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Abstract

The development in the mobile technology sector has made huge progression in the last
decades. It produced many new technologies and made improvements to existing telecom-
munication mechanisms that enabled a new form of mobile devices, the so called smart
devices. Smart devices are small handheld devices with powerful hardware and plenty of
storage, capable of executing complex computation tasks and of communicating with each
other. Eventually, smart devices were employed on the paradigm of Opportunistic Network-
ing. Since then, many approaches were developed that use modern smartphones and that
exploit the mobility of their users to establish the network. While much research was done
for network establishment and routing, the research for security just started to attain more
interest in recent years. Security is a cornerstone for gaining the trust of users. Being able to
offer them a secure, reliable communication environment is a key point for success and high
adaptation rate.

In this thesis security threats against Android-based Opportunistic Networks were researched
and proposals for possible solutions are given. A special focus of the thesis was on the
opptain networking application as a representative example. The course of action was to first
explain and characterize threats found in corresponding literature as well as to find threats
by analyzing the opptain source code and behavior. This was followed by a discussion of
possible solutions and mitigation techniques.

It is evaluated, that the attacks on Android devices mainly target data confidentiality, integrity
and authenticity while the attacks against the network functionality primarily aim to disrupt
the network and in consequence decrease its performance and availability.

Promising looking solutions and mitigation to threats can be achieved by a better access
control to the network application, thresholds against spam, encryption by default and a form
of trust and reputation system to find trustworthy communication partners. In conclusion,
further research on real devices to test and evaluate the former must be carried out, since the
aspects were mostly discussed theoretically.
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Chapter 1

Introduction

1.1 Motivation

The development in the mobile technology sector has made huge progression in the last
decades. It produced many new technologies and made improvements to existing telecom-
munication mechanisms that enabled a new form of mobile devices, the so called smart
devices. Smart devices are small handheld devices with powerful hardware and plenty of
storage, capable of executing complex computation tasks and of communicating with each
other. Researchers around the world saw the potential of the devices and started to work on
systems that would leverage the new technology. Eventually, smart devices were employed
on the paradigm of Opportunistic Networking. Since then, many approaches were developed
that use modern smartphones and that exploit the mobility of their users to establish the net-
work. While much research was done for network establishment and routing, the research
for security just started to attain more interest in recent years. Security is a cornerstone for
gaining the trust of users. Being able to offer them a secure, reliable communication envi-
ronment is a key point for success and high adaptation rate. This thesis will focus on security
threats for Opportunistic Networks on Android smartphones, that should be considered in the
implementation, and proposes mitigation mechanisms.
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Chapter 1 Introduction

1.2 Related Work

The Android network application called opptain, that is analysed in this thesis, was devel-
oped by A. Ippisch in his thesis [Ipp15] to offer a multilayer framework for opportunistic
networking on Android devices. He discusses the challenges present on the Android operat-
ing system which need to be addressed to create an Opportunistic Network and formulates
the design decisions that are then implemented. The security related characteristics of the
topic were only touched rudimentally as the focus was on providing the basic functionality
for an Opportunistic Network. This thesis will extend that aspect on a deeper level.

J. Leßenich developed a routing protocol for Opportunistic Networks, called Neighbourhood
Aggregating Social and Geographic Label Protocol (NASGL) [Les16]. It follows a context
aware and quota-based approach and it was also implemented to be used in opptain.

1.3 Outline

In this chapter the motivation for researching security threats in Android-based Opportunis-
tic Networks was elucidated and the opptain network application, which will be used as a
representative example in this thesis, was introduced.

In Chapter 2 the basics of Opportunistic Networks, of the Android operating system and
of the opptain networking application are discussed. Section 2.1 additionally mentions the
possibilities and challenges of Opportunistic Networks briefly. In Section 2.2 and in Section
2.3 some implementation details about Android, including its security features, and opptain
are given.

In Chapter 3 the threats and attacks are researched and discussed. Section 3.1 characterizes
an attacker and lists possible attack targets of a system. Then, attacks that operate on the
Android device and that target the network application functionality are explained in Section
3.2. Following, attacks that target the Opportunistic Network functionality are explained in
Section 3.3.

In Chapter 4 solutions and mitigation techniques for the attacks from the previous chapter are
discussed. Most notably an access control mechanism for the opptain network application is
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1.3 Outline

proposed in Section 4.1.1 that could also be implemented by other applications and Section
4.3 explains the concept of social trust, which seems to be a promising solution for choosing
trustworthy communication partners.

Chapter 5 concludes the thesis and briefly summarizes the research results. The main findings
and challenges will be presented. Finally, problems and solutions, that might be possible
topics for future work, are listed.
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Chapter 2

Fundamentals

This chapter covers and explains the fundamentals required for a better understanding of this
thesis. At first the term Opportunistic Networking and the concepts behind it are explained
in Section 2.1. Following that, we take a brief look at the Android operating system and its
baseline security features in Section 2.2 and last but not least we present the Android network
application opptain and its features in Section 2.3.

2.1 Opportunistic Networks

Opportunistic Networks (OppNets) are a special kind of delay tolerant networks (DTN),
which are a subclass of ad-hoc networks. The key characteristic is the communication of
nodes without an existing direct route between them. Data is exchanged by opportunity and
dissemination functions under the store-carry-and-forward principle. The communication
between hops is purely P2P. In detail, one-hop communication is synchronous P2P with direct
content exchange while multi-hop communication is asynchronous P2P with content being
temporarily stored in the network nodes while being forwarded. Forwarding in OppNets is
enabled by exploiting the mobility and social interaction of the users, who form the network
with their smartphones or other smart devices while using it.
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Chapter 2 Fundamentals

2.1.1 Basics

The idea is that OppNets are established by mobile and (temporal) stationary nodes, that
are distributed in an environment without a centralized access or entry point to the network.
Every node plays an active role as both network transmitter and receiver while also being
a forwarder, relaying communications from other network participants. Because of their
mobility, nodes will meet occasionally and get into radio range. When they do, their devices
establish a local mobile ad-hoc network (MANET) to communicate. The intermittently-
connected nodes use this opportunity to exchange and forward their data. Ideally, the next
hop will be closer to the destination than the current holder of the data, to increase the chance
of a successful transmission to the destination.

Since nodes are autonomous and free to move (attribute of MANETs), sporadic and short
connections coupled with long disconnects and partitions of the network are frequent as well
as expected, so that no real end-to-end path for directly forwarding data exists (attribute
of DTN) when the destination is not in one-hop range. Therefore delivery of messages is
delayed and not instantaneous most of the time. All this leads to a special network topology.
To be more specific, it is a dynamic topology that can change quickly and randomly at any
time. Consequently classical deterministic routing with a routing table, using connections
over stable-links does not work because neither the tables can be build nor do the connections
exist. But despite that, nodes can communicate with each other. Routing in OppNets is either
done by just flooding packets into the network or with more attention to previous encounters
and experiences, context sensitive information like location and routing data collected from
other peers. It is a well working probabilistic approach, albeit it generally grants no guarantee
that the packets will reach the destination if the recipient is not a one-hop peer. Notably
responses might never reach the original sender, so he might never become aware that his
transfer completed successfully. Both is also true for flooding.

2.1.2 Possibilities and Challenges

The decentralized infrastructure of OppNets eliminates the risk of a single point of failure.
Therefore OppNets can be used as a communication alternative to the infrastructure based
internet. Especially in disaster scenarios, regions without communication infrastructure or
even in situations where this infrastructure is shutdown on purpose.
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2.2 Android System and Security

On one hand the infrastructure-less approach brings the challenge of a more complex routing
and administration, that has to be dealt with and which is often the cause for a lower perfor-
mance of the network in comparison to normal hierarchic ordered systems. But on the other
hand the rapid rise of mobile device users and the sinking prices for continuously better get-
ting hardware, make it easier to realize OppNets because the advanced services needed, that
is, connection requests, routing/forwarding and security, can be implemented in a more effi-
cient and feasible way. But limited energy resources in mobile devices that rely on batteries
are still a big problem as node operations like transmission, reception and other calculations
still deplete a lot of power. This calls for an efficient management mechanisms to conserve
energy and increase lifetime to be developed. But this is not a trivial task, since the network
is likely to be very heterogeneous, that means available computing power and resources will
differ a lot from device to device.
The main challenges of Opportunistic Networks with mobile devices are: Reduced energy
consumption, support of many devices, easy deployment methods, development of mech-
anisms to provide security and privacy for users. The latter two will be discussed in this
thesis.

2.2 Android System and Security

Android is an open source operating system developed by Google. Initially Android was
designed for mobile devices such as smartphones and tablets but since its first release in
2008 it was branched out by Google for TV, Cars, Things and Wearables and various other
systems by other companies. It is built on top of a modified, long-term support version of
the Linux kernel. The kernel was chosen for its portability and rich set of features [M. 17].
Device manufacturers can easily develop their hardware drivers for a well-known kernel and
developers can stop worrying about low-level system functionality that Linux will handle for
them. The functionality in question is:

1. Process Management: Starts and stops processes, allocates and deallocates memory
and resources, handles threading

2. Driver Model: Ensures an environment in which drivers can be easily integrated, helps
to have a reliable running system
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3. File System Management: Manages the file system which controls the data storage
service

4. Network Stack: Responsible for all network activities and communication

5. User accounts: Manages users, can assign permissions and separate users from secu-
rity sensitive system components

Additional to that, Android added some modifications as already mentioned above. One set
of added features are specific drivers for mobile devices, needed to enable cellular communi-
cation protocols like LTE. Furthermore, drivers for inter-process communication via binders,
logger capabilities, ashmem for shared memory functions, pmem for persistent memory func-
tions and wake locks to keep the system awake were added. A special extension is the power
management module which plays a crucial role in extending the lifetime of the battery pow-
ered mobile devices.

