
An Evaluation Framework
for distributed Android Applications

Master Thesis

by

Gian Perrone

born in

Düsseldorf

submitted to

Technology of Social Networks Lab

Jun.-Prof. Dr.-Ing. Kalman Graffi

Heinrich-Heine-Universität Düsseldorf

June 2017

Supervisor:

Andre Ippisch, M. Sc.





Abstract

As smartphones and other portable devices like tablets gain popularity on a daily basis the possibility

to provide solutions for use cases not feasible before becomes viable. Although those devices provide

different means of wireless communication like Wi-Fi and Bluetooth, one such use case not solved

yet and subject of current studies is to transfer data - like chat messages or files - from one device to

another without using the internet. While Wi-Fi Direct and Bluetooth can provide such functionality

for devices in close proximity to each other no solution exists to transfer data between devices which

cannot establish a direct connection to each other.

One possible solution to this problem is the use of opportunistic networks on mobile devices which

can forward packets to participating devices until they arrive at their intended destination. An imple-

mentation of this solution is the Android application opptain developed at our department. As there

are a lot of variables to adjust to improve the performance and stability of the network a tailored test

framework is desirable.

We present a powerful and easily expandable test framework for opptain to conduct measurements

of various metrics under configurable configurations and aggregate these to a central point for further

examination.

Several metrics were evaluated to cover the big picture of our opportunistic network regarding routing

configurations, different topologies and different use cases.

We came to the conclusion that there is still a lot of room for improvement in several use cases while

others work reasonably well in opptains current state.

iii





Acknowledgments

A lot of people supported me during my work on this thesis to whom I wish to express my gratitude,

first and foremost my girlfriend which continually supported me to a ginormous extent. Also a lot of

support, guidance, and constant motivation was provided by Andre Ippisch, my supervisor and author

of the master’s thesis mine builds upon. I cannot thank both of you enough.

My gratitude also covers my parents, my sister and all my friends for all the great support I received

over the years.

Special thanks also go to Jun.-Prof. Dr.-Ing. Kalman Graffi and Prof. Dr. Martin Mauve for reviewing

this thesis.

Shoutouts to SimpleFlips.

v





Contents

List of Figures ix

1. Introduction 1

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Fundamentals 3

2.1. Android operating system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2. Intents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.3. Android SDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Opportunistic networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1. opptain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2. Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. Demands and Design 9

3.1. Demands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2. Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1. Planning, scheduling and aggregation . . . . . . . . . . . . . . . . . . . . . 10

3.2.2. Ad-hoc based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.3. Web-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3. Bundle generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4. Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4.1. Epidemic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4.2. Spray and Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4.3. Binary Spray and Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4.4. PRoPHET v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4. Implementation 15

4.1. Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2. Åggregator on Android . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

vii



Contents

4.2.1. Ad-hoc based case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.2. Web-based case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3. Åggregator-Webb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5. Evaluation 25

5.1. Long-running opptain instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2. Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2.1. Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2.2. LazyOffices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2.3. BusyOffices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3. Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3.1. Chat messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3.2. File sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4. Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.5. Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.6. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.6.1. Chat messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.6.2. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.6.3. File sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.6.4. Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6. Conclusion and Future Work 43

6.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A. Åggregator User’s Guide 45

A.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A.2. Client mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.3. Ad-hoc server mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.3.1. Manage DeviceSets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.3.2. Manage Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B. Åggregator-Webb User’s Guide 53

Bibliography 55

viii



List of Figures

2.1. opptain’s Automation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1. Register protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2. DeviceSet database scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3. Schedule protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4. Series database scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.5. Creating a Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.6. Aggregate protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.7. SQL Export . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.8. Join protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.9. Devices protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.10. Aggregate protocol (web) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1. Topology overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2. Chat messages / Event topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3. Chat messages / LazyOffices topology . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4. Chat messages / BusyOffices topology . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.5. File sharing / Event topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.6. File sharing / LazyOffices topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.7. File sharing / BusyOffices topology . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.1. Main activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A.2. Deleting an element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A.3. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A.4. Client mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.5. Manage DeviceSets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.6. Exported DeviceSet JSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.7. Manage Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.8. Configuration JSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

B.1. Login screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

B.2. Add screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

ix



List of Figures

B.3. Dashboard screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

x



Chapter 1.

Introduction

1.1. Motivation

As smartphones and other portable devices like tablets gain popularity on a daily basis the possibility

to provide solutions for use cases not feasible before becomes viable. Although those devices provide

different means of wireless communication like Wi-Fi and Bluetooth, one such use case not solved

yet and subject of current studies is to transfer data - like chat messages or files - from one device to

another without using the internet. While Wi-Fi Direct and Bluetooth can provide such functionality

for devices in close proximity to each other no solution exists to transfer data between devices which

cannot establish a direct connection to each other.

There are several scenarios which provide use for this functionality:

• Data plans and mobile bandwidth is limited and can possibly be conserved.

• Internet is not always available on mobile devices, either due to bad network coverage or due to
unintentional or even deliberate outages.

One approach to solve this issue is being developed at our department. First introduced in Andre

Ippisch’s master’s thesis [Ipp15], it provides an implemention of a so-called opportunistic network

which uses mobile devices to which a direct connection can be established to route data to its destina-

tion.

As in such an implementation there are many variables that interact with each other and several imple-

mentation choices in some areas, e.g. routing, it is desirable to have solid tooling to test the reliability

and performance of our implementation under various scenarios.

1



Chapter 1. Introduction

1.2. Related Work

Several other implementations of opportunistic networks have been proposed which are referenced

in [Ipp15]. However, as the intention of this thesis was to provide means to evaluate our network with

very specific demands further explained in Section 3.1, a solution had to be developed from scratch.

1.3. Outline

In this chapter we gave the basic motivation for implementing a test framework for opptain. The rest

of this thesis is structured in the following way:

In Chapter 2 we explain the basics of the Android operating system for mobile devices and the oppor-

tunistic networking functionality our implementation provides.

In Chapter 3 we define our demands for our test framework and explain how these demands led to the

design of our software.

In Chapter 4 we further explain how the demands and design was implemented into both our Android

application and a web application to support all our use cases.

In Chapter 5 we show the results of various tests conducted using our test framework to evaluate the

performance of opptain under several circumstances.

In Chapter 6 we provide a conclusion of this thesis and present how our implementation and eval-

uation fulfilled our demands and the goal of this thesis. In addition possibities for future work are

introduced.

2



Chapter 2.

Fundamentals

2.1. Android operating system

Android is an operating system developed by Google for mobile touchscreen devices and is based on

the Linux kernel. Full documentation from Google can be found at [ANDb] upon which the following

summary is based. In this summary only functionality required to understand the remainder of this

thesis is presented.

2.1.1. Applications

Android Applications are run in a modified Java Virtual Machine, so although many languages are

available for the JVM the language of choice for writing Android applications is Java. Each appli-

cation runs as a different user and in its own VM, so strong isolation between applications is main-

tained.

Unlike common desktop operating systems Android applications are not simply executed by calling

their main method. As Android tries to minimize resource usage on mobile devices it starts different

components of applications as they are required and relies heavily on applications and their parts

being able to restore their previous state upon restart by the operating system. A notorious example

for this is that by default the user interface gets completely destroyed and reinstantiated when the user

changes the screen orientation.

There are four different types of applications components which are Activities, Services, Broadcast

receivers and Content providers. As content providers were not used in this thesis, their description is

skipped.

3



Chapter 2. Fundamentals

Activities

An Activity represents a single user interface. Although parts of the interface can be exchanged, the

main idea is that an activity represents one task the user can conduct, e.g. taking a picture, reading a

Facebook timeline or changing application settings. Activities can start different activities, also ones

belonging to different applications, in some cases without even knowing which application it belongs

to. As an example an application can instruct the operating system to share an image without knowing

in advance if it will be shared through Facebook, WhatsApp or email.

Service

A Service is a part of an application designed to run as a background task and does not provide an

user interface. Services can for example be used to execute regular cleanup tasks or fetching data

from the internet without user interaction. Android distinguishes between foreground and background

tasks. While background tasks are intended for tasks happening without user awareness, a foreground

task is intended for tasks the user is actively aware of like music playback. Anrdoid tries its best to

keep foreground services running at all times and requires that a notification is displayed to the user

to interact with the service and make the user aware of its existance.

Broadcast receivers

A Broadcast Receiver can receive broadcasts sent by other applications or by the operating system.

Such broadcasts are issued for example when the battery level changes, a charger is plugged in, the

screen is turned off or other events happen that are of interest to applications. As they - like services -

operate in the background, they do not provide a user interface, too.

