specific set of sample data used for comparison.

There are two key properties that have a measurable impact on the compression ratio: the
length and the latitudinal position. The length is especially important when comparing the
adaptive model to the empirical ones. A broader coverage of latitudes is expected to cause
problems for the basic model because the area that it covers varies with the latitude.

Figures 6.1a-6.1c show an analysis of the latitudes that occur in our three data sets. Most of
the traces lie between 40◦N and 60◦N. We decided that additional, less biased sets of sample
data were needed, to avoid training models specific to certain latitudes. These reduced sets
trade size—and therefore, statistical reliability of the results—for representativity. We divided
the range of the latitude into 12 classes and then chose the reduced sets such that the number
of data points belonging to a single class would not exceed 250000, as shown in Table 6.1.

31

Chapter 6 Evaluation

0

500000

1000000

1500000

2000000

2500000

3000000

-80 -60 -40 -20 0 20 40 60 80

N
u

m
b

e
r

o
f

D
a
ta

p
o
in

ts

Latitude in Degrees

(a) Latitude coverage of the training set

0

500000

1000000

1500000

2000000

2500000

3000000

-80 -60 -40 -20 0 20 40 60 80

N
u

m
b

e
r

o
f

D
a
ta

p
o
in

ts

Latitude in Degrees

(b) Latitude coverage of the CV set

0

500000

1000000

1500000

2000000

2500000

3000000

-80 -60 -40 -20 0 20 40 60 80

N
u

m
b

e
r

o
f

D
a
ta

p
o
in

ts

Latitude in Degrees

(c) Latitude coverage of the test set

0

20000

40000

60000

80000

100000

120000

140000

160000

-80 -60 -40 -20 0 20 40 60 80

N
u

m
b

e
r

o
f

D
a
ta

p
o
in

ts

Latitude in Degrees

(d) Latitude coverage of the reduced training set

0

20000

40000

60000

80000

100000

120000

140000

-80 -60 -40 -20 0 20 40 60 80

N
u

m
b

e
r

o
f

D
a
ta

p
o
in

ts

Latitude in Degrees

(e) Latitude coverage of the reduced CV set

0

20000

40000

60000

80000

100000

120000

140000

-80 -60 -40 -20 0 20 40 60 80

N
u

m
b

e
r

o
f

D
a
ta

p
o
in

ts

Latitude in Degrees

(f) Latitude coverage of the reduced test set

Figure 6.1: Analysis of the latitude coverage in the different sets of sample data

Class −90◦ to −75◦ −75◦ to −60◦ −60◦ to −45◦ −45◦ to −30◦ −30◦ to −15◦ −15◦ to 0◦

Training 0 0 8198 244457 249656 95816
CV 0 0 214 249998 249982 113165
Test 0 0 3810 249921 249965 101777

Class 0◦ to 15◦ 15◦ to 30◦ 30◦ to 45◦ 45◦ to 60◦ 60◦ to 75◦ 75◦ to 90◦

Training 249968 249987 249999 250000 249999 0
CV 249962 249991 250000 249983 249988 0
Test 249947 249992 250000 249954 249995 0

Table 6.1: The distribution of data points in the reduced sets among twelve classes of latitude

32

6.1 Sample Data

Training CV Test

Full absolute 24547377 23923690 24014409
relative 33.87% 33.00% 33.13%

Reduced absolute 1851490 1866644 1858756
relative 33.20% 33.47% 33.33%

Table 6.2: The number of total data points in each set of sample data

0

50

100

150

200

250

300

350

 0 1000 2000 3000 4000 5000

N
u

m
b

e
r

o
f

T
ra

c
e
s

Length of Trace

Training Set
Crossvalidation Set

Test Set

(a) Length distributions of the three complete data
sets

0

50

100

150

200

250

300

350

 0 1000 2000 3000 4000 5000

N
u

m
b

e
r

o
f

T
ra

c
e
s

Length of Trace

Training Set
Crossvalidation Set

Test Set

(b) Length distributions of the three reduced data
sets

Figure 6.2: The number of traces in each data set vs. the trace length

While the reduced sets visibly diverge from a uniform distribution, they are an improvement
on the original sets and offer reasonable variety in latitudes. Unfortunately, the data sampled
from OSM did not include any traces in proximity of the poles. This left us unable to evaluate
the effects of latitudes less than 15 degrees from the poles on the individual models.