2.2.1 Platform Architecture

Taking a look at the Android Framework [Goo17g] makes clear, the Linux kernel is just the
foundation of a sophisticated software stack. Right above it lays the Hardware Abstraction
Layer (HAL). It is a collection of library modules that provide access to the device hardware
via standard interfaces, which higher-level frameworks can use. Next up is the Android Run-
time (ART), the process virtual machine in which Android applications are executed. ART
has a focus on low memory consumption. To accomplish this it executes DEX files, a byte-
code format with a minimal memory usage specially designed for Android. Since Android
5.0 (API level 21) ART is the successor of the Dalvik VM and apart from optimization intro-
duced Ahead-of-time (AOT) compilation to Android. For the purpose of performance many
core Android components and services are built from native code, for example ART and
HAL. Therefore Android is equipped with native libraries written in C and C++. Through
Java framework APIs the functionality of some is exposed and Android NDK allows a di-
rect access to those libraries. The previously mentioned Java API Framework assembles the
entire feature-set of the Android OS available to developers. It includes APIs to simplify
the creation of apps by offering a convenient access to core, modular system components
and services (View System, Resource Manager, Notification Manager, Activity Manager and
Content Providers). On top of the stack are the System Apps, that Android delivers to use
the basic features of the device, like a dial app, web browser, and so on.
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Application Components

The basic building blocks of an Android application are Activities, Services, Broadcast Re-
ceivers and Content Providers [Goo17a]. Each has a distinct lifecycle in terms of when it
is created and destroyed and each is a possible entry point into an application for either the
system or a user. A brief explanation of these components follows:

1. Activity: A single screen with a user interface. The user can start an activity to interact
with the app. Typically an app has multiple activities with one acting as the entry point,
also called launcher activity.

2. Service: A background component with no user interface to keep an app executing.
Services run in the background to perform long-running operations or to perform work
for remote processes. Other components can start a Service to run until the work is
finished or a Service can be bound to run until it is released.

3. Broadcast Receiver: Broadcast Receivers are a possibility to receive messages from
the system or other apps. The special point about this is, that the app does not need to
be running to get the broadcast. They are short running background tasks triggered by
Broadcast Intents and can be displayed in the status bar.

4. Content Provider: Is a persistent data storage associated with the app. It can be used
to share data with other apps. The data is identified with URIs that can be defined with
permissions to allow access for certain apps.

In order for the Android OS to know that the components exist in an app, the app must contain
all its components in the AndroidManifest.xml file. The manifest file is read by the OS to
gather information about an app. It declares used and defined user-permissions, components
with optional IntentFilter as well as required permissions to use them and much more.

Communication Mechanisms

Communication between different components or even different apps can be done in sev-
eral ways. The most used one are Intents. An Intent is an asynchronous messaging object
someone can use to request an action from another component. When created, several fields
and data may be set, then the Intent is send through an Android API call which implicitly
specifies the type of the destination component. If the Intent states a specific component it is
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explicit and directly delivered. Otherwise it is implicit and resolved to the components that
have a matching IntentFilter. Activities, Services and Broadcast Receivers are able to receive
Intents. IntentFilters can be declared by application components to receive implicit Intents,
indicating which operations and data they can work with. If the OS determines a component
to start, attributes of the Intent are compared with the IntentFilter. When they match the In-
tent will be delivered. In the case of multiple matching Activities and Services an implicit
Intent is only delivered to one component, while in the case of Broadcast Receivers all get
the Intent. Thereby must the user choose an Activity if there is not a default one for the Intent
while for Services the system randomly chooses one of the available without notifying the
user or since Android 5.0 an exception is thrown.

2.2.2 Security

Security in Android is handled on two layers. The first layer is the system security, which
is enforced by the Linux kernel. The second layer is on the app level, realized by Android
using a permission system.

Kernel Security Key security features of the Linux kernel that are used in Android are
the user-based permission model, process isolation, extensible mechanisms for secure inter-
process communication (IPC) and the ability to remove insecure parts of the kernel [Goo17h].
Android assigns each application to a unique Linux user to identify and isolate its resources.
In practice this means that a user ID (UID), chosen by the kernel and unknown to the app
itself, is set to all app files as the owner. In comparison, other operating systems usually
let many applications run under the same user and permissions. When an app is started, it
launches in its own Linux process with a dedicated new instance of the ART (or Dalvik). The
virtual machine effectively isolates applications from another. The aforementioned points
basically create an Application Sandbox in the kernel that ensures that code and memory
manipulations between different applications and processes cannot be carried out.

App Security Android [Goo17b] uses the principle of least privilege, so apps can only
work with resources or access other protected system parts when they request the permis-
sion for this action in the manifest. The permissions on this level are enforced by the Java
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Framework API. Apps can also define custom permissions to be accessed. For Apps to share
resources and communicate, one possibility is to run with the same UID, which requires that
the apps are signed by the same signing key/developer. Other ways to share and communicate
despite the isolation of apps are the previously described Intents, Content Providers, Services
and Binder. All listed items are inter-process communication mechanisms that are delegated
through the system and not directly, if they leave the process. Binder is a capability-based
remote procedure call mechanism for in- and cross-process calls, that is also used in the
implementation of Intents and Service Binders.

2.3 opptain

Opptain [Ipp15] is an Android network application that leverages the widespread distribu-
tion and power of modern smartphones to build an Opportunistic Network. It was developed
with the goal to provide an easy to use platform that can be deployed on nowadays available
resources. Users should be able to communicate and transfer data secure and fast without
being bothered to interact with the app. An internet connection is not necessary to establish a
working network and third-party apps can benefit from opptain as network layer by using the
provided application interface to relay their data. As an application that provides network-
ing functionality for other apps opptain can be classified as a middleware for the Android
operating system (see Table 2.1). It operates between the transport and application layer.
Key features that are offered include connection of Android devices over Wi-Fi to build an
OppNet, messaging over packets, user identification, encryption and aggregation of meta in-
formation for routing in the network. As a remarkable side note, opptain was developed to
run on unrooted off-the-shelf smartphones.

Opptain Protocol Stack
Protocol Layer Device A Device B Device C

Application API app API app
Middleware network app network app network app
Transport TCP TCP TCP
Network IP IP IP

Data Link 802.11 MAC 802.11 MAC 802.11 MAC
Physical 802.11 PHY 802.11 PHY 802.11 PHY

Table 2.1: Opptain Protocol Stack
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2.3.1 Connectivity

The connectivity in opptain is realized with the Wi-Fi tethering hotspot feature on Android.
This approach is a workaround to control the connection automatically, as the existing ad-
hoc modules, Wi-Fi Direct and Bluetooth, do not offer an API to programmatically accept
connections. This is important for a convenient user experience. Just like the user expects the
normal internet to work without any action from his side, opptain has to follow this criteria
to become widely adopted and used. Devices can connect if at least one opens a tethering
hotspot which others can join as clients. The resulting pseudo ad-hoc network is then used
to exchange data and network information over TCP, that comes from own applications or
that are being forwarded. The decision for either being a hotspot or client is determined by
a prior scanning phase in which opptain searches for other devices in vicinity. Depending on
the results and meta data, like past encounters, routing info and signal strength a hotspot is
chosen. If no hotspot is available or suitable, the device can rescan or become a hotspot. All
aforementioned tasks, from network initialization and management to inter-device and inter-
application connections for file-handling are handled by a background service. The service
achieves the mentioned user independent functionality.

2.3.2 Identification

Device identification and connection security are implemented in a pretty clever way. When
opptain is installed for the first time a public-private-key pair will be generated for identi-
fication, authentication and encryption. The public key is used as DeviceId and encryption
key at the same time, so that no additional key exchange for end-to-end encryption, which
can be hard to realize in OppNets, is needed, once the DeviceId of a communication partner
is known. Besides that the public key fingerprint is part of the SSID to identify a hotspot
before a connection. Furthermore opptain offers to verify the entity behind a key by QR
code scanning it from an application activity. On the connection event of two devices a chal-
lenge response authentication takes place to exchange keys for point-to-point encryption.
The encryption algorithms in usage are: "timing-attack resistant XSalsa20 stream cipher

with a 192 bit nonce for encryption in general, the Elliptic Curve Diffie-Hellman (ECDH)

on Curve25519 for key exchange and Poly1305 for authentication" [IG17]. Opptain also
defines three custom permissions. On the on hand there are read/write permissions for a
Content Provider that stores contact information and on the other hand there is a communi-
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cation permission that must be held by third-party applications in general, if they want to use
the application interface.