2.1.2. Intents

Intents are the basis of inter-process communication on Android. They can be used to start all three

of the application components discussed above, Activities, Services and Broadcast receivers. There

are two kinds of intents, implicit and explicit intents. Explicit intents have a specified receiver while

Android is responsible for choosing a suitable receiver in the case of implicit intents.

Typical examples for explicit intents are common tasks as sharing or sending a picture, where it is up

to the user to decide if the picture is going to be shared via e-mail, WhatsApp or Facebook. Android

4



2.2. Opportunistic networks

provides a list of standard actions to which applications can register as handlers, in this case the action

would be ACTION_SEND.

2.1.3. Android SDK

Released first in September 2008 [ANDa], Android has been under constant development while main-

taining backwards compatibility through different API levels, so even long deprecated functionality

works when compiling applications against older APIs. The API is provided in the form of platform

images downloadable via a SDK manager.

When developing applications for Android it is important to make a careful assessment of the API

level to program against: Older API versions do not provide as much features as newer ones but are

supported by older and more widespread devices. Fortunately many new features are backported to

older API levels in the form of support libraries. In addition the API level can be queried at runtime

and newer functionality can be accessed if available on the device in question.

Unfortunately, not all functionality available on a platform is exposed via the API: There is no public

method to open a Wi-Fi hotspot, although this functionality is existent in the API and required for this

thesis. Such hidden functionality can be accessed using reflection, although there is no guarantee that

this will work in future API levels. It is worth noting that this cannot be used to circumvent Android’s

rights management, which is not covered in this summary.

2.2. Opportunistic networks

A summary of opportunistic networks is given in the abstract of [HLT08]:

“We define an opportunistic network as one type of challenged networks where network

contacts are intermittent or where link performance is highly variable or extreme. In such

a network, there does not exist a complete path from source to destination for most of

the time. In addition, the path can be highly unstable and may change or break quickly.

Therefore, in order to make communication possible in an opportunistic network, the

intermediate nodes may take custody of data during the blackout and forward it when the

connectivity resumes.”

Such an opportunistic network is desirable for various reason covered in the Introduction, as it pro-

vides a solution to the mentioned problems of missing internet connectivity and missing bandwidth

5



Chapter 2. Fundamentals

when implemented on smartphones and other mobile devices.

2.2.1. opptain

One implementation of an opportunistic network, developed at our department, is called opptain.

It was introduced and is covered in detail in Andre Ippisch’s master’s thesis [Ipp15]. It is based

on Android devices and uses their Wi-Fi capabilities to exchange data packaged in bundles to other

Android devices using the application. opptain serves as the transport layer while data can be supplied

by other applications. Two such applications are SpeeChat and FileShipping which focus on chat

messages and files respectively.

As there is no central authority in distributed networks a mode of addressing devices has to be defined.

While the initial version of opptain used the MAC address of the device, the current version uses the

public key of the integrated encryption and signature mechanism as a unique address.

Automation

opptain’s main mode of operation is the so called Automation. It consists of a state-machine which

executes several tasks. The basic operation is depicted in Figure 2.1.

First, the ScanTask enables the devices Wi-Fi and scans for access points opened by other devices

using opptain, abbreviated to AP in the illustration. These are identified using their SSID which

consists of a constant prefix and the fingerprint of the devices unique opptain id.

If no such access point is found, the MasterStartTask opens one and proceeds to the ServerTask to

listen for clients via TCP. After a random timeout has passed and all clients have disconneted it

proceeds to the MasterStopTask which closes the access point and proceeds to the IntermissionTask

which idles for a few seconds and then jumps back to the ScanTask.

If an access point is found, the SlaveStartTask connects to the access point, the following Client-

Task connects to the TCP server and after the connection ends the SlaveStopTask closes the Wi-Fi

connection and proceeds to the IntermissionTask like the MasterStopTask in the other case.

6



2.2. Opportunistic networks

ScanTask

MasterStartTask

ServerTask

MasterStopTask

SlaveStartTask

ClientTask

SlaveStopTask

[AP found][No AP found]

Figure 2.1.: opptain’s Automation mode

2.2.2. Routing

Routing in an opportunistic network is non-trivial as the topology is constantly changing and there is

no guarantee that a route taken earlier will be available again in the future. Several routing protocols

have been proposed by different authors in the past. Some are completely unaware of the history of

successful connections to other peers while others take the history and possibly other data such as

location into account. These different types are described in-depth in [Ipp15]. Each routing protocol

has advantages and disadvantages specific to the use-case and there is no clear best or worst protocol

which fits all of them.

7





Chapter 3.

Demands and Design

3.1. Demands

The goal of this master thesis was to create a framework for use with opptain to conduct fully auto-

mated and highly configurable measurement series to evaluate the Automation mode of the opptain

network under various aspects. The main focus was to enable the evaluation of different routing pro-

tocols under different use-cases. To achieve this goal an application had to be developed which has to

serve several demands.

It must be possible to plan and schedule measurement series on multiple participating devices so that

opptain is operated in a fully automated way without required user interaction. This is important so

that measurements can be conducted easily both in test environments and by real users, so that the

least possible effort is required by these users.

Bundles have to be generated to send and receive via opptain to simulate the load of interest on the

network. This should be highly configurable to simulate different and mixed loads as these stress the

network in possibly different ways.

During a measurement series measured values must be collected from opptain and stored for later

analysis. Recording measured values should be simple and opptain should still be able to run properly

without a measurement series taking place. The recorded values must later be aggregated from their

respective devices to a central location and exportable for analysis.

All these demands should be met both in confined test environments and on real-life devices e.g.

belonging to students.

9



Chapter 3. Demands and Design

3.2. Design

3.2.1. Planning, scheduling and aggregation

One of the basic requirements was that measurement series should both be possible on test devices

and on real-life devices e.g. belonging to students. These requirements are fundamentally different in

many ways and will be explained in detail in the following sections.

Due to the way we implemented solutions to both these scenarios we refer to the first case as Ad-hoc

based and to the latter case as Web-based.

3.2.2. Ad-hoc based

In this case, as participating devices are known beforehand, measurement series should be able to

be planned device-dependent. To evaluate different topologies without physically moving devices it

should be possible to whitelist devices, so that opptain can only connect to devices on its whitelist.

This vastly simplifies taking measurements which do not depend on the distance of the devices.

Not all Android devices allow setting the clock via GPS, so devices do not necessarily have syn-

chronized clocks and Android does not allow setting the clock from applications not supplied by the

device vendor, so a mechanism should be implemented to synchronize the aggregated data. The data

should be aggregated on a central Android device via ad-hoc Wi-Fi networking as no internet access

is provided on the test devices, so the devices have to be brought back the same physical location after

a test.

3.2.3. Web-based

In this case the participating devices are not known beforehand, so measurement series cannot be

planned device dependent. Nonetheless participating devices have to know about each other as they

have to generate bundles to deliver to each other via opptain.

Real-life devices usually have synchronized clocks as they obtain their time from the cellular network.

As there is no guarantee that participating devices ever meet again in one physical location internet

access is mandatory so that data can be aggregated to a web server.

Note that our requirements for real-life devices cannot be satisfied in all situations where testing

10



3.3. Bundle generation

opptain would be desirable. For now there is no way to test opptain in real disaster-hit areas where

neither internet access nor a central location is available.

3.3. Bundle generation

The bundle generation has to be highly configurable in order to provide a proper environment for

testing. Both the interval of bundle generation and the size of the bundle payload should be variable

and different distributions should be possible. Multiple generators should be able to run at the same

time to mix different use cases. The distributions chosen for implementation were:

• set: Pick values from a set of values with equal probability.

• uniform: Pick values uniformly distributed between a lower and an upper bound.

• loguniform: Pick values whose logarithm is uniformly distributed between a lower and an upper

bound.

The last distribution was chosen for implementation as it can be used to provide a more realistic

distribution of file sizes than a simple uniform distribution.

3.4. Routing

The main focus of evaluation was put on the comparison of different routing schemes available for

opportunistic networks. Several schemes have been proposed in the past and a suitable selection had

to be made. The available options range from the simple flooding of each message to each connected

peer to elaborate schemes which e.g. take into account the history of peer connections. For our tests,

we chose to implement four different routing protocols spread across this spectrum.

3.4.1. Epidemic

Defined in [VB00], this is a basic routing scheme which does not require connection history or other

data. Each and every single bundle is forwarded to each and every single connected peer. While on

one hand this makes sure every possible route is taken on the other hand it potentially consumes a lot

of resources. In contrast to blindly flooding the network we only forward a bundle to connected peers

if they do not already have a copy of the bundle.