The absolute and relative overall size of the data sets is shown in Table 6.2. For both the full
and reduced sets, the total data points are distributed evenly among training, CV, and test
set.

For the evaluation of the adaptive model to be reliable, it is required that the cross-validation
and test sets include a significant part of shorter traces. Since the model trains its distribution
on-the-fly, short traces are its weakest point. Figure 6.2 confirms that there are a lot of shorter
traces in all of the sample sets. It also shows that traces of similar length are distributed evenly
among the training, CV, and test sets. In the following, we will see that all models performed
significantly worse on the reduced sets. The reason for this is that the full sets include many
very long traces, whose entropy is lower since they often include longer motionless periods.

33

Chapter 6 Evaluation

6.2 Parameter Optimization

Before comparing our different models to each other and to other compression schemes, we
needed to choose parameters like the center grid size, grid granularity, etc. For some param-
eters a suitable value was chosen through reasoning. Others were chosen by optimizing the
compression ratio over their possible values, using the cross-validation set as reference data.

When discussing the grid size, we use the terminology from Section 5.1. The radii in this
context determine the size of the center grid, not the complete grid.

6.2.1 Basic Empirical Model

For the basic model, we needed to consider only the size and layout of the different zones. We
chose to evaluate two variations of the basic model: A simpler one with only the center grid
and the outer grid, as well as one with multiple additional grid rings between the inner and
outer grid.

For the simple version, only the size of the center grid had to be chosen, or more specifically,
a latitudinal radius rlat and a longitudinal radius rlon. We chose to always set rlon = rlat

2 .
The sample data uses a base of 10 and precision of 6. On average, the metrical equivalent to
one longitudinal unit is about 5–6 cm on the surface of the earth, while one latitudinal unit
corresponds to about 11 cm (Figure 3.2a). More formally, we assumed that on average

ulon ≈
ulat
2

and chose
rlon = 2 · rlat

resulting in a roughly quadratic shape of the grid:

(2rlon + 1)ulon ≈
(4rlat + 1)ulat

2
= (2rlat +

1

2
)ulat ≈ (2rlat + 1)ulat .

This left us with a single parameter rlat to optimize.

The extended version of the basic model is similar, except that we added multiple grid rings
around the center zone. We chose a fixed size for the cumulative area covered by the center
grid and grid rings. Like before, rlat parameterizes the size of the center grid. The grid rings
are laid out successively around the center grid, each with a latitudinal distance dlat = 5 and
a longitudinal distance dlon = 2dlat = 10 from the preceding grid ring. The last grid ring is

34

6.2 Parameter Optimization

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0 50 100 150 200 250 300 350 400

C
o
m

p
re

s
s
io

n
 R

a
ti

o

rlat = ½ rlon

Full Sets
Reduced Sets

(a) Basic model, simple variant

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0 50 100 150 200 250 300 350 400

C
o
m

p
re

s
s
io

n
 R

a
ti

o

rlat = ½ rlon

Full Sets
Reduced Sets

(b) Basic model, extended variant

Figure 6.3: Compression vs. grid size for the basic empirical model

a possible exception, as its dimensions are chosen to exactly fit to the targeted total area of
1601ulon × 801ulat.

Figure 6.3 shows the relation between the latitudinal radius rlat, that determines the size of
the center grid, and the compression ratio for the two variations of the basic model. For both
models, the compression ratio monotonically increases with the size of the center grid up to
a certain rlat, from which on it monotonically decreases. This shows a conflict in choosing an
appropriate grid size: A larger center grid means more accurate probability estimates for the
symbols it covers—but as the symbols farther from the center are less frequent, they require
a large amount of sample data for their estimates to be reliable. From a certain point on—
about rlat = 125 for the simple model and rlat = 75 for the extended one—even the very large
training set containing over 24 million data points is not sufficient. As a side note, the fact
that the extended model’s falloff point is lower does not mean that it requires more training
data; on the contrary, the extended model already gives a fairly good approximation for most
symbols that are covered by the grid rings. As a consequence, the optimum can be reached
with a smaller center grid, and the falloff starts earlier. In both cases, it is visible that the
compression ratio almost plateaus before it reaches the falloff point. We chose the values 125
and 50 for rlat for the simple and extended model respectively.