2.3.3 Routing

Routing in opptain is addressed in two ways. The first method does not really use any in-
formation and just spreads messages into the network. The routing protocol is named Spray
and Wait [SPR05]. The Sender sends a copy of the message with a defined Time-To-Live to
n meet nodes. These nodes only forward to the destination and do not relay to other nodes.
An also implemented extension of this approach is Binary Spray and Wait [SPR05]. Here
the origin sends the message to two nodes with a value of n divided by 2. These data ferry
nodes are able to relay them to other ones they meet, if they get a message with n greater than
1. The second method tries to make optimized forwarding decisions based on the network
situation and the nodes it encounters. It is named Neighbourhood Aggregating Social and Ge-
ographical Label Protocol (NASGL) [Les16]. NASGL is a quota-based context-aware hybrid
that uses principles of the History of Encounters and Transitivity of PRoPHET [LDS04], the
Meetings of HiBOp [BCJP07] as well as social and geographical context data. If two nodes
meet they exchange all known routing and meta information about connections, the network,
social and geographical data. Based on these information a node can calculate the probability
that an encountered node will successfully deliver the message and then can decide to for-
ward it or not. In NASGL two or more nodes can enter an aggregation mode when they are
static to each other. The nodes will then exchange all their decent neighbors with each neigh-
bor and new arriving nodes. This information allows to calculate a cluster in which nodes are
close together. Communication in the cluster should be relatively fast and reliable.

The data structure used by opptain to forward and route packets is called OpptainBundle. It
is a bundle object that consists of various fields which are holding information for routing
and the payload it carries. The elements are as follows: BundleId, Origin, Destination, Cre-

ationTime, TTL, NetworkPath, ApplicationPackage, PayloadData, PayloadFile, PayloadInfo,

PayloadMeta and AdditionalInformation.
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Chapter 3

Attacks and Threats

In this chapter motivations of an attacker and points of interest of a (secure) system are
introduced in Section 3.1. Following that, attacks aimed at the Android operating system and
software as well as against Opportunistic Networks, that might be used to target opptain and
its functions, are researched and analyzed in Section 3.2 and Section 3.3.

3.1 Characteristics of Attacks and Security

An attack can be described as follows [SE07].

Passive attack The attacker silently listens in the background. He does not intent to in-
terrupt any functionality or to disturb the routing between nodes, but rather eavesdrops on
application messages and data as well as routing traffic to gather potentially exploitable in-
formation.

Active attack An attacker actively uses vulnerabilities, exploits and other weaknesses
available on the target to launch an attack. It is not uncommon that the knowledge on this
issues is often acquired beforehand by a passive attack. He will try to gain access to core
components for the purpose of stealing sensitive data and to disrupt the normal functionality,
leading to unexpected, maybe even undesired behavior. For instance, malicious nodes in an
OppNet will disturb the routing protocol by modifying routing data and flags, fabricating
false routing information, impersonating other nodes or redirecting traffic.
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3.1.1 Attacker

Let’s have a look at the attacker now. First of all, the source of an attack in opptain, more
specifically against its established network, has to be identified and defined. It can be started
from an outsider or an insider. Outsider attackers, as the name implies, are not part of the
network and do not have any sort of trusted keys. They typically rely on message relay,
replay, or delay to influence the network. Insider threats occur when a fully trusted node,
with appropriate keying material, is compromised. Network parameters and access can be
manipulated directly.
The incentives an attacker could have are divers, just like the ways to carry out an (suc-
cessful) attack. A popular target is the authorization or access control of a system. If an
attacker manages to circumvent it, he has unrestricted access to network, functions and re-
sources. Consequences can be data loss, theft and/or manipulation. Another critical aspect
is the availability. In particular applications like opptain that rely heavily on the cooperation
of their users to function in a reliable way, may be focused by attackers or competitors that
threaten to actively disrupt the network by implanting malicious misbehaving nodes.

3.1.2 Security Aspects

To get a further understanding, some characteristics of a secure and reliable networking sys-
tem are given [SXB07] [KM14]. On the on hand we have to consider the conditions for
maintaining the service in a reliable way.
Authorization: Access control to systems or resources to only allow selected authorized en-
tities access to the network, its functions and resources.
Availability: Functions and information must be available when needed. To guarantee this,
computing systems storing and processing information, security controls protecting it and
communication channels used to access it must be operating reliable and correct.

On the other hand is the main function of messaging. Especially for messages, that are trans-
mitted over open and unsecured channels, certain characteristics are desired to consider them
as save and sound. However, without clearly specified guidelines and enforcement of these,
entities with a malicious intent can, and most likely will, try to injure the following. But just
satisfying the guidelines will not be sufficient. Controls by all participating devices have to
be carried out or else attacks may go unnoticed.
Confidentiality: The property to not make information available and to guard it from unau-
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thorized individuals, entities or processes. It is usually achieved by cryptography in network
security.
Integrity: Data integrity refers to the condition that data maintains accurate and complete
over its entire life-cycle. This means that data remains unaltered, making it an indicator for
unauthorized modifications. Integrity services are designed to protect against deliberate or
accidental alteration ensuring proper functioning of the underlying system.
Authentication: Verifies the identity of an entity in the network. Without this attackers can
impersonate another entity to access services assigned to that entity or to carry out actions in
its name.

These are the obstacles that an adversary will try to bypass if they are implemented. So the
classification of attack targets can be summed up as follows: authorization, availability, con-
fidentiality, integrity and authentication. The possibilities for a system intrusion are mostly
based on actions like collecting meta information, perturbing communications, data aggre-
gation, exhaustion of resources and will be discussed in the next sections. Figure 3.1 gives a
rough classification of the attacks against Android-based OppNets.

Figure 3.1: Rough classification of attack types

3.2 On the Android Device

In this section we focus on attacks and vulnerabilities which target the function of the opptain
network application on Android. Attacks requiring root level permissions are not consid-
ered, because adversaries with that privilege have non-restricted access to every system and
non-system component. Every security feature implemented on the device would be circum-
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vented instantly most of the time. The attacks, Figure 3.2, will be carried out by malicious
applications. There are several possibilities that this applications will end up on the target
device:

• They can be a repackaged version of a popular app.

• App with useful functionality, that carries out malicious actions in the background.

• Users can be tricked to install them with social engineering.

One could argue, that an user had the ability to stop the installation and thereby prevent the
attacks. In particular if the requested permissions during installation seem suspicious. But
most of the users are not aware of the security and privacy risks induced by permissions.
As [FHE+12] showed, only 17% of Android users pay attention to permissions during instal-
lation. A shocking number of 42% are not aware of permissions at all.

Figure 3.2: Taxonomy of Android attacks

3.2.1 Intent Based Attack Surfaces

Intent based attacks make use of the functionality of implicit Intents or Intent Receivers and
are regularly exposed by incautious developers themselves when they use implicit Intents
for intra- or inter-application communication. Internal components and messages might un-
intentinally become accessable by third-party applications. Any untrusted app may be an
attacker in this scenario, while a victim may be any app. There exist mainly two types of this
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kind as described by [KCHW12].

Unauthorized Intent Receipt When app components send implicit Intents to other ones
either in the same app without using a signature-level permission or to another app that should
be the only recipient, a component of the right type with matching IntentFilter can intercept
the Intent. The possible resulting attacks and consequences depend on the Intent type and the
invoked component.
Broadcast Intents are vulnerable to passive eavesdropping, which can harm security or pri-
vacy if the Intent contains sensitive data. Ordered Broadcast Intents, which are delivered to
Broadcast Receivers in a priority order, are vulnerable to both active denial of service attacks
and malicious data injection, as well as eavesdropping. Each recipient can stop the Intent
from propagating to the rest or change the data before passing it to the next recipient. Activ-

ity and Service Intents are vulnerable to hijacking attacks, in which an attacker intercepts a
request to start an Activity or a request to start or bind to a Service and the malicious applica-
tion starts its own Activity or Service in its place. This attack allows an attacker to steal data
from the Intent, hijack the user interface in a way that may be nontransparent to the user, and
return malicious data to the starting component.

Intent Spoofing Intent Spoofing can happen if internal components are exposed to other
applications. That takes place when the component is private and declares IntentFilters for
receiving implicit Intents, without explicitly setting the exported option in the manifest to
false. The component may be vulnerable to attacks in which a malicious application spoofs
the internal Intent. Broadcast Receivers are vulnerable to broadcast injection, in which the
receiving component is tricked into believing a malicious broadcast Intent came from an-
other component in its own application. The spoofed broadcast may then cause the victim
component to change some state in a way that damages the user’s security or privacy or even
transmit malicious data contained in the broadcast elsewhere. Additionally, dynamically at
runtime registered receivers are always public. Activities and Services are vulnerable to unau-
thorized launch or bind attacks, similar to cross-site request forgeries on the Web, and their
exploitation can have similar consequences.