11



Chapter 3. Demands and Design

3.4.2. Spray and Wait

Spray and Wait, defined in [SPR05], is a routing protocol which limits the amount of copies of a

single bundle in the network to a parameter L. It achieves this using two phases: In the first phase,

called Spray, the sender forwards one copy of the bundle to each of the first L−1 connected peers, so

that L copies exist in the network in total. In the following Wait phase, each of the peers just waits

to encounter the bundle destination without further forwarding the bundle to other peers. Obviously

this limits the hops a bundle takes to two, the first hop being from the sender to an arbitrary peer, the

second being from this peer to the destination.

3.4.3. Binary Spray and Wait

Binary Spray and Wait, also defined in [SPR05] is a variant of the Spray and Wait protocol, where not

only one, but half of the remaining copies are transmitted to each encountered peer if the peer did not

receive any copies yet. As an example, if L = 8, on the first encounter the sender keeps 4 copies and

forwards 4 copies to the encountered peer, so both peers have 3 copies left to forward. This variant

lifts the limit of two hops imposed by Spray and Wait while keeping the number of copies of a bundle

in the network the same.

3.4.4. PRoPHET v2

The Probabilistic Routing Protocol using History of Encounters and Transitivity v2, hereafter short-

ened to PRoPHETv2, defined in [GDLD11] and [LDD12] is an update to the earlier Probabilistic

Routing Protocol using History of Encounters and Transitivity defined in [LDS03]. It is based on

the assumption that encounters between peers are not truly random but follow patterns so that the

probability to meet the same peer multiple times is higher than the probability to meet a new peer.

Several equations are defined to calculate an approximate probability P of bundle delivery based on

the connection history between pairs of peers.

Our implementation of PRoPHETv2 is based on the definition in [LDD12] and takes the parameters

Pencounter_first, Pencounter_max, β , γ , δ , for which the default values were taken. Additionally a time unit

is needed which defines the resolution of the protocol. No default value for this time unit is proposed

by the authors but is dependent on the properties of the network in question.

12



3.4. Routing

PA,B = PA,Bold +(1−δ −PA,Bold) (3.1)

PA,X = PA,Xold · γ
K (3.2)

PA,C = max(PA,Cold ,PA,B ·PB,Crecv ·β ) (3.3)

The first calculation two peers A and B execute upon opening a connection is to update their respec-

tive delivery probabilities PA,B and vice versa. If they have never met before, PA,B is initialized to

Pencounter_first. Otherwise it is updated according to equation 3.1. δ = 0.01 is a parameter intended to

set an upper bound to PA,B.

After this update every delivery probability PA,X already in the database is aged according to equation

3.2, where K is the number of time units passed and γ = 0.999 is the aging constant. This aging

constant in conjunction with the choice of the time unit dictates how fast the delivery probabilities

will decrease. For the default value of γ it takes 0.999K = 0.5⇒ K ≈ 693 time units to halve a

delivery probability. We chose 30 seconds as time unit so that in our case the amount of time it takes

to halve the delivery probability is approximately 6 hours.

The last update step that takes place is to account for transitivity. First they exchange their lists of

delivery probabilities to other nodes with each other. From each delivery probability PB,Crecv reported

to peer A it updates or initializes its delivery probability PA,C according to equation 3.3. This means

that the new delivery probability is the maximum of the old delivery probability or the product of both

the own delivery probability to peer B, the received delivery probability between B and C and β = 0.9.

β defines the influence each hop has on this calculation.

After all these calculations have taken place a routing decision is to be made. The authors do not

define a single best scheme to decide if a packet should be forwarded or not. We chose to forward

packages if a configurable minimal delivery probability Pmin is achieved.

13





Chapter 4.

Implementation

Most of the aforementioned demands were implemented in a single Android application called Åggre-

gator. The name was chosen because the application aggregates data from opptain and the letter å is

pronounced like o in most of the Scandinavian languages, so it is pronounced like oggregator. Solely

to support the web-based case, a web application called Åggregator-Webb was developed, its name

again derived from a Scandinavian language, in this case Swedish, where webb means (inter)net.

Participating devices are distinguished by their unique opptain device ID, which is a public key to

opptain’s underlying signature and encryption mechanism. In the following this unique identifier is

referred to as oppid to prevent confusion with database IDs.

As both the SQL database used in the Android application and the one used in the web application use

limited sets of data types not the actual data types used in the implementation but descriptive datatypes

such as ENUM, BOOLEAN and DATETIME are used in database structure diagrams, although the

implementation may differ. As an example these three data types are all implemented as INTEGERs

on Android. The database structure and the used protocols were chosen to be described in detail as

they offer a sensible description of how Åggregator and Åggregator-Webb work.

4.1. Development

As mentioned before, Android applications run in a special JVM, so Java is used to develop Android

applications. Google provides all the necessary APIs and tools to build Android applications together

with an Integrated Develop Environment called Android Studio for free. Android Studio is based

on a widespread IDE for Java called IntelliJ IDEA by the Czech company JetBrains. To be able to

parse configuration files in the human-readable JSON format the GSON library by Google was used.

Android provides an interface to use embedded SQLite 3 databases.

15



Chapter 4. Implementation

To keep things consistent the web application was implemented in Java, too, using the aforementioned

IntelliJ IDEA as an IDE. The web application is based on both the Spring Framework and the Vaadin

Framework. Spring is an application framework for Java mainly focused on web applications. Our

web application uses Spring to integrate a web server, an embedded SQL database (H2) and HTTP

endpoints to communicate with the Android application. Furthermore it delegates access from a

browser to Vaadin, which is a framework for one-page web applications with the look and feel of

desktop applications.

For communication both between two Android devices and from an Android device to the web server

Protocol Buffers by Google are used. They provide an easy mechanism to serialize data for transport

via TCP and even HTTP.

4.2. Åggregator on Android

A user manual to Åggregator is provided in Appendix A and should be read before continuing to gain

a basic understanding how the application is operated. To understand how Åggregator works, first the

ad-hoc based case is explained in its entirety and then only the differences in the web-based cases are

explained.

4.2.1. Ad-hoc based case

In the ad-hoc based case the measured data is aggregated on a central Android device which we

call the server in contrast to the other devices called clients. The server is responsible for Planning,

Scheduling and Aggregation. To accomplish this it communicates with the clients using the built-in

Android functionality of opening a Wi-Fi hotspot to which the clients can connect, much like opptain

uses this functionality to distribute bundles.

For normal operation every action is initialized and configured by the server while the client just has

to connect to fetch or push its data. Every such connection starts with the client sending a ClientHello

message which contains its oppid and the current time. After that the server can send requests.

As in this case the devices are known beforehand, they can be stored in the server’s database using an

action called Register as depicted in the user’s guide. The Register protocol is shown in Figure 4.1.

No additional data is needed, so only an empty request and an empty confirmation have to be sent.

After all devices have been registered, there are two choices. Either a so called simple measurement

series can be planned directly or the device data can be exported to JSON to configure a complex

16



4.2. Åggregator on Android

Client Server

ClientHello(oppid, time)

RegisterRequest()

RegisterResponse()

Figure 4.1.: Register protocol

measurement series using a PC.

As stated in the user’s guide a feature called Whitelisting was implemented for opptain using De-

viceSets and DeviceGroups. Only devices within the same DeviceGroup can see each other’s Wi-Fi

hotspots when looking for a connection.

Of course Devices can belong to multiple DeviceGroups, so that every possible static topology is

represantable by this model. To further simulate temporally changing topologies, i.e. moving devices,

a feature was implemented to change the active DeviceSet in a configurable interval. The underlying

database scheme is visualized in Figure 4.2. The IDs carry no meaning and are generated by the

database.

devices

_id INTEGER 
_group_id INTEGER
oppid TEXT

device_groups

_id INTEGER 
_set_id   INTEGER
name TEXT

device_sets

_id INTEGER 
name      TEXT

n

1

n

1

Figure 4.2.: DeviceSet database scheme

Internally both the simple and the complex measurement series case lead to a JSON configuration,

17



Chapter 4. Implementation

which in the next stage is distributed to clients using an action called Schedule, its protocol shown in

Figure 4.3.

Client Server

ClientHello(oppid, time)

ScheduleRequest(id, name, begin, end, config, oppid[])

ScheduleResponse(scheduled)

ScheduleRequest(id, name, begin, end, config, oppid[])

ScheduleResponse(scheduled)

...

Figure 4.3.: Schedule protocol

All available information regarding the measurement series is sent from the server to the client, which

includes its unique randomly generated ID, its display name, its begin and end times, its JSON con-

figuration and a list of all participating devices. A convenience feature implemented after taking the

first test measurements is that multiple series can be scheduled during the same session.

The series data is stored in the Series table according to the database scheme depicted in Figure 4.4.