6.2.2 Metrical Empirical Model

The metrical model needs additional parameters compared to the basic model, as described in
Section 5.3.2. Those parameters determine the resolution of the probability grid, i. e., values
for ux and uy. The latitudinal unit ulat varies only slightly with the position and is—because of
the base and precision of the input data—always close to 11 cm, so we set uy to the same. The
longitudinal unit is a different matter—it’s metrical equivalent can be small, so the sampling

35

Chapter 6 Evaluation

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0 5 10 15 20 25 30 35 40

C
o
m

p
re

s
s
io

n
 R

a
ti

o

ux in cm

Full Sets
Reduced Sets

Figure 6.4: Compression vs. sampling resolution for the metrical empirical model

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0 50 100 150 200 250 300 350 400

C
o
m

p
re

s
s
io

n
 R

a
ti

o

ry = ½ rx

Full Sets
Reduced Sets

(a) Metrical model, simple variant

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0 50 100 150 200 250 300 350 400

C
o
m

p
re

s
s
io

n
 R

a
ti

o

ry = ½ rx

Full Sets
Reduced Sets

(b) Metrical model, extended variant

Figure 6.5: Compression vs. grid size for the metrical empirical model

resolution in the longitudinal direction should most certainly be higher. Figure 6.4 shows the
compression ratio vs. ux. The curve plateaus around 5 cm. Incidentally, this is the same
as what we expected the average value of ulat to be, which made comparing the basic and
metrical model a bit easier.

Like before, we used two variations of the model; a simple one consisting only of a center grid
and an outer grid as well as an extended one with multiple grid rings, arranged to cover a
total area of 1601ux × 801uy = 1601 · 5cm× 801 · 11cm ≈ 80m× 88m.

After choosing our grid resolution, we had to choose an appropriate size for the grid, i. e., values
for rx and ry. Since ux ≈ uy

2 , we set rx = 2ry. As in the previous section, we end up with a
single parameter that determines the grid size and optimize it via iteration. As the results in
Figure 6.5 show, the relation between grid size and compression ratio is similar to the basic
model’s. We decided to choose the equivalent values, namely ry = 125 for the simple variant
and ry = 50 for the extended one, to simplify comparison of the models’ performance.

36

6.2 Parameter Optimization

 0.7

 0.75

 0.8

 0.85

 0.9

 0 5 10 15 20 25 30

C
o
m

p
re

s
s
io

n
 R

a
ti

o

rlat = ½ rlon

Full Sets
Reduced Sets

Figure 6.6: Compression ratio vs. grid size for the adaptive model without grid rings

Center grid Counters in D0 Counters in D1,...,m−1

rlat rlon absolute relative absolute relative
1 2 16 0.1667 80 0.8333
10 20 862 0.9170 78 0.0830
20 40 3322 0.9776 76 0.0224
50 100 20302 0.9966 70 0.0034
100 200 80602 0.9993 60 0.0007
200 400 321202 0.9999 40 0.0001

Table 6.3: The number of parameters to be trained for the center grid and the accumulated
grid rings for different values of rlat.

6.2.3 Adaptive Model

Unlike the trained models, the adaptive model has a lot less data to train its distribution.
Using a simple model with only a center grid and an outer grid is unfeasible. As seen in
Figure 6.6, the compression ratio reaches its maximum already when rlat is only around 23, as
opposed to the basic model, where the falloff point was at rlat = 125. Therefore, the adaptive
model relies heavily on the usage of grid rings.

In contrast to the trained models, the number of grid rings used is a concern. When using
large center grids, the relative number of parameters to train for the grid rings is negligible
(Table 6.3); however, if the adaptive model cannot reliably train a larger grid, it might also
struggle with too many zones.