Privilege Escalation Another vulnerability that is often achieved via intents is Privilege

Escalation. The definition of a Privilege Escalation on Android is: "An application with
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less permissions (a non-privileged caller) is not restricted to access components of a more

privileged application (a privileged callee)" [DDSW11]. So basically a transitive usage of
privileges might lead to an unwanted privilege escalation, unnoticed by the Android permis-
sion system. The implied attacks can be categorized into two main types [RZZL14], the
confused deputy privilege escalation and the colluding application attack.
In the case of a confused deputy privilege escalation the attacker application exploits vulner-
abilities of a target benign application, the deputy, to perform unauthorized operations. It is
a form of permission re-delegation, that can occur if:

• apps accidentally expose internal functionality

• on purpose exposed functionality is used in malicious, unexpected ways

• an attenuating authority, that should control the exposed functionality is implemented
poorly

In a collusion attack at least two apps collude to gain an over privileged permission set.
The malicious applications will either communicate directly over overt channels like IPC
or internet sockets or use a more stealthy approach over indirect covert channels. Covert

channels can be settings, Intent dates and types used by an application, space of certain file
system elements or timing channels on the hardware level.

Opptain API

Opptain offers two methods for third-party applications to interact with the API. A broadcast
receiver OpptainBroadcastReceiver and a service OpptainRemoteService. Both can handle
the same incoming Intents that request the actions REGISTRATION, BUNDLE and BUN-

DLE_REVOCATION. The service also has a binder to attach to, which will be discussed in
Section 3.2.7.

The REGISTRATION action registers the package in the Intent via its name for the use of
opptain. BUNDLE passes an OutgoingBundle to opptain and if the sending app is reg-
istered, that bundle gets converted into an OpptainBundle, put into the database and an-
nounced to the RoutingProtocolManager. There are two major problems in both processes.
First of all, the registration allows every app to register itself, without asking the user if
he approves this. Of course, the requesting third-parties will have to hold the mandatory
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de.opptain.waitress.permission.COMMUNICATION permission to communicate with both
interfaces, but an user might want to control the access or did not even notice that the apps
have the permission, as addressed at the start of this section. Second, the package name in
the Intents is assumed to be the one from the sending third-party app. This value is set by
the app itself though, since Intents offer no way to get the sender. An adversary app might
lie about its package name, either to be allowed, if a hypothetical check at registration would
exist, or to act malicious in the name of other benign apps to remain undetected.
BUNDLE_REVOCATION allows an app to revoke an OpptainBundle by its BundleId. This
revoke deletes the bundle from the local database, if it is still contained in there. The prob-
lem with this call is, that it does not check if the app is registered and more severe, even
if registered, allows to revoke not owned bundles. So if an attacker finds out a BundleId
he can disrupt the corresponding app’s communication by just revoking the bundle. At the
current time no direct side channels leaking the Id, besides debug and trace logs that should
be stripped from release version, were found in opptain. Future features or system changes
could accidentally introduce such leaks though. Nonetheless, another easy way to get the Ids
is through Unauthorized Intent Receipt of implicit Broadcast Intents from third-party apps.
Although this is to blame on the developer and not opptain, the user could get angry for not
blocking the revoke or because he thinks opptain does not work. In the worst case, the user
will uninstall opptain for this reason.

All this could be interpreted as combination of a confused deputy privilege escalation and
Intent Spoofing. Even though OpptainBroadcastReceiver and OpptainRemoteService are not
private, the threats exposed from the three actions are definitely not by design and should not
be publicly existent.

3.2.2 App Repackaging

App Repackaging is a process of disassembling an app’s Android Package Kit (APK) file, that
gives access to the source code of the program. Attackers can insert malicious code or manip-
ulate critical components to turn a benign application into a Trojan Horse or malware. After
repackaging the app it will be distributed over less or non monitored third-party app-stores.
Popular apps are often targets of this kind of attack. The steps to repackage an application
on Android are quite simple. After an attacker acquires the APK, he can disassemble the
app with a disassembler such as the popular apktool [ibo17]. The generated malicious byte-
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code is just embedded into the benign code and if necessary the AndroidManifest.xml and

resources are modified. Now the maliciously changed program can be reassembled again
using apktool.

This attack can be very effective against opptain in a certain scenario. The reason for that
is the built in APK-Sharer. The idea behind this module is the distribution of opptain and
any third-party app by sharing from person to person as alternative to official, centralized
app stores. So in the case of non available internet connection smartphone users interested in
opptain can install the shared APK. The problem in this situation is clear. The user has no way
to check the validity of the app and has to trust the person to whom the APK belonged. Less
likely, but still possible, are social engineering attempts in which particularly inexperienced
users are encouraged to install the repackaged app from unofficial or suspicious sources. A
successful installation leaves the attacker with a hijacked node. He can do anything from
spying on the users communication to disturbing the network functionality with attacks also
described in this thesis. An adversary can even establish a botnet if he manages to spread
his repackaged opptain version onto numerous devices. The controlled nodes would fetch
instructions over the OppNet or when a wireless connection is available, since opptain has
also normal internet access permissions.

As a side note: if debug logs are not removed from the code of a compiled version, an attacker
can re-enable them in the repackaged manifest. While testing with a release build of opptain,
some logs that leaked bundle information, were still shown.

3.2.3 Denial of Service (DoS)

Denial of Service attacks fundamentally aim to disturb the availability of a service. On An-
droid devices, DoS can be caused by Intents and make the device unresponsive to the user,
target and terminate other apps or even force a soft reboot. Intents as fundamental commu-
nication mechanism can be abused by third-party applications because the Android OS does
not put any limit on the amount or rate of Intents directly sent from an app.
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Soft Reboot

The Soft Reboot [JES16] happens when the Android framework crashes, but the Linux kernel
continues execution by restarting the framework. During the restart the reboot animation is
displayed, leading to the description of a soft reboot. The crash is achieved by a service
that rapidly sends Intents to the ActivityServiceManager (AMS) to start many new activity
instances. Each new instance will run in a separate task, through the MULTIPLE_TASK

and NEW_TASK activity flags, and cause the system_server process of the AMS to create
a socket pair for user touch events. To amplify the procedure, instances are delegated to
also launch new activities. When the process reaches its soft limit of 1024 file descriptors,
it will eventually crash triggering the soft reboot, because either the attempt to open a new
socket leads to an uncaught exception or the system_server is killed by the watchdog deamon
process because it is in a deadlock. A malware that starts the DoS after every boot, by
declaring an IntentFilter for the BOOT_COMPLETED Intent action, can only be uninstalled
in save mode or with the ADB command line tool.

An attacker, that wants to make opptain unavailable to the user, can listen for the PACK-

AGE_INSTALL Intent action [Goo17f] and then launch the soft reboot. To make it more
convincing, the activity that is launched in quick succession must look like the opptain Ini-

tialWork or launching activity. Additionally, disabling the activity transition animation will
make it look like only on activity is started. Although the following crash, triggering the soft
reboot, was provoked by the attacker, the user will most likely think it is caused by the newly
installed network application and uninstall it. The attacker might be a competitor app, that is
motivated to make opptain look unreliable and unstable, to not be replaced.

BundleSpam

A self tested DoS attack, achieved while working on this thesis, was carried out by spamming

opptain with OutgoingBundles. The idea was to flute the OpptainBundleMemory with ran-
dom bundles so that either the network app would crash and be unavailable for use or older
legitimate bundles would get deleted.

To fill the memory can take some time because the PayloadFile itself will not be copied to
the database, it is just referenced in the stored OpptainBundle to safe space. Instead the Pay-

23



Chapter 3 Attacks and Threats

loadData field must be used and this is limited because of Intent size restrictions [Goo17j].
The restrictions are induced by the Binder transaction buffer, that is used to buffer data be-
fore it is transferred between different apps via IPC. This buffer is limited to a fixed size of 1
megabyte concurrently and is shared by every binder transaction in progress for the process.
If an Intent would not fit into the buffer, maybe because it is to large or because multiple
fitting Intents arrive simultaneously, so that not all can be buffered, it is discarded. With that
in mind, a PayloadData size of half a megabyte was chosen. The overhead of the Intent is
neglectable as can be see in Table 3.1, so there should not be buffer collisions, unless other
heavy IPC mechanisms in opptain are running, and the memory should be filled relatively
fast.

The app written to execute the DoS is called TestApp. Its launcher activity contains a spam

button, which will start a thread that sends 10 bundle Intents to opptain via the OpptainRe-

moteService every second. A stop button will stop the thread. The relevant bundle attributes
for the attack are PayloadData which are just random bytes, and Time-To-Live (TTL) which
was set to 10 minutes. The rest can be set arbitrary. After about 10 minutes the test devices
started to get sluggish and shortly after opptain would crash, because of an OutOfMemo-

ryException. When opptain is then started again, it would always crash with an OutOfMem-
oryException when the app begins to fetch data from the OpptainBundleMemory. This is the
case when either the Database or BundleOverview activities are opened; or in automation

mode, when peers start to exchange packets. This behavior, in regards to operation with the
database, even happened 10 minutes after the attack, where every packet should have expired
due to their TTL. Taking a deeper look into this issue revealed that the bundles are not deleted
and neither waiting an additional 24 hours for an automatic clear would help, Table 3.2. The
only possible solution is a clean reinstall of opptain.
Table 3.2 also shows that not all of the bundles were received (10 Bundles a 0,5 MB * 60 Sec

* 10 Minutes = 3000 MB). Sending 50 bundle Intents with the sizes of Table 3.1 with a rate
of 10 per second and a rate of 20 per second worked fine. So size and rate of sending are
not too large nor the problem. A problem is though, that even with this amount of bundles
the automation mode can crash because of the memory. These issues need further investiga-
tion, especially since 50 bundles is not to uncommon from a normal usage without malicious
intent.
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Element PayloadData OutgoingBundle Intent
Byte 524288 525088 (+800) 525480 (+392)
Byte 124288 125056 (+768) 125444 (+388)

Table 3.1: Size of a bundle during BundleSpam

Opptain size in megabytes
After Install BundleSpam last bundle should expire 24 hours

Device 1 10 2300 2300 2300
Device 2 17 1530 1530 1530

Table 3.2: Opptain size at different times

Unique Identifier Duplication

An application can define several components in the AndroidManifest.xml file which are
enforced to be unique [RAA+14] [JESS15] among all installed applications by the Android
operating system. All following statements are true for Android versions since API level 16
or later. Older versions might show the same behavior but are not considered as they are not
supported by opptain.