The LocalRecord and AggregatedRecord hold the collected records and will be explained later. The

close field is not used in the ad-hoc based case and the valid values for role are ADHOC_SERVER and

ADHOC_CLIENT. All participating devices have a corresponding SeriesDevice entry, where the time

difference to the host device and the one of the states CREATED, SCHEDULED, AGGREGATED

is saved which are self-explanatory, initialized to CREATED and advanced to SCHEDULED after

scheduling.

18



4.2. Åggregator on Android

series

_id INTEGER
role ENUM
name TEXT
close DATETIME
begin DATETIME
end DATETIME
config    STRING

series_devices

_id INTEGER
_series_id INTEGER
oppid TEXT
state ENUM
timediff DATETIME

aggregated_records

_id INTEGER
_device_id INTEGER
timestamp DATETIME
key TEXT
value TEXT

local_records

_id INTEGER
_series_id INTEGER
timestamp DATETIME
key TEXT
value TEXT

n

1

n

1

n

1

Figure 4.4.: Series database scheme

This leads to both the server (if it is participating in the series) and the clients scheduling tasks to

begin and end measurement series using Androids built-in Alarm Manager which delivers Intents to

Åggregator’s BeginService and EndService at specified times.

The purpose of the BeginService is to start opptain, delete all its previous data to start with a fresh

instance of the network and to configure opptain as defined in the JSON configuration. Also, the first

two records are created: A meta record designating the start of the series and a record indicating the

current battery level.

After all initialization is done the CreateBundleService is started which is a foreground Service dis-

playing a persistent notification to the user and generates bundles for delivery through the opportunis-

tic network as configured. opptain is constantly being sent empty Intents to keep it running in the

event of a crash.

While a test is running the RecordReceiver, a Broadcast receiver, listens for records generated by

opptain and saves them to the database. Designing this as a Broadcast receiver leads to a loose

coupling from opptain to Åggregator as broadcasted Intents are simply ignored by Android when no

suitable Broadcast receiver is present so opptain can be run without code changes if Åggregator is not

installed on a device.

19



Chapter 4. Implementation

Only one class in opptain interfaces directly with Åggregator. Its purpose is to create and persist

records, an example of its use is given in Figure 4.5.

new OggregatorRecord()
.add("bundle_id", opptainBundle

.getBundleId().toString())
.add("bundle_state", "received")
.add("bundle_hops", opptainBundle

.getAdditionalInformation().get("hops", 1)
.toString())

.record();

Figure 4.5.: Creating a Record

When the RecordReceiver receives the generated intent it generates as many new LocalRecord entries

(see Figure 4.4) referencing the Series as there are key-value-pairs while the current timestamp serves

as a unique identifier for a whole record consisting of multiple such pairs.

After a measurement series has completed the EndService stops opptain, again creates two records

to indicate the end state and the battery level of the device and deletes all generated files. The next

manual step is to aggregate all records on the ad-hoc server device using the Aggregate protocol shown

in Figure 4.6.

Again, multiple measurement series can be aggregated at once as a convenience feature. After the

server asks for data regarding a specific series the client sends all its records belonging to the series in

question to the server. Only after the server has successfully written these to its database and its state

field has been advanced to AGGREGATED the client deletes all its data regarding the series.

The server saves the records of the client as AggregatedRecords (again, see Figure 4.4) just as the

client saved them as LocalRecords but referencing the corresponding SeriesDevice instead of the

Series.

As a final step the aggregated values can be exported to SQL suitable for SQLite 3 for further analysis.

In this case for every key present in key-value-pairs a new column is created in the exported table so

that key-value-pairs recorded at the same time by opptain end up in the same table row with unused

fields set to NULL. This is illustrated in Figure 4.7 where _device_id 3 references a SeriesDevice with

the abbreviated oppid 654b.

20



4.2. Åggregator on Android

Client Server

ClientHello(oppid, time)

AggregateRequest(id)

AggregateResponse(id, (timestamp, key, value)[])

DeleteRequest(id)

DeleteResponse()

...

AggregateRequest(id)

AggregateResponse(id, (timestamp, key, value)[])

DeleteRequest(id)

DeleteResponse()

Figure 4.6.: Aggregate protocol

_id _device_id timestamp key value
41 3 1498581000 _state started
42 3 1498581090 bundle_id 34be… _oppid _timestamp _state bundle_id bundle_state bundle_hops
43 3 1498581090 bundle_state received 654b… 1498581000 started NULL NULL NULL
44 3 1498581090 bundle_hops 2 654b… 1498581090 NULL 34be… received 2
45 3 1498581091 bundle_id 34be.. 654b… 1498581091 NULL 34be… delivered 2
46 3 1498581091 bundle_state delivered
47 3 1498581091 bundle_hops 2

→

Figure 4.7.: SQL Export

21



Chapter 4. Implementation

4.2.2. Web-based case

In the web-based case the roles while communicating with the web server are reversed: The client

specifies the action to take. This case skips the Register action but instead registers and schedules

in the same step called Join depicted in Figure 4.8. As the client and the server communicate over

a stateless protocol (ProtoBuf over HTTP) all relevant information is included in each request and

response.

Client Server

JoinRequest(oppid, name)

JoinResponse(id, name, close, begin, end, config)

JoinConfirmation(oppid, id)

Figure 4.8.: Join protocol

The JoinRequest contains the name of the series to join which acts as an identifier and authorization

to join the series. No information about participating devices is exchanged at Join time but instead a

close time is fixed, which is also inserted into the database (see Figure 4.4). No further manual steps

have to be taken to conduct a web-based measurement series on the client side.

The role is set to WEB_CLIENT. The close time, which has to be before the begin time, denotes the

point in time until which devices can join the measurement series. When close time passes the client

tries to send a Devices request to the web server in intervals of one minute which can be seen in Figure

4.9.

As in the ad-hoc based case a SeriesDevice is created for every participating device in the series but

the only whitelisting applied whitelists all participating devices so no further restrictions on visibility

can be placed. If it is not possible for a client device to retrieve the list of participating devices in time

22



4.2. Åggregator on Android

Client Server

DevicesRequest(oppid, id)

DevicesResponse(oppid[])

Figure 4.9.: Devices protocol

it does not participate in the measurement series and only creates a record qualifying this case.

The following steps until the aggregation of the data are equal to the ad-hoc based case. Aggregation

in turn is conducted automatically, again tried in intervals of sixty seconds. For this step the protocol

displayed in Figure 4.10 is used.

Client Server

AggregateRequest(oppid, id, (timestamp, key value)[])

AggregateResponse()

Figure 4.10.: Aggregate protocol (web)

23



Chapter 4. Implementation

4.3. Åggregator-Webb

Åggregator-Webb is the web-based server application to support the aforementioned web-based use

case. It is relatively simple as it does not need to support any client features. A user manual to

Åggregator-Webb is provided in Appendix B and should again be read before this section.

The whole application is self-contained in one JAR which can be executed on any server with a

suitable Java Runtime Environment. The address of the server must be hardcoded into Åggregator by

design.

The database scheme of Åggregator-Webb equals the one used by Åggregator (see Figure 4.4) but

omits all unneeded tables: Only Series, SeriesDevices and AggregatedRecords need to be persisted.

Instead of SQLite 3 it uses an embedded H2 database which was designed for usage with Java and is

natively supported by Spring.

The user interface is implemented with Vaadin and provides a single-page web application. Commu-

nication with the Android client application is done using ProtoBuf over HTTP using Spring func-

tionality intended for RESTful web services.

In contrast to the SQL export of the Android application the list of participating devices is also ex-

ported as it is not known beforehand. Aggregated records can be exported at any time as there is no

guarantee that every real-life device can or will provide its measured data.

24



Chapter 5.

Evaluation

The evaluation was split into two parts: First opptain was subjected to critical scrutiny when running

over long periods of time to find possible problems with either the application or the underlying

operating system Android. After this was finished actual measurement series could be recorded.

5.1. Long-running opptain instances

The first thing to test was if and how opptain was fit to run continuously for long times without user

intervention. As opptain is a large project with a lot of concurrency many problems appeared while

testing. The larger and hard-to-debug problems are described in this section.

opptain is largely built on the assumption that Android will not kill it while a foreground service is

running. Alas, while Android makes sure the service is running at all times, the assumption did not

hold, as Android restarted the opptain application after as little as 15 minutes. This was mitigated by

making opptain and our measurements restart safe.

For reasons yet unknown to us the reference to the Automation gets dropped sometimes. While this

rarely happens it means that we lose the ability to control the automation after a measurement series

ends. This was circumvented by completely killing opptain after the end of a measurement series,

as we do not need it anymore and can start the next measurement series with a fresh instance of

opptain.