In contrast to the previous models using grid rings, we introduce a new parameter: a rate of
growth α > 0 for the width of the grid rings. The size of the first ring is defined as before,
by fixed values d(1)

lon = 10 and d(1)
lat = 5, while the size of the i-th ring is defined recursively by

37

Chapter 6 Evaluation

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
o
m

p
re

s
s
io

n
 R

a
ti

o

Full Sets
Reduced Sets

Figure 6.7: Compression ratio vs. growth rate α for the adaptive model with grid rings

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0 5 10 15 20 25 30 35 40

C
o
m

p
re

s
s
io

n
 R

a
ti

o

rlat = ½ rlon

Full Sets
Reduced Sets

(a) Adaptive model with linearly spaced zones

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0 5 10 15 20 25 30 35 40

C
o
m

p
re

s
s
io

n
 R

a
ti

o

rlat = ½ rlon

Full Sets
Reduced Sets

(b) Adaptive model with exponentially spaced
zones

Figure 6.8: Compression vs. grid size for the adaptive model

d
(i)
dim = α · d(i−1)

dim . The special case α = 1 means that a fixed width is used for all grid rings.
In all other cases, the width grows (or shrinks, if α < 1) exponentially with increasing i.

As before, we set a total area of 1601ulon × 801ulat to be covered by the center grid and grid
rings.

Figure 6.7 shows how an exponential growth of the grid zones alters the compression ratio.
Unsurprisingly, a growth rate below one performs worse, as the shrinking size leads to an
increased number of zones far from the center. Growing zones lead to a notable improvement
in compression ratio. We therefore chose α = 2 to evaluate the grid size in combination with
exponentially growing zones. Although higher values perform slightly better, simply doubling
the zone width with each zone makes it easier to picture the grid.

As with the empirical models before, the optimal size for the center grid was determined by
iteration. Figure 6.8 shows the effect of the grid size on the compression ratio. We examined

38

6.3 Compression Ratios

two variants with α = 1, where zones grow linearly, as well as α = 2, meaning doubling
dimensions with each successive zone. The exponential variant performs strictly better than
its linear counterpart. With a larger center grid, the difference decreases. At rlat = 40, the
difference is negligible, with both variants performing significantly worse. The optimum for
both variants is around 10–13. We chose the exponential variant with rlat = 12 for the final
evaluation.

6.3 Compression Ratios

We compared the compression ratios of the different models and variations using the optimized
configurations that were found during the parameter optimization. We evaluated a total of five
different configurations: The basic and metrical empirical models, each with and without grid
rings, and the adaptive model with exponentially growing zones. Additionally, we encoded
the test set with the lossy innovation-based coder from [10] and the lossless byte-based coder
from [6].

For the lossy coder, we set the discretization parameter ε = 5cm. ε determines the allowed
error and therefore the distance between grid nodes. The dimensions of the grid were left at
the default values. We used the trained model, which is similar to our basic model without
grid zones, except for the usage of Cartesian coordinates.

The byte-based coder was configured to use parameters optimized for discrete vehicular tra-
jectories at the precision of the test data. Specifically, we chose number 4 from its available
profiles. Profile 4 is an improvement on the original work [6]. It was introduced by Koegel
in [8]. The functionality consists of two parts: First, the discrete trajectory is converted from
a series of absolute positions to a series of byte-aligned difference vectors. Next, a general-
purpose compression algorithm is used for further compression. We chose the Prediction by
Partial Matching (PPM(n)) method, which uses a distribution calculated dynamically for each
byte from n preceding bytes for an entropy coding. More specifically, we used a PPM(16)-
based arithmetic coder. This method yielded the best compression results in the original
evaluation in [6].

Table 6.4 shows that our coding scheme performed generally better than the other two. This
is true for both the full and the reduced test set. The basic model with zones achieved the
best results. The relative compression ratio between coders a and b is calculated as

1− 1− ratioa
1− ratiob

= 1− compressed sizea
compressed sizeb

,

39

Chapter 6 Evaluation

Compression Ratio
Model Parameters Full Sets Reduced Sets
Basic rlat=125, rlon= 250 85.87 % 83.82 %
Basic-Zones rlat= 50, rlon= 100 85.99 % 84.01 %
Metrical ry =125, rx = 250 85.75 % 83.80 %
Metrical-Zones ry = 50, rx = 100 85.95 % 84.00 %
Adaptive rlat= 12, rlon=24, α=2 85.62 % 82.84 %
Lossy Coder ε = 5cm 82.34 % 79.44 %
Byte Coder Profile 4 82.85 % 77.06 %

Table 6.4: The compression ratios on the test sets using the optimized parameters chosen in
Section 6.2

where a is our coder. The compression ratio relative to the output of the lossy coder is 20%.
For the byte coder it is 18%. For the reduced sets, containing a higher variation of latitudes
and shorter individual traces, the relative reduction in size was 22% and 30%, respectively.