A Content Provider is uniquely identified by the android:authoritites attribute and starting
with Android 5.0 (API Level 21) permissions are uniquely identified by their android:name

attribute. All other attribute values are not considered for the uniqueness. In practice, trying
to install an app that has a Content Provider or a permission which is already claimed by an
installed app will cause the installation to fail. An "App not installed" message is displayed
on the for testing available devices HTC One M7 and Huawei Y360-U61 as well as in the em-
ulator. Looking at the system log, either an INSTALL_FAILED_CONFLICTING_PROVIDER

or an INSTALL_FAILED_DUPLICATE_PERMISSION error code followed by the duplicate
Content Provider respectively permission and the package name of both the failed and al-
ready installed application are logged by the PackageManager. Users unaware of this will
not be able to track the source of the problem. The error for a duplicate applicationId is
similar, the reason for the failure is different tough. Android will think the app is an upgrade
for the installed app with the same Id and then cancels the install process after checking the
signatures, that are different.

These scenarios are essentially an installation denial, targeted against the availability. With
the intent to also distribute opptain over unofficial channels in mind an adversary might use
this to stop the installation and spread of opptain.
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3.2.4 Eavesdropping

Eavesdropping in the context of Android is the act of passively intercepting messages or
data of another app. When it comes to eavesdropping the communication between opp-
tain and a third-party app, an adversary has mainly two options. One is to exploit unse-
cured implicit bundle Intents like in Section 3.2.1. This only affects third-party apps and
not opptain itself, since opptain limits the Intent to the package it is sending to. The other
option is to scan the shared external directory for PayloadFiles. While for the first method
the de.opptain.waitress.permission.COMMUNICATION is needed, the second method only
needs the android.Manifest.permission.READ_EXTERNAL_STORAGE, which is an often re-
quested permission and thus the eavesdropper may seem completely ordinary and unrelated
to opptain for the user. For instance, it could be camouflaged as a music app.
The attack vector in the second approach is established through the way opptain handles the
sending of large files and can injure the confidentiality of a message. As mentioned in Sec-
tion 3.2.3 Intents are size limited and therefore files of around 1 megabyte or larger are placed
in the shared external storage so that opptain can access the PayloadFile of a third-party app
and vice versa because apps not signed by the same signature cannot access the others private
directory. The bundles will then only contain paths to these files. For public files, that are
already stored in the external storage this is no problem but for private files it is since they
must be copied to the external storage and as a consequence will be exposed. Furthermore,
even NetworkBundles, which are only forwarded, are stored externally although they will not
be delivered to any installed app. An adversary has to just check the corresponding external
directories for new PayloadFiles at this point (see Figure 3.3).

As a proof of work, to show that this threat can easily be exploited, an Intercept functionality
was build into the TestApp. It can be started from the launch activity via the Intercept button.
The opened activity will then scan the apk directory in opptain’s external directory. The
reason for that is, that opptain saves an APK copy of every registered app in there to possibly
share it with the build in APK-Sharer. This scan is just done for performance reasons, another
way would be to just parse every app manifest for used opptain permissions to obtain the
third-party apps. All found apps will be shown in a ListView from which they can be selected
to list their external storage content. A more sophisticated malware would implement some
mechanism to be notified each time a new file is created and copy it if it seems to contain
promising data.
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Figure 3.3: Eavesdrop from third-party app files

3.2.5 Task Hijacking

Task Hijacking [RZX+15] attacks the Android multitasking mechanism administrated by the
Activity Manager Service (AMS). It is enabled by the fact that Android allows Activities from
different apps to co-reside in the same task. An attacker can now abuse task options to let
his malware reside in the victim apps task and hijack the user session of the victim. Possible
harms can be stealing of sensitive information, user privacy infringement, DoS of the device
and apps to name a few. All apps are vulnerable to the implied risks of Task Hijacking,
including system apps. In general the attacker will either launch a spoofed UI when a user
starts an app, without the user’s awareness, that is phishing or effectively lock other apps
from usage and act like some kind of ransomware.

AMS is a system service that supervises all Activity instances and controls their life cycles
by organizing them into tasks to manage them and to support multitasking. It is one of the
most critical system services in Android because AMS also supervises service components,
Intent routing, broadcasting, Content Provider accesses and app process management. A
task [Goo17i] is a collection of activities visited by users in the same session. The Activities
are stored in a back stack inside of the task. There is always one foreground task, namely the
one holding the current displayed foreground activity, while the rest are background tasks.
Since activities from different apps can co-reside in the same task, a malware can manipulate
other Activities, if they are placed into a task where the malicious one gets the program
control by the system.

The situation, in which we have a back stack with instances of both a malicious and a benign
app, is called hijacked task state. It is a result of a hijacking state transition (HST), which ex-
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ploits task control features to create a HTS. A state transition either pushes a malicious activ-
ity on the target task’s back stack or the victim is tricked to be pushed onto the malware back
stack. The set of task control features used as exploit conditions are the activity attributes
taskAffinity, launchMode and allowTaskReparenting and the FLAG_ACTIVITY_NEW_TASK

IntentFlag. The attributes are defined in the <Activity> tag inside the manifest whereas the
flag is set at runtime. A description of the their function can be found at [Goo17i]. The ex-
ploiting events after a successful task hijack are Activity callback functions and Framework
API functions. In particular the callback function onBackPressed() can be overridden by an
attacker. As a result the back button will trigger the attackers code, instead of finishing and
resuming the next Activity on the stack. The Android Framework provides functionality to
create tasks with pre-populated activities. On the one hand the utility class TaskStackBuilder

and on the other hand the API function call startActivites(). This allows attackers to build
back stacks that will be started as new task with previously not displayed activities.

Task hijacking can breach UI Integrity with spoofing attacks and phishing attacks (back hi-
jacking) and UI Availability with being able to prevent uninstalls and act as ransomware. The
former does not really apply to opptain because no external activities are used and the latter
concerns every Android app. However, the breach of UI Confidentiality is possible. Since
Android 5.0 apps can get information about their owned tasks and all contained activities
without permission. The key point is, that the root of a back stack is considered the owner.
Consequently, malware can run a task, with a malicious activity as the root, in the back-
ground with its task affinity set to the opptain package name. As long as it is started before
an instance of opptain, opptain will get pushed onto the malicious task on start, because the
launcher starts apps with the NEW_TASK flag. To remain unnoticed the malware can set the
activity attribute excludeFromRecents. Next, if the QR-code Activity is launched the attacker
can launch a spoofed version, that shows his public key. This results in a confidentiality
breach for messages that are sent to the targeted user via the wrong encryption key. Another
threat is that the malware always knows when opptain is started. This knowledge can be used
to exploit that opptain only checks the integrity of APKs for the APK-Sharer while launching
in the InitialWorkActivity. When the activity finishes, the APKs can be rendered useless or
replaced with repackaged versions.
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3.2.6 Clickjacking

In a Clickjacking attack [WBDJ16] the target app is covered by a malicious app that puts an
opaque or very low transparent UI on top of the screen that is "transparent" to user input and
that wants to trick a user to click on a specific position. The user input will be redirected
to the victim UI, causing actions that the attacker would not be able to trigger himself. For
example, a click on a button or link. All this happens while the user is expecting to interact
with the on top displayed window.

For this intrusion to take place unnoticed, the target window must be launched by the adver-
sary after the malicious UI, without coming to the front. To achieve this the attack window
can be a floating one which has a higher priority to stay on top of normal application win-
dows. Also to not make the user suspicious after he performs an input action the malicious
window must react promptly to the action. The problem hereby, touch events are not noticed
by the attacking component as it is transparent to them. Consequently, workarounds have to
be figured out. The most plausible ones the attacker will use are callbacks from the victim
activity, broadcast receivers for broadcast intents from app or system that inform about user
action or system state change and observing accessible, known to be changed databases.