Several resource leaks were found and fixed, mainly database related. Also several instances were

found where concurrent collection access from multiple threads could crash opptain. All instances

found were fixed.

The Automation was programmed to halt if any problems appeared. This is suitable for manually

25



Chapter 5. Evaluation

testing the application to analyze what happened but not for automated tests on an operating system

like Android which does not provide many guarantees. E.g. scanning for Wi-Fi networks failed

occasionally for no apparent reason and worked perfectly on the second try. This was fixed to continue

running.

After that the Automation proved to leave several threads running after their respective tasks were

finished. This could have been the reason for the first problem, which was already mitigated when

this problem was discovered. This was fixed.

Also, the Automation would sometimes get stuck on the ServerTask. This task is programmed to run

as long as clients are connected. It turned out that it takes a very long time on Android for connections

to time out if they were not properly closed. This was mitigated by regularly killing connections after

no packets have been received for some time.

As we could not rule out the possibility of other rarely occurring timing bugs or yet undiscovered

concurrent collection access crashing opptain we make sure opptain is running at all times, and if not,

restart it. Some crashes happened so rarely that it was not possible to discover their cause yet.

A problem that was not addressed as of yet is that Android can delay Intents arbitrarily, in rare cases

up to several seconds. This is a limitation of the operating system we work on and not certainly

circumventable. The problems resulting from this will be covered later.

5.2. Topologies

For our main tests we used three different topologies, two static ones and one with moving devices, all

simulated by whitelisting. We call these Event, LazyOffices, and BusyOffices. Each topology consists

of 21 devices to provide comparability.

5.2.1. Event

In the Event topology each of the 21 devices can see every other device; no whitelisting is applied.

This could for example be the case in a lecture hall, at a public event, or in an open space office. In

this case there are a lot of clients and servers that can connect to each other.

26



5.2. Topologies

Figure 5.1.: From left to right: The Event topology, the LazyOffices topology and the BusyOffices
topology. Small circles denote devices, the dotted ellipses denote DeviceSets, i.e. devices
that can see each other.

5.2.2. LazyOffices

The LazyOffices topology simulates an office building with offices of three people each where the

Wi-Fi only reaches the neighbouring offices. This means a lot of hops are needed to reach from

one end to the other in some cases, the maximum number of hops needed being 6. The average

number of nodes reachable in two hops, the maximum for the Spray and Wait routing protocol, is

3 · (8+11+14+14+14+11+8)/21≈ 11.4.

5.2.3. BusyOffices

This topology also simulates an office building but this time with three sets of offices of six people

each. These sets are not able to see each other but three rather busy employees walk around the

building. In each of its three temporally changing configurations each one of the busy employees is

whitelisted in one of the sets. While none of the busy employees can ever see each other, each bundle

can reach any destination in at most two hops via one of the busy employees. The main intent of this

27



Chapter 5. Evaluation

topology was to test how a context-aware routing protocol such as PRoPHETv2 will behave.

5.3. Scenarios

Each of the three topologies was tested in two different scenarios: The Chat messages and the File

sharing scenario. Both of these were derived from existing Android applications for opptain. Empha-

sis was put on the first case as the latter one has certain limitations in opptain’s current version.

5.3.1. Chat messages

The first scenario takes the idea from the SpeeChat application which is intended to deliver chat

messages to peers. Chat messages are typically very small in comparison to files and happen rather

often. In this configuration each node created a bundle with a fixed payload size of 1 KiB every 30

to 300 seconds using the loguniform distribution. The TTL was set to a constant 30 minutes and each

test ran for 90 minutes.

5.3.2. File sharing

The second scenario is inspired by the FileSharing application for opptain intended to deliver files to

peers. Unfortunately the current version of opptain has no limit on how many storage space it uses

for bundles and storage space on mobile devices is still rather limited. There is ongoing research to

limit the storage space used to an acceptable amount and delete bundles to make room for other ones,

but for our evaluation we had to make sure there was a strict size limit. This resulted in a rather small

and simple case of generating a 1 MiB file each 5 minutes to stay under 4 GiB, a safe limit for our

test devices. The file sharing scenario will become much more interesting in the future but was not

emphasized here. The TTL was set to 100 minutes which is longer than the test duration as files do

not get uninteresting as fast as chat messages.

5.4. Routing

All of the routing schemes described in Section 3.4 were put to test in different configurations with

the exception of the Epidemic routing scheme as there are no configuration parameters. Both the

Spray and Wait and the Binary Spray and Wait protocols were tested with their maximum number of

28



5.5. Metrics

copies in the network L set to L ∈ {4,8,16}, where 16 is the highest power of 2 less than the number

of participating devices. The threshold delivery probabilities for the PRoPHETv2 protocol were set

to Pmin ∈ {0.4,0.5,0.6}. These seemed to be reasonable thresholds as we had no prior empirical

knowledge about this protocol. The total amount of routing configurations tested adds up ten.

5.5. Metrics

This evaluation focuses mainly on the big picture of an opptain network. Nonetheless some measure-

ments were taken to make it possible to examine opptain on a smaller scale. Due to the nature of

whitelisting these were limited to metrics which are not significantly influenced by physical distance

between devices.

The events recorded to examine the big picture are:

• Bundle generation at the source including the destination

• Bundle receipt at a relay or the destination including the amount of hops taken so far

• Bundle delivery to the destination including the amount of hops taken

From these records the following metrics can be read or calculated using SQL only:

• Delivery rate, i.e. the amount of bundles successfully delivered before its TTL runs out

• Distribution of hops taken

• Distribution of latency, i.e. the time a bundle takes from source to destination

To enable measurements on a smaller scale the time spent in each of the Automation tasks is logged,

too. Additionally the battery state at the start and at the end of a measurement series is logged but

neglected in this evaluation as all test devices were connected to a charger at all times during the

tests.

The aforementioned problem of Android arbitrarily delaying Intents surfaced when calculating laten-

cies. In rare cases a small negative value of up to a few was computed although all other measured

data was sound and synchronized. As real latencies were generally much larger than the impact of

the delay introduced by Android negative values are not shown in the diagrams and introduce no

significant error to the measurements.

29



Chapter 5. Evaluation

5.6. Results

As stated before, for each of the combination of the two scenarios and the three topologies we com-

pared ten different routing configurations. For each of these 60 cases we analyzed the delivery rate,

the hops taken, the latency for the big picture and further looked at how long the Automation remained

in server and client mode. The time to scan for networks and the time to open and close connections

was not considered, as these times are device dependent and not configurable.

For both scenarios, first the results of the measurement series for each topology will be presented

independently followed by a comparison of the topology results. Finally a comparison between both

scenarios will be shown.

The diagrams shown for each case are from left to right, top to bottom:

1. Delivery rate

2. Distribution of hops taken

3. Distribution of latency

4. Total time spent in ServerTask vs. Total time spent in ClientTask

5. Distribution of ClientTask duration

6. Distribution of ServerTask duration

As there are few but severe outliers for the duration diagrams both a zoom to the main area of interest

and the whole view is provided. To be able to compare the diagrams between the different topologies

related diagrams are scaled equally.

5.6.1. Chat messages

Event topology

The results are shown in Figure 5.2.

Depending on the chosen routing protocol high delivery rates can be achieved. Comparing delivery

rates and latency distribution Spray and Wait is in clear lead for L = 4 and L = 16 but not for L = 8

where it performs equally bad as Epidemic. Binary Spray and Wait and PRoPHETv2 perform simi-

larly although PRoPHETv2 presents more outliers with higher latency. Looking at the hops diagram

30



5.6. Results

one can see that the although the mean amount of hops taken by Binary Spray and Wait is only slightly

less than that of PRoPHETv2, there are a few outliers with higher hop count for PRoPHETv2.

In all cases most client connections took less than 40 seconds with the best performing Spray and

Wait configurations having mean client times lower than 10 seconds. For these configurations the

time spent in server mode is comparatively long, so few hotspots serve as hubs for many bundles.

A possible conclusion is that in the case of the open Event topology it is desirable to stay in server

mode for large amounts of time to benefit the whole network. Also a small amount of hops is desirable

as can be seen by the good performance of Spray and Wait which by design limits the maximum

number of hops for each bundle to two.

LazyOffices topology

The results are shown in Figure 5.3.

Taking into account that only 20/11.4 = 57% - the number of possible target devices divided by the

number of devices reachable in at most two hops - of bundles can reach its destination using Spray

and Wait it performs remarkably good. Although again Spray and Wait provides low latencies the

overall delivery rate of PRoPHETv2 is the highest. It achieves this by being able to use more hops, up

to 11 in the most extreme cases, although every bundle can possibly reach its destination in 6 hops.

This comes with the drawback of higher latencies.