The different probability models are very close to each other in terms of compression ratios.
As was to be expected, the models with additional zones come out on top. The combination
of center grid and grid rings provide fine approximations, even for larger innovations, and the
usage of a smaller center grid means that the training set does not need to be as large as for the
models without grid rings. There is another major advantage to the zone-based models: they
use significantly less memory than their zoneless counterparts. With rlat = 50, rlon = 100, 70
grid rings and an EOF symbol, the model needs to hold 20302 probabilities in memory. For
the simpler model without grid rings we used rlat = 125 and rlon = 250, resulting in 125752
counters, including the EOF symbol; the memory consumption is increased by factor six, and
still the compression ratio is slightly lower.

A surprising result is that the basic models perform better than their metrical counterparts.
One explanation is that none of the traces in our test data are close enough to the poles to
expose the weakness of the basic model. Additionally, the traces from the OpenStreetMap
project stem from a number of different sources. There might be other effects that introduce
entropy which does not depend on the kinetic behavior of cars. For example, some rounding
operations might have occurred at any point between GPS measurement and us downloading
the data, e. g., in the GPS device itself or during the conversion to a text file. The coordinates
might also have been converted from binary to decimal. These are possible sources of entropy
that the metrical model is not designed for. Figure 6.9 shows the trained distributions of the
basic and metrical model. The distribution from the basic model shows a distinct pattern of
discretization. This pattern is most likely caused by a discrepancy between the precision of
the input data and the precision of the actual measurements; specifically, the measurement
precision seems lower than the precision of the numbers that store the result. The metrical

40

6.3 Compression Ratios

lateral dimension

lo
n
g
it
u
d
in

a
l
d
im

e
n
s
io

n

 0

 0.01

 0.02

 0.03

 0.04

P
ro

b
a
b
ili

ty
(a) Basic model

lateral dimension

lo
n
g
it
u
d
in

a
l
d
im

e
n
s
io

n

 0

 0.01

 0.02

 0.03

 0.04

P
ro

b
a
b
ili

ty

(b) Metrical model

Figure 6.9: The trained distributions of the basic and metrical model

distribution hints at the same pattern, but less distinct. In the metrical model, the same
innovation can be mapped to different outcomes depending on the latitude. Therefore, the
pattern of discretization is softened in the metrical model. Since the OSM project accumulates
traces from heterogeneous sources, it is reasonable to use a high precision to avoid losing
information from high-precision sources. In other use cases, where the precision of the input
data can be tailored to the measurements, the metrical model would likely outperform the
basic one. Using the coder on a larger scale, for example with planes, the innovations might be
generally larger, such that the error introduced by assigning probabilities to angular deviations
instead of areas becomes greater. In any case, it is safe to say that the basic model would
perform poor in the closer proximity of the poles.

For the specific use case of compressing arbitrary traces from numerous heterogeneous sources
at a given base of 10 and precision of 6, the zone-based basic model or the adaptive model
are the best choices. While the empirical model offers a higher compression ratio, its imple-
mentation requires more work—for the trained distribution, one requires a data format and
accompanying parser as well as a utility program to train a distribution and an appropriate
amount of sample data. Selecting the sample data is another source for possible problems.
For good results, the training set must be representative of the data that is encountered in
the specific use-case. The adaptive model, in turn, needs only a few additional lines of code
to increase its counters as symbols are encountered. Additionally, the adaptive model is less
prone to suffer from varying latitudes, and might even achieve better compression ratios for
traces in proximity of the poles.