Following the functionality of the attacker component will be discussed. Floating views are
normally used to display UIs of multiple apps together, for facilitating cooperation between
apps and simplifying user operations. They are higher in priority than normal app views, but
require the uncommonly used SYSTEM_ALERT_WINDOW permission. With one exception
being the Toast type requiring none. When created by a service, floating windows can still
float on screen even when their host app is brought to the background and untouchable float-
ing windows, running in a service, can bypass the Android system enforcement that blocks
the penetration of user input between windows created by different activities.
In comparison to an Activity, where associated views are loaded automatically, views from
a Service need to be added explicitly with the addview API of the WindowManager. The
important LayoutParams available are: width/height, position, general window type and be-
havioral flags. The size and position parameters are set to occupy the full screen, so that the
user does not notice the attack by operations running underneath the window. The window
type must be chosen with a higher priority than normal windows, as explained above, and
must be utilizable by the malicious app. Therefor the layer value, determined by the Z-order

of the window management, has to be greater. The two main window flags to consider:
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FLAG_NOT_TOUCHABLE since the floating window passes all touch events to the target,
and the optional FLAG_NOT_FOCUSABLE; not advised in case the target has a focus-able
element, for instance a text field.

Considering the Target Window, it can be from any third-party app, system app or other
system UI. Security-sensitive functionality that normally requires specific permissions to
be used programmatically (e.g. system settings, camera) can be used manually by trick-
ing the user to click on a button in a target app that offers the function. Since the invocation
of a target activity containing the window usually does not need permissions, Clickjacking
can indirectly launch attacks respectively use features without declaring otherwise necessary
(sensitive) permissions, which hence are bypassed. The target is launched either program-
matically with Intents/Schemes or manual, which is more complex and less stealthy. Against
opptain, Clickjacking could be used to clear the Wish-/Blacklist or databases. This would
require multiple clicks to which the floating window must respond, and is therefore hard to
realize. In combination with Task Hijacking it might be easier but this must be tested. The
main reason for this attack to be mentioned is the proposed access control system in Section
4.1.1.

3.2.7 Binder Attack Surface

Applications in Android execute inside of sandboxes and therefore depend heavily on Inter-

Process Communication (IPC) to interact with the system and other apps. The Binder driver,
as cornerstone of IPC, can be used as an attack gateway [FS16]. More specifically the Binder
interface is exploited and not the Binder directly, as its mechanisms itself appear to be quite
secure.

A Binder provides a message-based communication channel between two processes that
functions similar to a classical client-server architecture. The client sends a transaction and
then retrieves the response from the remote server via the Binder framework. Before data
can be send over the Binder driver, it must be marshalled into a serializable data container
object, called Parcel. The receiving side then de-serializes and un-marshalls the Parcel to get
the data. This allows Binder-based Remote Procedure Calls (RPC) in which the parameters
and return values are send to remote server and client respectively. The aforementioned is in
fact often implemented by Android system services.
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Android provides the Android Interface Description Language (AIDL) for developers to de-
fine an explicit RPC interface that client and server will have to follow. From this interface,
Stub and Proxy classes can be generated automatically. The classes implement low-level
Binder library details and ensure that the declared RPC parameters are serialized, send, re-
ceived and de-serialized correctly.

The Binder attack surface fundamentally allows an attacker to directly inject faulty trans-

actions into (system) services by manipulating the Binder interface, and hence bypass all
client-side sanity checks. Normally, this should not be an issue when the server side checks
the transactions before continuing to process them, but this is often overlooked. Especially
the help of AIDL to generate an interface with the required IPC stack makes developers in-
cautious to the security risks, as they are not confronted to deal with the details of RPC and
Binder. Resulting consequences can range from Denial-of-Service (DoS) attacks to privi-
leged code execution, depending on the payload and the target of the malicious transaction.
Attack vectors enabling the attacking of the Binder interface are:

• Manipulation of not exposed RPC methods and parameters of public APIs that are
frequently left unchecked, causing their (de-)serialization process to be unprotected
with no sanity-checks.

• Bypass every sanity-check in public APIs with a forged malicious transaction, that is
directly injected into the Binder. The generated Stub and Proxy classes are ignored.

• Exploit the serialization process of certain data types to create poisoned Parcels that
provoke a bad recursion in the de-serialization process on the server.

The second point is also exploitable in opptain. Third-party apps can bind to the Opptain-

RemoteService to invoke some methods that are defined via an AIDL. On a successful bind
the Binder to communicate with the service is handed to the binding app. Malware can then
pass transactions with invalid parameters to the service, via directly injecting it to the binder
driver, to provoke a RemoteException that will crash the service because the exceptions are
not handled by opptain. Additionally, the passBundle method, that takes an OutgoingBundle

and converts it to an OpptainBundle, does not check the timeToLive and applicationPackage

attributes to be correct and in bounds.
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3.3 Against Routing and Communication

In this section we discuss attacks and threats which target the routing and communication
capabilities between peers in Opportunistic Networks and that are applicable on opptain. In
contrast to an adversary from the previous section, the attacker will have full access on the
system from which the attacks are launched, with exception of when a repackaged opptain
on a victim device is used. The attacks, Figure 3.4, will be carried out by malicious nodes
that run a self developed network app, which implements the opptain protocols, or that use
a repackaged version of opptain. The attacks and threats are often similar and differ only in
some points and details. The differentiation can be the motivation, impact, channel or used
data of an attack.

Figure 3.4: Taxonomy of OppNet attacks

3.3.1 Blackhole Attack

Blackholes are malicious nodes in Opportunistic Networks that attract packets from other
nodes by sending them forged and manipulated metrics (e.g. fake routing info) [KM14].
This non-genuine metrics are designed in a way that will cause other network members to
evaluate the malicious node as an excellent forwarder. As a result, many members will favor
the evil node over benign ones in the choice of choosing a next hop to whom they send their
data packets to. Once the Blackhole receives the packets, they can be dropped or used for
more advanced attacks.
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Figure 3.5: Schema of a Blackhole attack

This kind of attack is a source of great disruption for the already by definition challenged
Opportunistic Network and degrades the integrity of routing information. To setup the at-
tack, the malicious node first has to analyze the network and its routing protocol. The more
knowledge collected, the better will be the execution and success of the attack. Valuable
information are: how does the handshake work, how large are packets, is data encrypted or
important routing variables to name a few. Possible ways to obtain this knowledge are by
reverse engineering (in the case of opptain also possible with app repackaging) the program
that runs the network or by a passive attack like eavesdropping and analyzing the network
traffic. When deployed, the malicious node has to operate normally for a short time to col-
lect current information about the network participants and potential targets in vicinity. This
phase allows to learn about the needs of the local environment and to derive the informa-
tion that must be forged for a high success rate. Subsequently, if a connection with another
peer occurs the malicious one lies about its routing information to intercept packets for a
requested target node with the intention to drop them.

Greyhole As mentioned above, this Blackhole attack can be more advanced, to be more
specific it can be extended to a Greyhole attack [SE07]. In this specialized type of attack the
node can choose between forwarding and discarding packets, based on several attributes like
time, location and destination. The decision for a behavior depends on the intended result.
To isolate targeted nodes, the packets will be dropped. To not attract attention in an area with
high node activity or noticed intrusion detection efforts, normal forwarding and routing will
be performed. Another attack besides dropping would be to purposely forward the packets

to bad forwarders. This means, instead of sending network bundles to nodes with a higher
chance of meeting the destination, the data will be send to nodes that are further away. The
delivery will be even more delayed and the packet indirectly consumes additional network
resources because it must be relayed over more nodes than normally. Because of the Time-

To-Live in opptain a bundle could also expire before it can be delivered and thereby stress the
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network by wasting resources that could have been used for legitimate data dissemination.

3.3.2 Sybil Attack

A Sybil node is a fake identity in the possession of an adversary [KM14] [SXB07]. In a
Sybil attack, the attacker generates multiple Sybil identities that also might impersonate other
nodes, like in the HotSpot Spoofing attack. Most of the time the attacker uses one device and
switches between the identities but he could also use several devices dedicated for certain
identities, to have multiple Sybils active at the same time. Sybil users are easy to generate in
Opportunistic Networks because a one-to-one binding between an identity and a real entity
cannot be ensured. Therefore, each new user enjoys the benefit of the doubt at first, for
the network to function in environments with sparse node activity and to enable network
growth.

Through the Sybils, a single agent can obtain a higher influence in the system, evade bad
reputation or masquerade his actions. For example, the Sybil attack can be used to increase
the reputation of the attacker, if the Sybil nodes route the packets among each other, or just
write each other to the network path, to generate meetings and artificially high success rates.
This will eventually lead to an attraction of more network traffic. But Sybil users might
also not write themselves into the delivery path, so that the receiver will thing he is close to
the sender of the data. This would cause a spreading of wrong routing information into the
network, towards other benign nodes, with originally good intentions in mind. Additionally,
systems and protocols that focus on redundancy mechanisms to resist security threats from
faulty or malicious devices are weakened. For example, routing protocols like (binary) spray
and wait normally only use redundancy as means to ensure packets are delivered from A to
B in an efficient way and to not rely on a single network participant, who might forward in
some strange fashion, like unnecessary loops. But if multiple colluding Sybil nodes take over
the packets, it is as if the packets were only forwarded to one misbehaving node. Equally bad
impact can be achieved against reputation systems as they rely on direct and disseminated
user ratings to evaluate a peer. Without a solution to check the authenticity and integrity of
the received ratings, Sybils can simply lie to manipulate the reputation.

It should be clear by now, that Sybil nodes can degrade the performance of networks by a
good amount. Detection systems to spot and avoid them are essential for OppNets.
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3.3.3 Denial of Service

Denial of Service on the networking layer perturbs the normal communication between
nodes. It can be aimed against the network in general or specifically target peers.