Both Epidemic and Binary Spray and Wait perform poorly in comparison to PRoPHETv2 and Spray

and Wait, although Binary Spray and Wait provides low latencies for the bundles it delivers.

In this topology the distribution of client and server time is much closer than in the Event topology.

The shortest client times are provided by Binary Spray and Wait with L = 8 which is also the routing

protocol with the least amount of successfully delivered bundles.

In conclusion a tradeoff has to be made between low latencies and high delivery rate when choosing

the routing protocol. As the distribution of client and server time does not vary much no obvious

conclusions are possible here.

BusyOffices topology

The results are shown in Figure 5.4.

31



Chapter 5. Evaluation

Although PRoPHETv2 is specifically designed with changing topologies in mind both Spray and

Wait and Binary Spray and Wait perform better regarding the delivery rate, although this is strongly

dependent on the used configuration. As in the Event topology, Spray and Wait performs poorly for

L = 8 while PRoPHETv2 performs better the lower Pmin is set.

The latencies of each protocol vary far less than in the other two topologies. Fortunately, the routing

protocols with the highest delivery rate also provide the least mean latency.

The comparison of client and server time favours the server mode slightly more than in the LazyOf-

fices case although this is not directly evident when looking at the distribution of client time and the

distribution server time.

Again, no obvious conclusions can be drawn from the distribution of client and server times. The

Spray and Wait protocol performs best for certain configuration, Binary Spray and Wait being a close

competitor.

5.6.2. Conclusion

Spray and Wait, although one of the most simple routing protocols, performs surprisingly good in

comparison to our other tested routing protocols. For this to be achieved either a small or a large

number of maximum bundle copies need to be available with the intermediate case of L = 8 having a

significantly worse performance than L = 4 and L = 16.

Binary Spray and Wait is a close contender is some cases but slightly worse overall. Epidemic only

provides competitive delivery rates in the case of the LazyOffices topology but overall performs worse

than Spray and Wait.

PRoPHETv2 provides the highest delivery rate in the case of the LazyOffices topology, a static topol-

ogy where many hops can be needed but does not perform as good with a changing topology, although

this might change with longer test durations.

In all cases the distribution of latencies has outliers with high latencies but can generally be lowered

by choosing the right protocol for the use case. While Spray and Wait is a favorite for both the Event

and the BusyOffices topology, there is a tradeoff to be made between delivery rate and latency in the

case of the LazyOffices topology.

The distributions of client and server time show a wide range of possible times which makes it impos-

sible to draw conclusions what distribution would be desirable.

32



5.6. Results

5.6.3. File sharing

Due to a bug in the software all measurement data for one of the 21 devices got accidentally discarded.

As in all of the cases this was a stationary device the results are accurate nonetheless as the amount of

bundles sent by and delivered to this device evens out due to the nature of our bundle generator.

Event topology

The results are shown in Figure 5.5.

Compared to the Chat messages case the overall delivery rates are much lower. The best performing

protocol regarding both the delivery rate and the latency distribution is Spray and Wait with L = 16.

It provides a mean latency of less than 20 minutes. The Epidemic routing protocol performs worst

regarding both of these metrics.

PRoPHETv2 with Pmin = 0.5 has comparable latencies to the best Spray and Wait case but a lower

delivery rate. All other configurations fall in the range between the best Spray and Wait case and

Epidemic with low variation.

Looking at the distribution of server times it becomes evident that large amounts at a time were spent

in server mode. As every device could connect while a long file transfer was ongoing devices rarely

had the chance to leave server mode and connect to other servers themselves. Comparing server and

client times it is obvious that the server mode was only entered few times but lasted for long times.

LazyOffices topology

The results are shown in Figure 5.6.

In contrast to the Chat messages case where the overall delivery rate was higher in the Event topology

than in the LazyOffices topology it is the other way around in the File sharing case. Although Spray

and Wait with L = 16 provides comparable delivery rates to the Event topology it comes with higher

latencies than the almost equally well performing other cases of Spray and Wait with the best latency

provided with L = 4.

PRoPHETv2 performs slightly better than Epidemic and Binary Spray and Wait but all three perform

worse in general than Spray and Wait. The mean latencies of PRoPHETv2 are close to the mean laten-

cies of Spray and Wait but the delivery rate is lower than in all three Spray and Wait configurations.

33



Chapter 5. Evaluation

The amount spent in server time in comparison to client time is much lower than in the Event case but

the mean time a server was open leads to the conclusion that most servers were never connected to

by clients. The ones that received connections were open for vastly varying times. Client times vary

heavily with the routing protocol but offer no correllation to delivery rate or latency.

BusyOffices topology

The results are shown in Figure 5.7.

The variance in the delivery rate between the routing protocols is significantly lower in this moving

topology than in all other cases before. On the other hand, the latency distribution varies heavily with

Epidemic having the worst latencies by far. Surprisingly the best latencies are provided Binary Spray

and Wait together with PRoPHETv2 for Pmin = 0.4 with only a slightly smaller delivery rate than

Spray and Wait.

Although again a tradeoff has to be made between delivery rate and latency the overall effect on

latency outweighs the effect of the routing protocol on delivery rate.

Again, as in the LazyOffices topology, server time varies heavily with most servers never being con-

nected to. In this case, client time correlates with latency, so it is possible that latencies for other

routing protocols might be improved by limiting client time.

Conclusion

Spray and Wait again performs best overall but the delivery rates are low in all tested cases. It generally

performs better as the number of maximum copies L increases.

In the restricted topologies most servers were never connected to and connections, once established,

could lead to long connection times which can possibly hinder the distribution of bundles to other

peers.

As already stated the File sharing case will become much more interesting in the future once a strategy

for opptain is developed to limit the storage space in use.

34



5.6. Results

5.6.4. Comparison

The Chat messages and the File sharing case show vastly different behaviour in regard to all mea-

sured metrics. Although in both cases Spray and Wait performed best regarding delivery rate, in the

former case both L = 4 and L = 16 performed significantly better than L = 8 while in the latter case

performance generally increased with the number of available maximum copies.

In our choice of topologies and scenarios, the choice of routing protocol depends much more on the

topology than on the scenario. Although opptain makes it possible for bundles to choose which routing

algorithm they want to use there is no clear choice to be made depending on the data to be sent.

Distribution of client and server time varied vastly as did their ratio. While in some cases a correlation

could be deduced between these values and the delivery rate or latency in other cases no correlation

was evident.

35



Chapter 5. Evaluation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Delivery rate

0%

20%

40%

60%

80%

100%

Delivery rate
Epidemic SaW 4 SaW 8 SaW 16 BSaW 4 BSaW 8 BSaW 16 PRoPHET 0.4 PRoPHET 0.5 PRoPHET 0.6

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Epidemic SaW 4 SaW 8 SaW 16 BSaW 4 BSaW 8 BSaW 16 PRoPHET
0.4

PRoPHET
0.5

PRoPHET
0.6

Server time vs. Client time

Server time Client time

Figure 5.2.: Chat messages / Event topology

36



5.6. Results

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Delivery rate

0%

20%

40%

60%

80%

100%

Delivery rate
Epidemic SaW 4 SaW 8 SaW 16 BSaW 4 BSaW 8 BSaW 16 PRoPHET 0.4 PRoPHET 0.5 PRoPHET 0.6

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Epidemic SaW 4 SaW 8 SaW 16 BSaW 4 BSaW 8 BSaW 16 PRoPHET
0.4

PRoPHET
0.5

PRoPHET
0.6

Server time vs. Client time

Server time Client time

Figure 5.3.: Chat messages / LazyOffices topology

37



Chapter 5. Evaluation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Delivery rate

0%

20%

40%

60%

80%

100%

Delivery rate
Epidemic SaW 4 SaW 8 SaW 16 BSaW 4 BSaW 8 BSaW 16 PRoPHET 0.4 PRoPHET 0.5 PRoPHET 0.6

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Epidemic SaW 4 SaW 8 SaW 16 BSaW 4 BSaW 8 BSaW 16 PRoPHET
0.4

PRoPHET
0.5

PRoPHET
0.6

Server time vs. Client time

Server time Client time

Figure 5.4.: Chat messages / BusyOffices topology

38



5.6. Results

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Delivery rate

0%

20%

40%

60%

80%

100%

Delivery rate
Epidemic SaW 4 SaW 8 SaW 16 BSaW 4 BSaW 8 BSaW 16 PRoPHET 0.4 PRoPHET 0.5 PRoPHET 0.6

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Epidemic SaW 4 SaW 8 SaW 16 BSaW 4 BSaW 8 BSaW 16 PRoPHET
0.4

PRoPHET
0.5

PRoPHET
0.6

Server time vs. Client time

Server time Client time

Figure 5.5.: File sharing / Event topology

39



Chapter 5. Evaluation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Delivery rate

0%

20%

40%

60%

80%

100%

Delivery rate
Epidemic SaW 4 SaW 8 SaW 16 BSaW 4 BSaW 8 BSaW 16 PRoPHET 0.4 PRoPHET 0.5 PRoPHET 0.6

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Epidemic SaW 4 SaW 8 SaW 16 BSaW 4 BSaW 8 BSaW 16 PRoPHET
0.4

PRoPHET
0.5

PRoPHET
0.6

Server time vs. Client time

Server time Client time

Figure 5.6.: File sharing / LazyOffices topology

40



5.6. Results

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Delivery rate

0%

20%

40%

60%

80%

100%

Delivery rate
Epidemic SaW 4 SaW 8 SaW 16 BSaW 4 BSaW 8 BSaW 16 PRoPHET 0.4 PRoPHET 0.5 PRoPHET 0.6

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Epidemic SaW 4 SaW 8 SaW 16 BSaW 4 BSaW 8 BSaW 16 PRoPHET
0.4

PRoPHET
0.5

PRoPHET
0.6

Server time vs. Client time

Server time Client time

Figure 5.7.: File sharing / BusyOffices topology

41





Chapter 6.