41

Chapter 7

Conclusion

In this work, we successfully translated the concept of innovation-based coding from [10] to the
lossless domain. We created a proof-of-concept coder that operates on geodetic coordinates,
given as fixed-point numbers, and can encode and decode discrete trajectories without loss of
information.

To this end, we introduced the concept of grid zones. These offer solutions to a number of
different issues. The lossy coder has a limited grid size and needs to restart the coding process
when a position outside the grid is encountered. It also lacks flexibility when it comes to the
required size of the training set: short of reducing the overall grid size, there is no way to
reduce the amount of sample data required to reliably train its models. Using grid zones, we
designed models that cover the complete domain of input data, without exceptions that cause
a restart of the coding process. By varying the layout and size of the grid zones, a model
can be trained with a smaller set of sample traces—or even not trained at all, as the adaptive
model—and still yield good compression ratios.

There was an additional challenge caused by the geodetic coordinate system that had to be
used due to the lossless nature of the coding scheme: Varying length of longitudinal units,
depending on the current latitude. The metrical model was introduced to solve this problem.
For the use case of compressing OSM traces, we saw that the metrical model does not improve
compression over the basic model. We showed that the input data contains certain patterns
for which the basic model is more appropriate. We still believe that the metrical model would
improve compression ratios if the input data were of higher quality, or if it included traces
in proximity of the poles. Nonetheless, it is a positive result that the basic model performs
so well. We expect the basic model to be sufficient for many use cases of coding vehicular
trajectories.

43

Chapter 7 Conclusion

Our evaluation showed that our lossless coder performs better than the two state-of-the-art
coders from the lossy and the lossless domain. Using the real-world data from the Open-
StreetMap project, we achieved relative improvements in compression of 22% and 18%, respec-
tively. For the reduced sets, containing a higher variation of latitudes and shorter individual
traces, the relative improvement was 20% and 30%, respectively.

Overall, we designed a coding scheme that surpasses the state-of-the-art coders for the vehic-
ular domain. It features flexible models that allow trade-offs to be made between compression
ratios and complexity in implementation, training data, and runtime resources. We gave a
detailed explanation of how to optimize parameters for a real-world use case, such that the
full potential of the models is used. Our implementation avoids floating-point arithmetic, so
that it can be used to exchange data between machines of arbitrary type, instead of being
constricted by the local floating-point implementation.

7.1 Future Work

The implementation that is part of this work is aimed towards scientific evaluation of the
coding scheme and its probability models. It is meant as a proof-of-concept, focused on
modularity, extensibility, and readability. It sacrifices usability, runtime, and memory to
achieve these goals. For day-to-day usage, at least a proper interface would be required.
Furthermore, a real-world implementation could focus on a single probability model and be
highly optimized, in contrast to the open architecture of our implementation.

There are also possible improvements for the models themselves. For example, none of our
models take the direction of the vehicle into account. The metrical model could be extended
to rotate the probability grid prior to resampling the probabilities. Depending on the size
and granularity of the grid, this might be an expensive operation. This could be delegated to
the GPU, as resampling is one of the typical use cases that modern graphics hardware excels
at. As a simpler but more inaccurate version of a direction-aware model, a context-based
model with a fixed number of direction classes could be used. For each class the probability
distribution would be rotated appropriately at the time of training.

The coding scheme may be generalized to cover different use cases. A fairly intuitive general-
ization would be the coding of discrete trajectories of smaller or greater scale than those from
vehicles. For example, with the prevalence of handheld devices that include GPS receivers
and of accompanying services to track and record movements of individuals, we believe the
compression of such traces to become equally useful as for the vehicular domain. Tracking

44

7.1 Future Work

handheld devices might warrant more flexible and dynamic models than cars, as a single trace
could contain movements on foot, on a bicycle, in a train or car, or even on a plane, and any
combination thereof.

An even greater generalization would be the design of a generic arithmetic coder for time series.
While our coder is designed for the vehicular domain, is has few properties that specifically
target vehicles or even the movement of objects. There are lots of physical properties—for
example temperature, pressure, or light intensity—that are similar to the movement of objects
in that they are to a certain degree predictable. The combination of a prediction model
to calculate an innovation and an arithmetic coder with an empirically trained or adaptive
probability model to code possible innovations is therefore transferable to other domains.