Flooding

Flooding [SXB07] is an attack that saturates the network with an abundance of fabricated

packages. The bundles can address a real node which in turn will also be flooded or an invalid
to keep the bundles being forwarded in the network for a long time. The performance of the
network will decrease and valid packets might get deleted on poorly equipped devices, in
an attempt to free resources for the flooded packets. Its hard to identify and trace the attack
because the messages look like normal ones and are also received as valid. If this attack is
performed in quick succession (rushing) with bundles containing false routing information in
combination with multiple nodes (Sybil scenario), the effect of estimating the best forwarding
hop on contact gets impaired because the stored routing data will be unreliable.

In the current implementation the opptain network app has no feature to counterfeit this
approach. There is no trust or reputation system to block communication or contact with
suspicious peers nor are there any thresholds to limit the receipt of bundles after a schema.

Exhaustion

Exhaustion stresses a node or resource so much that it cannot be used by other participants
or in the worst case eventually crashes [KM14]. An adversary can force repeated collisions
and/or continuous re-transmission to occupy the channel. This can be done by actively send-
ing corrupted data that will cause re-transmission, do not sending ACKs which consequently
also causes re-transmission or SYN flooding of a node in Server/Hotspot mode to provoke
an exhaustion of the sockets in the target node, achieved by creating many half-opened TCP
connections. Especially weak nodes will crash fast under the latter.

SYN flooding is possible in the opptain networking application. The peer that is hosting
the HotSpot and therefore opens a ServerSocket to let other clients connect, does not check
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or limit the amount of connections per peer, As can be seen in Listing 3.1, taken from the
ServerThreadTcp class. A possible reason for the application of this exhaustion is to discon-
nect other peers and afterwards trick them to connect directly to the attacker server.

Listing 3.1: Unchecked client connection

while (mIgnoreWhileWarning) {

final Socket clientSocket = mServerSocket.accept();

InetAddress inetAddress = clientSocket.getInetAddress();

final ClientInfoTcp clientInfo = new

ClientInfoTcp(mDispatcherThread, clientSocket, this);

KeyPersistence keyPersistence = KeyPersistence.getInstance();

Handshaker handshaker = new Handshaker(clientInfo,

keyPersistence.getSigningKeyPair(), false);

handshaker.handshake();

...

}

3.3.4 Bundle Manipulation

One may think the data sent between devices using opptain is safe considering that the hand-
shake protocol first authenticates paired peers to authenticate each other and then exchanges
the data in an encrypted format. While this assumption of security is true in the case of for-
mer described point-to-point connections, it fails for the data residing in the met peer after the
transfer. This is because, in its current state, the implementation of OpptainBundles can not
guarantee confidentiality, integrity and authentication for the routing information and data
it holds. This is due to the fact that the bundle is currently not signed nor is it end-to-end

encrypted by default. Following the bundle attributes are described in more detail and it is
evaluated what the results and consequences from tampering the values are.

The BundleId is a 32 Byte Id used to uniquely identify a bundle, so if an attacker changed
this Id by only one byte it would lead to opptain believing it is a new Bundle. This can have
multiple unwanted consequences ranging from harmless to dangerous. The harmless case
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would be a user who sends packages multiple times with new Ids to increase the chance of
a successful delivery. Although harmless in the scope of security aspects this behavior puts
additional stress on the network, that can decrease the overall performance, and is unfair in
comparison to honest acting users. Dangerous is it when a malicious node starts to replay
bundles by just changing the Id.

Origin is a 32 Byte SodiumDeviceId, it is used to identify the device which created the Bundle
and at the same time it also acts as the public key. If it is changed the sender is spoofed. This
can be used by a Man-in-the-Middle to receive the answer to a request by the original sender.
This was also tested with a simple test app called ABE. The app allows to chose being Alice,

Bob or Eve. During the test three devices were used with each running a different user.
Additionally, the Eve device had a modified version of opptain running that changes the
Origin of all outgoing NetworkBundles to its own DevideId. When either Alice or Bob sends
a first hello message it will be send to Bob respectively Alice who will respond with some
sensitive data. In the test Alice and Bob were not in range of each other, so that the bundle
was forwarded to the intermediate Eve first. Eve then modifies it as described and later
receives the answer intended for Bob/Alice.

Figure 3.6: Man-in-the-Middle attack through Bundle Manipulation

Destination is the SodiumDeviceId, it is used to identify the destination for which a bundle is
created. It can be modified to make a bundle never reach its intended node.

CreationTime and Time-to-Live are used to calculate the expiration time of a bundle. An
attacker can change this values to either make a bundle expire early or to increase its life-
time.

ApplicationPackage the app which created the bundle. Malware can just lie about its package
to communicate without registration. Moreover, when a bundle is forwarded completely it is
delivered to the app, if it is installed. A threat is that this happens even when the destination
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is not reached, yet.

PayloadData, PayloadFile, PayloadInfo and PayloadMeta hold data and various info about
the Payload. They can be altered to either cover changes that injure the integrity or to make
the data useless on purpose. If files are not encrypted they can be simply read but even if they
are they can still be manipulated and rendered useless.

NetworkPath and AdditionalInformation are information fields used by opptain, that are in-
tended to be changed during forwarding. The network path can be tampered arbitrary. In the
case of (binary) spray and wait the quota can be adjusted for various reasons. Decrease it
to reduce the spread of copies and lower the delivery chance. Or set it to a high amount to
flood the network. In general the possibility to add data to this attributes can intentionally
or not inhibit the delivery of the bundle to a third-party app. This is due to the limit of the
previously discussed Binder Transaction Buffer in Section 3.2.3. It can lead to transactions
being marked as successful even though the app never received the bundle.

3.3.5 HotSpot Spoofing and Impersonation

HotSpot Spoofing is an attack in which a node impersonates the identity of another node. Par-
ticularly the HotSpot SSIDs from previous connections are used to masquerade as a genuine
node. To be even more stealthy, the MAC can also be set to the copied user’s device one;
requires root on Android, but an adversary will have this permission level most certainly.
The SSIDs that opptain uses are of the following format: they begin with a "HS", then comes
the 24 byte fingerprint of the DeviceId and the last 6 byte are used as flags. Since the attack
vector is the HotSpot functionality the attacker is the peer that opens the HotSpot.

When a new user comes in proximity of the spoofed HotSpot, he will try to connect to it
as client. Either he connects because he does not know the HotSpot or because the identity

behind the fingerprint is on the internal wishlist. Once both devices are paired, the client
peer will initiate a handshake to exchange encryption keys to start a point-to-point encrypted
session. At this point, the spoofing will be revealed, since the checking of the challenge,
send with the handshake, fails. The client will disconnect and move on to the next access
point. The reasons for this attack are mainly to collect new DeviceId’s and to trick users into
unnecessary connections to make them miss genuine HotSpots. The latter could even lock
the user in place, if the attacker is the closest node and manages to quickly spoof another
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identity that the user does not know before the user scans for new HotSpots. This works
because a node will always chose the server with the best signal strength as long as there are
no servers for which the user has packets or for which a previous connection did not finish.
Thus an attacker will most likely not use smartphones but rather Wi-Fi devices with a strong
signal that emulate opptain. Especially users new to an environment with no contacts to de-
liver data to are susceptible. A blacklisting of fingerprint/deviceId and MAC will not help as
they continuously are changed by the attacker. The user can only escape this connection if
he walks out of range or a server with higher priority comes in range.

In addition to these both attacks, a more severe one is available. An attacker must not use
the deviceId corresponding to the fingerprint. There is no check in the handshake that tests if
the fingerprint of the DeviceId is equal to the one listed in the SSID. The handshake will be
successful and the adversary can communicate with the victim. Blacklisted devices can use
this to connect because again only the fingerprint in the SSID is used to control if a device is
in the list.

3.3.6 Fake Meeting Time

In opptain, the client defines the ConnectionID for a session. He can chose the same Id
for every connection because the server does not check if a Id was used previously. Conse-
quently, the database will be filled with multiple entries containing the same ConnectionID

and all of them are updated when a connection ends, which is also not checked. Peers with
a short connection time can thus fool the victim to think they are a frequently encountered
node. For instance, a node that connects for a couple of seconds and then returns after 10
hours to again connect only for a couple of seconds, will have a meeting time of 10 hours.
NASGL uses the meeting time to calculate decent neighbors for aggregation. The attacker
can in this way artificially increase his time to be evaluated as decent and be integrated into
the aggregation. This will cause wrong routing information to be spread that convey a false
local network view.

Miscellaneous

The following points are feasible to be a threat for confidentiality, integrity and authentic-
ity.

39



Chapter 3 Attacks and Threats

• After the Time-To-Life of a forwarded bundle, that was not delivered to any installed
app, expires, the bundle is deleted correctly from the database but the external Pay-
loadFile remains.

• When the user is tricked to reinstall opptain, the old key pair is lost. How can other
network participants be informed about the invalid deviceId? Same problem when a
keypair was stolen by malware. No mechanism to revoke a public key exists.

• A received PayloadResponse is not checked for its size. An adversary can send data
that is larger than originally advertised. The size should be compared with PayloadInfo.