Conclusion and Future Work

6.1. Conclusion

In this thesis we both developed the necessary tools for conducting fully automated tests on our op-

portunistic network and conducted such tests to a certain extent.

We developed applications to support both the ad-hoc based case and the web-based case which in-

cludes the bundle generator and its configurability provide a solid implementation of the demanded

features. It is easily extensible to record more and different metrics and to be used in other topolo-

gies and scenarios. The applications were completely overhauled several times to provide stable and

performant software and code of high quality.

The opportunistic network implemented in opptain was improved to be able to run continuously in Au-

tomation mode and many bugs were fixed which hindered correct operation. Several routing schemes

were put to test and compared to each other in multiple configurations, topologies and scenarios.

Existing routing implementations were amended and a completely new one, PRoPHETv2 was imple-

mented.

As emphasis was put on the big picture of opptain not many metrics of interest on the small scale

were measured and there are still many use cases to explore. Nevertheless the measurement series

conducted provide a solid base for improving the Automation mode of opptain.

6.2. Future Work

As already stated in Section 5.1 many problems with opptain and Android persist. There is still a lot

to do to improve the stability especially of the opptain’s Automation mode.

43



Chapter 6. Conclusion and Future Work

Based on the conducted tests some possibilities to improve the network performance surfaced. Fea-

tures such as the limitation of time spent in client and server mode or the limitation of storage space

can be implemented in several ways and put to test using Åggregator. Another possibility is to ran-

domize the chance of opening a Wi-Fi hotspot instead of always connecting to one if one is available as

this could possibly hinder other devices out of reach of the open hotstop to distribute their bundles.

Another field of interest in the future is the comparison of performance on several devices. Our tests

devices used from Samsung and Huawei offer varying degrees of adherence to Google’s Android

documentation.

As all tests conducted in this thesis were conducted using whitelisting no metrics have been recorded

which vary depending on the distance between devices. On the one hand devices further apart have a

weaker Wi-Fi connection to each other but on the other hand there are less competing Wi-Fi networks

when the devices are spread out. It is possible that the delivery rate in the File sharing case is much

better in this case.

44



Appendix A.

Åggregator User’s Guide

Åggregator is the main application to provide means of systematical and fully automated testing of

the opptain opportunistic network application. Once a measurement series is scheduled, opptain is

remote controlled to initialize it to a known state and configure it before and stopping it after a test is

completed. During a test bundles a generated according to the measurement series configuration.

Figure A.1.: Main activity

Once Åggregator is started it provides the user with an activity split into three parts as seen in Figure

A.1. The first part, Overview, provides a general overview over measurement series on this device

regardless if the device acts as a client or as a server. In contrast the second part, Client mode,

provides features to use the device as an ad-hoc or web-based client while the last part, Ad-hoc Server

Mode provides access to functions for using this device in ad-hoc server mode.

In general, whenever a list of items is displayed an action can be triggered or a subview can be entered

by clicking an item. Items can be deleted by long-clicking, as seen in Figure A.2. Views can always

be left to their hierarchically higher counterpart by pressing the back button of the device.

45



Appendix A. Åggregator User’s Guide

Figure A.2.: Deleting an element

A.1. Overview

Figure A.3.: Overview

The overview part, as the name implies, provides an overview over all measurement series on this

device, whether the device is an ad-hoc server, an ad-hoc client or a web-based client for each specific

measurement series as can be seen in Figure A.3. If a series is running or upcoming it is immediately

displayed. By clicking on “Show Series” the view switches to a list of all series ordered by begin.

The displayed information for the server mode will be covered later. In client mode the displayed

information for each series below its name are from left to right and top to bottom:

• The state of the series, which can be SCHEDULED, RUNNING and FINISHED depending on
the current time in relation to the begin and end times,

• the number of devices participating in the series or in web-based mode the time when this
information will be pulled from the web server, called the close time,

46



A.2. Client mode

• the time when the series begins and

• the time when the series ends.

A.2. Client mode

Figure A.4.: Client mode

The client mode only has two actions: “Join Web-Based Series” and “Connect To Ad-Hoc Server”.

If the user chooses to join a web-based series the series name has to be entered as displayed in Figure

A.4. If the join succeeds, the measurement series gets scheduled and the user does not have to take any

more steps; fetching the list of participating devices, starting and stopping the series and uploading

the results to the server will be handled by Åggregator.

The option to connect to an ad-hoc server has to be chosen whenever an ad-hoc server waits for con-

nections, as is the case when registering the device, scheduling a measurement series and uploading

the results of such a series. If a measurement series is scheduled starting and stopping the series will

be handled by Åggregator as in the web-based case but uploading of the results is a manual step as the

devices have to be in the same physical location to connect directly to each other via Wi-Fi.

In both cases success will be indicated by a green checkmark while failure such as missing network

connectivity or non-existence of a series on the server will be indicated by a red exclamation mark.

47



Appendix A. Åggregator User’s Guide

A.3. Ad-hoc server mode

A.3.1. Manage DeviceSets

Figure A.5.: Manage DeviceSets

The first step to plan an ad-hoc based measurement series is to determine which devices will be

participating in it. This task is achieved by the “Manage DeviceSets” option, its subscreens shown in

Figure A.5. First the user gets to a list of DeviceSets where new ones can be created by clicking the

green plus button and choosing a name. When clicking on a DeviceSet its contained DeviceGroups

are shown, which again can be created by clicking the green plus button and choosing a name.

The general idea behind DeviceSets and DeviceGroups is that every ad-hoc based measurement series

references one or more DeviceSets in which only devices within the same DeviceGroup are able to see

each others Wi-Fi networks during a test to simulate different topologies without physically moving

the devices. We call the entirety of participating devices in a series a DeviceSet which is divided into

different DeviceGroups which in turn contain Devices.

Clicking on a DeviceSet leads to its list of devices denoted by their unique opptain device ID. The

current device can be added by clicking the green plus button. The teal listen button opens a Wi-Fi

hotspot and listens for connections from other devices, which can enter the DeviceSet by using the

“Connect to Ad-Hoc Server” discussed earlier. The hotspot can be closed by clicking the red stop

button.

A DeviceSet can either be used directly in simple measurement series or be exported to JSON to be

used in complex measurement series configuration files by long clicking on it. An example of an

exported DeviceSet is shown in Figure A.6 albeit with abbreviated device IDs.

48



A.3. Ad-hoc server mode

{
"DeviceGroup1": [
"601e5079da28bc37...",
"7f3727d7fc9ac336...",
"a46ea84dd81b89a6..."

]
}

Figure A.6.: Exported DeviceSet JSON

A.3.2. Manage Series

Figure A.7.: Manage Series

By clicking on “Manage Series” an overview over all measurement series is shown where the current

device is the ad-hoc server. Such measurement series have two more states in addition to the afore-

mentioned SCHEDULED, RUNNING and FINISHED: CREATED and AGGREGATED. A series is

in the CREATED state immediately after creation and will advance to the SCHEDULED state once it

is scheduled on every participating device. After a series is finished and its results have been collected

the series advances from FINISHED to AGGREGATED.

In contrast to client mode the number of devices displayed is in the form x/y meaning that a measure-

ment series has been scheduled on or - after the end of a series - data has been aggregated from x of

all participating y devices.

Clicking on the upper green plus button creates a simple measurement series where all necessary

configuration can be supplied through the application. This restricts the mode to only one DeviceSet,

one bundle interval, one bundle size and the epidemic routing protocol and is intended for quick tests.