45

Bibliography

[1] The OpenStreetMap Project. Data is licensed under the Open Data Commons Open
Database License (ODbL). Online resource:
http://www.openstreetmap.org/.

[2] World Geodetic System 1984. Online resource:
http://earth-info.nga.mil/GandG/wgs84/index.html.

[3] ISO/FDIS 19111:2002(E) Geographic information – Spatial referencing by coordinates.
Technical report, International Organization for Standardization (TC 211), 2007.

[4] Ilya Baran, Jaakko Lehtinen, and Jovan Popovic. Sketching Clothoid Splines Using
Shortest Paths. Computer Graphics Forum, pages 655–664, 2010.

[5] Bob Carpenter. Arithcode project: Compression via arithmetic coding in java. version
1.1, 2002. Online resource:
http://www.colloquial.com/ArithmeticCoding/.

[6] Andreas Diesterhöft. Byte-Kodierung und verlustfreie Kompression von Fahrzeugbewe-
gungsdaten. Bachelor’s Thesis, Heinrich-Heine-Universität Düsseldorf, January 2012.

[7] D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. Canadian Cartographer, 10(2):112–
122, dec 1973.

[8] Markus Koegel. A Long Movement Story Cut Short - On the Compression of Trajectory
Data. PhD thesis, Heinrich Heine University, Düsseldorf, Germany, January 2013.

[9] Markus Koegel, Wolfgang Kiess, Markus Kerper, and Martin Mauve. Compact Vehic-
ular Trajectory Encoding. In VTC ’11-Spring: Proceedings of the 73rd IEEE Vehicular
Technology Conference, May 2011.

[10] Markus Koegel, Matthias Radig, Erzen Hyko, and Martin Mauve. A Detailed View

47

Bibliography

on the Spatio-Temporal Information Content and the Arithmetic Coding of Discrete
Trajectories. Mobile Networks and Applications, 2012.

[11] David J. C. MacKay. Information Theory, Inference & Learning Al-
gorithms. Cambridge University Press, New York, NY, USA, 2002.
http://www.inference.phy.cam.ac.uk/mackay/itila/book.html.

[12] James McCrae and Karan Singh. Sketching piecewise clothoid curves. Computers &
Graphics, 33(4):452–461, 2009.

[13] Claude Elwood Shannon. A Mathematical Theory of Communication. Bell System Tech-
nical Journal, 27:379–423, jul 1948.

48

Ehrenwörtliche Erklärung

Hiermit versichere ich, die vorliegende Masterarbeit selbstständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt zu haben. Alle Stellen, die aus den
Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in
gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Düsseldorf, 26. Februar 2013 Matthias Radig

49

Hier die Hülle

mit der CD/DVD einkleben

Diese DVD enthält:

• eine pdf -Version der vorliegenden Masterarbeit

• die LATEX- und Grafik-Quelldateien der vorliegenden Masterarbeit samt aller verwende-
ten Skripte

• die Quelldateien der im Rahmen der Masterarbeit erstellten Software (Module geocoder
und tools)

• die Quelldateien des benutzten arithmetischen Kodierers von Bob Carpenter (Modul
arithcoder)

• die zur Auswertung geschriebenen Skripte und deren Ergebnisse

• die Websites der verwendeten Internetquellen

	Titelseite
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Related Work
	2.1 Innovation-based compression schemes

	3 The Domain of the Coder
	3.1 The Coordinate System
	3.2 Formal Definition of the Domain
	3.3 Binary Representation of the Domain

	4 Arithmetic Coding
	4.1 Information Content and Entropy
	4.2 Joint Ensembles
	4.3 Arithmetic Coding

	5 Probability Models
	5.1 Grids
	5.1.1 Grid Zones

	5.2 Uniform Model
	5.3 Empirical Models
	5.3.1 Basic
	5.3.2 Metrical

	5.4 Adaptive Model

	6 Evaluation
	6.1 Sample Data
	6.2 Parameter Optimization
	6.2.1 Basic Empirical Model
	6.2.2 Metrical Empirical Model
	6.2.3 Adaptive Model

	6.3 Compression Ratios

	7 Conclusion
	7.1 Future Work

	Bibliography