To plan complex series which takes a JSON configuration and does not have these restrictions the user

has to click on the lower purple plus button - in this case only the begin and the name of the series are

49



Appendix A. Åggregator User’s Guide

configured in the menu.

{
"duration": 90,
"deviceSets": [

{
"DeviceGroup1": [

"601e5079da28bc37...",
"7f3727d7fc9ac336...",
"a46ea84dd81b89a6..."

]
},
{

"DeviceGroup1": [
"601e5079da28bc37...",
"7f3727d7fc9ac336..."

],
"DeviceGroup2": [

"7f3727d7fc9ac336...",
"a46ea84dd81b89a6..."

]
}

],
"deviceSetInterval": 20,
"generators": [{

"seed": 123,
"intervalVals": [30,300],
"intervalType": "loguniform",
"sizeVals": [1],
"sizeType": "set",
"ttl": 30

}],
"routingProtocol": "binarysprayandwait",
"routingL": 8

}

Figure A.8.: Configuration JSON

An example for a JSON configuration is provided in Figure A.8, again with abbreviated device IDs.

In this case the two DeviceSets will alternate in a 20 minute interval during the 90 minutes long

measurement. The packet generator generates packages using the seed 123 with the loguniform distri-

bution every 30 to 300 seconds. The size of the generated packages will be a constant 1 KiB and their

TTL will be 30 minutes. Note that all durations are given in minutes whereas the interval is given in

seconds.

50



A.3. Ad-hoc server mode

As a routing protocol binarysprayandwait with L = 8 will be used. To configure Pmin for the prophet

(PRoPHETv2) routing protocol the parameter routingMinP can be used.

After a series has been created it can be scheduled on client devices by clicking on the series to enter

its subscreen and following the exact same steps as before when registering devices for a DeviceSet.

As a convenience feature not only the series currently selected is scheduled on connecting devices but

rather all applicable series.

Scheduled series are conducted in a fully automated way without the need for user operation. To

cancel a measurement series and all future ones opptain has to be stopped via its permanent notification

and the device has to be restarted - otherwise opptain will automatically be restarted.

Following the end of a measurement series the data can be collected by again entering the series

subscreen and again following the same listening steps. Only after data from a device has been suc-

cessfully transferred to the ad-hoc server device it will automatically be deleted on the client device.

Once all data has been aggregated it can be exported to an easy to examine SQL format by clicking

on it which is readable by SQLite 3. All measured data is available as recorded by opptain. The fields

which are always present and provided by Åggregator are _timestamp and _oppid which together form

a unique identifier and index for each record.

51





Appendix B.

Åggregator-Webb User’s Guide

Åggregator-Webb is the web application acting as the server for web-based Åggregator measurement

series.

On connection to the web server with a browser the administrator is greeted with a login screen shown

in Figure B.1. The credentials are configurable using the application.properties file as is common in

Spring applications. By default user and password are set to test.

Figure B.1.: Login screen

After successful login there is the option to create new measurement series by clicking the “Add”

button which opens the dialog shown in Figure B.2. The configuration is like the configuration of

complex series in the ad-hoc based case in Åggregator with two differences: Any configured Device-

Sets are ignored and later overwritten and a close time has to be set as a deadline until which devices

can join the measurement series.

The main screen is depicted in Figure B.3. Every measurement series is represented by an entry in

the table view. In addition to the name, the close time, the begin time, the end time, the number

of registered devices and the number of devices which have uploaded their measurement values are

53



Appendix B. Åggregator-Webb User’s Guide

Figure B.2.: Add screen

shown. A series can be deleted by clicking the Delete button and exported to SQL by clicking the

Export button.

Figure B.3.: Dashboard screen

54



Bibliography

[ANDa] Android Developers Blog: Announcing the Android 1.0 SDK, release

1. https://android-developers.googleblog.com/2008/09/

announcing-android-10-sdk-release-1.html.

[ANDb] Introduction to Android | Android Developers. https://developer.android.

com/guide/index.html.

[GDLD11] GRASIC, Samo; DAVIES, Elwyn; LINDGREN, Anders; DORIA, Avri: The Evolution of

a DTN Routing Protocol - PRoPHETv2. In: Proceedings of the 6th ACM Workshop on

Challenged Networks, 2011, S. 27–30.

[HLT08] HUANG, C. M.; LAN, K. c.; TSAI, C. Z.: A Survey of Opportunistic Networks. In:

22nd International Conference on Advanced Information Networking and Applications -

Workshops (aina workshops 2008), 2008, S. 1672–1677.

[Ipp15] IPPISCH, Andre: A fully distributed Multilayer Framework for Opportunistic Networks

as an Android Application, Department of Computer Science, Heinrich Heine University

Düsseldorf, Diplomarbeit, März 2015

[LDD12] LINDGREN, Anders; DORIA, Avri; DAVIES, Elwyn: Probabilistic Routing Protocol for

Intermittently Connected Networks. RFC 6693 (Experimental). http://www.ietf.

org/rfc/rfc6693.txt. Version: August 2012 (Request for Comments).

[LDS03] LINDGREN, Anders; DORIA, Avri; SCHELÉN, Olov: Probabilistic Routing in Intermit-

tently Connected Networks. In: SIGMOBILE Mob. Comput. Commun. Rev. 7 (2003),

Juli, Nr. 3, S. 19–20.

[SPR05] SPYROPOULOS, Thrasyvoulos; PSOUNIS, Konstantinos; RAGHAVENDRA, Cauligi S.:

An efficient routing scheme for intermittently connected mobile networks. In: Pro-

ceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking, 2005,

S. 252–259.

55

https://android-developers.googleblog.com/2008/09/announcing-android-10-sdk-release-1.html
https://android-developers.googleblog.com/2008/09/announcing-android-10-sdk-release-1.html
https://developer.android.com/guide/index.html
https://developer.android.com/guide/index.html
http://www.ietf.org/rfc/rfc6693.txt
http://www.ietf.org/rfc/rfc6693.txt


Bibliography

[VB00] VAHDAT, Amin; BECKER, David: Epidemic routing for partially connected ad hoc

networks / Department of Computer Science, Duke University. 2000 (CS-2000-06).

Forschungsbericht.

56



Ehrenwörtliche Erklärung

Hiermit versichere ich, die vorliegende Masterarbeit selbstständig verfasst und keine anderen als die

angegebenen Quellen und Hilfsmittel benutzt zu haben. Alle Stellen, die aus den Quellen entnommen

wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in gleicher oder ähnlicher Form

noch keiner Prüfungsbehörde vorgelegen.

Düsseldorf, 28.June 2017 Gian Perrone

57





Hier die Hülle

mit der CD/DVD einkleben

Diese CD enthält:

• eine pdf -Version der vorliegenden Masterarbeit

• die LATEX- und Grafik-Quelldateien der vorliegenden Masterarbeit samt aller verwendeten Skripte

• die Quelldateien der im Rahmen der Masterarbeit erstellten Software Åggregator und Åggregator-

Webb

• die zur Auswertung verwendeten Konfigurationen und Datensätze

• die Websites der verwendeten Internetquellen


	Title Page
	Abstract
	Acknowledgments
	Contents
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Outline

	2 Fundamentals
	2.1 Android operating system
	2.1.1 Applications
	2.1.2 Intents
	2.1.3 Android SDK

	2.2 Opportunistic networks
	2.2.1 opptain
	2.2.2 Routing


	3 Demands and Design
	3.1 Demands
	3.2 Design
	3.2.1 Planning, scheduling and aggregation
	3.2.2 Ad-hoc based
	3.2.3 Web-based

	3.3 Bundle generation
	3.4 Routing
	3.4.1 Epidemic
	3.4.2 Spray and Wait
	3.4.3 Binary Spray and Wait
	3.4.4 PRoPHET v2


	4 Implementation
	4.1 Development
	4.2 Åggregator on Android
	4.2.1 Ad-hoc based case
	4.2.2 Web-based case

	4.3 Åggregator-Webb

	5 Evaluation
	5.1 Long-running opptain instances
	5.2 Topologies
	5.2.1 Event
	5.2.2 LazyOffices
	5.2.3 BusyOffices

	5.3 Scenarios
	5.3.1 Chat messages
	5.3.2 File sharing

	5.4 Routing
	5.5 Metrics
	5.6 Results
	5.6.1 Chat messages
	5.6.2 Conclusion
	5.6.3 File sharing
	5.6.4 Comparison


	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	A Åggregator User's Guide
	A.1 Overview
	A.2 Client mode
	A.3 Ad-hoc server mode
	A.3.1 Manage DeviceSets
	A.3.2 Manage Series


	B Åggregator-Webb User's Guide
	Bibliography