• Uninstalled apps stay registered in opptain.

• Keep opptain active with TTL clearing alarms to cause a high battery usage.

• The handshake can be interrupted by jamming faulty bundles with wrong challenge
answers; its hard to achieve this attack but possible.

• Hash of a completely received file is not checked.

Chapter Conclusion

In this chapter selected threats and attacks against Android-based Opportunistic Networks
were researched in literature or derived from the opptain implementation. The attacks and
consequences were mainly discussed theoretically in this thesis. Testing of them is a task for
future work. Moreover some of the Android attacks are enabled through the user installing
malicious apps. In this scenario, they take a share of the blame for possible consequences.
Table 3.3 summarizes the main targets of each attack and states if it was implemented during
this thesis.
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Attack summary
Attack main targets implemented app
Intent based 1, 3, 4 no
App Repackaging 3, 4 no
DoS Android 2 yes TestApp
Eavesdropping 3 yes TestApp
Task Hijacking 2, 3 no
Clickjacking 1, 4 no
Binder Attack Surface 2, 4 no
Blackhole Attack 2, 4 no
Sybil Attack 3, 4, 5 no
DoS OppNet 2, 4 no
Bundle Manipulation 3, 4, 5 yes ABE
HotSpoot Spoofing 3, 5 no
Fake Meeting Time 4 no

Authorization(1) Availability(2) Confidentiality(3) Integrity(4) Authentication(5)

Table 3.3: Attack summary
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Solutions and Mitigation

In this chapter solutions for the previously described attacks and vulnerabilities are discussed.
Not all solutions will solve a problem completely but at least mitigate it and raise the effort for
a successful attack. Some literature proposals for solving Android attacks require changes of
system components. This is out of scope and not considered, since most users are not willing
and capable to flash their device with a modified Android version. Only solutions that can be
directly implemented in an application are reasonable.

4.1 Mechanisms against Intent based Attack Surfaces

In general, developers should be aware of the distinction of inter- and intra-application com-

munication. Once the difference is understood, the separation of inter- and intra-application
communication components into separate ones dedicated to just one of the both tasks should
always be done, if possible.

Unauthorized Intent Receipt Solutions to stop Unauthorized Intent Receipt are quite easy
to realize [KCHW12]. If a recipient is known, developers should make the Intent explicit by
passing the full component name into the Intent. But even if the full name is not known
the Intent can be narrowed down to the desired application by passing the package name to
the corresponding field. Since in Android versions below 5.0 Intents that match multiple
Services are delivered to one randomly, without telling the user which, a check should be

43



Chapter 4 Solutions and Mitigation

performed before sending. The check should query all possible resolving Services and check
if the correct is present. Only if present, the Intent should be send, with the right component
set. Alternatively a developer could make his app only available on Android 5.0 and higher.

Intent Spoofing First of all developers can review their code and verify that they do not
expose any internal component with an IntentFilter. As a best practice the exported option

should be always used and set to the components expected exposure level to prevent capabil-
ity leakage [KCHW12]. Components intended for inter-application communication with the
system or other apps by the same developer can be protected by a signature-level permission

in the manifest file. In this case an Intent is rejected, if it is coming from a non system app or
with mismatching signing (in most cases not from same developer). For app internal broad-
casts the LocalBroadcastManager should be used (available since Android 3.0) instead of a
dynamically created Broadcast Receiver.

Privilege Escalation There are some best practices that can reduce the chance for a con-
fused deputy privilege escalation although they do not prevent it completely [RZZL14]. Pub-

licly available components should always be protected by a permission that is mandatory to
access it. Furthermore if a component invokes API calls it should always check that the
requesting app has the required permission for the desired action.

4.1.1 Access Control

As discussed in the previous Chapter 3.2.1, the currently employed registration model for
apps, that want to use opptain, is not safe. There is an urgency for a proper access control
mechanism that handles the registration and all further interaction between opptain and any
third-party application.

It is necessary to reliably identify the source of a request to be able to make profound deci-
sions in the further course of actions. Hence Intents do not contain information about their
sender nor can opptain trust an application without uncertainty to provide its actual package

name in the Intent, another approach has to be found. Within the context of this problem, a
simple authorization mechanism is developed, that acts as a proof of work for secure registra-
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tion and considers the threats like Task Hijacking 3.2.5, Clickjacking 3.2.6 and Intent based

attack surfaces 3.2.1.

Prevent Task Hijacking and Clickjacking The solution must be resilient to Task Hijack-

ing and Clickjacking. With regards to Clickjacking, the Android framework offers a touch-

filtering mechanism to protect windows from receiving any user input event when obscured
by another visible window, by simply discarding the input. Specifically, the touch filtering
can be activated by calling the setFilterTouchesWhenObscured function on a view, or by set-
ting android:filterTouchesWhenObscured in a layout to true. The downside of this approach
is that even benign apps will cause input blocks. That could be confusing to the user in case
of a harmless floating view (e.g. a pop-out video player), if the app does not respond to
interaction anymore [WBDJ16]. A possible Task Hijacking attempt can be discovered by
checking the manifest of all installed apps. If an app declares a task affinity for our app the
user should be warned, so that he can uninstall the app if he thinks this app should not have
the task affinity. Furthermore, the critical component should use the singleInstance launch
mode, that will start the activity in a new task, into which no other activities will be launched
by the system [Goo17i]. The component is always the only member in the task. This thwarts

hijacking state transitions that would put the activity on a malicious task.

Implementation The previously used TestApp and ABE are used to implement and demon-
strate the authorization. TestApp implements a service that handles the authorization and
registration of third-party apps. It offers an AIDL interface with a registration method for
apps, that must be implemented to communicate via IPC. The reason for this approach is the
possibility to get the UID of a calling app with Binder.getCallingUid(). This enables to find
out the package name via the PackageManager. If an app tries to use the service for the first
time, the service opens an authorize activity. The activity shows the package name of the
application that wants to register and asks the user to allow or deny the registration. This is
done via Accept and Deny buttons. Leaving the activity without any action cancels the regis-
tration. If the user authorized the registration of the app, it can start to use the functionality,
otherwise calls will be ignored and not executed.

The further communication between service app and third-party app can be carried out with
either a Binder or Intents. This was not yet implemented due to time limits, but an explana-
tion follows. The Binder will be returned to the application after a successful registration.
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This means the Binder with the registration method and the one with the functionality are
separated from each other. The intention is to make the service more resilient against Binder

Attacks 3.2.7 by not exposing it publicly. The disadvantage of the binder approach is that
multithreading must be handled manually. For the Intent approach, a token will be returned
by the registration method after a successful registration. From this point onward, every send
Intent of an app must be authenticated with the token. The token cannot be send with the
Intent itself though, since a careless app might use implicit intents that can leak the token,
as in Section 3.2.1, which a malicious app in turn might exploit to communicate without
registration. Instead the token will be used as a salt for a hash function: before the Intent is
send an attribute will be hashed and placed into an extra field. When the service app receives
the Intent, the attribute will be hashed with the token that belongs to the app claiming to be
the sender. If the hashes do not match the Intent is discarded. The attribute for the hash can
be the BundleId or a nonce, that is send along with the token. Since the token is only used
internally, it should not be leaked on accident anymore; might be leaked on purpose though.
In comparison with the binder approach multithreading must not be minded by the service
app.

Improvements There exist a couple of improvements that can be added to the service app.
The authorization activity can be extended with a code input field that must be filled before
an action can be chosen, so that users do not just accept it blindly like permissions. System
broadcasts for uninstall events should be scanned to know if a registered app was uninstalled
and thus its access must be revoked. The app could offer options to let the access expire
after a certain time. Especially the token approach should be implemented in this way, so
that potentially unnoticed token leaks will be mitigated. Another option would be to let the
user define a blacklist of instantly blocked apps. Finally, it should be no problem to extend
the opptain networking application with this feature. Malicious apps can then be stopped to
access functions they are not supposed to. For example, getBundle and revokeBundle will
only execute when the requested bundle belongs to the app.

4.1.2 Intent and Bundle Threshold

A Solution for Intent DoS is to limit the amount of intents that are received and processed
afterwards. An implementation via threshold values seems reasonable but has to be carefully
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tested and evaluated, because it is difficult to construct a satisfactory defense schema against
the Intent DoS in practice. The attacked component or resource is often shared and thus
countermeasures with weak restrictions will not be enough to stop the attacker from reducing
the availability. On the contrary, a too restrictive countermeasure will limit the component
access for genuine usage.

A bundle threshold on the network side is also necessary since every packet that is addressed
for us or that is a broadcast will be accepted. In an environment with high node activity,
the device storage can fill quickly through this circumstances. In addition to the threshold,
it would be desirable to have a sophisticated rating algorithm, that can efficiently evaluate if
a bundle or Intent is bad (e.g. spam). Bad data would not be processed further and thus not
increase the threshold count. This could help to reduce the amount of genuine bundles and
intents that are being rejected because the threshold was reached.

4.2 App Verification

Android requires from each app that it is signed by the developers certificate [Goo17c]. Un-
signed applications will already fail at installation time. This enables the verification of an
installed application by comparing the certificate with the authenticated certificate from the
developer.

Self checking App Repackaging can be detected in this way. A solution against naive
attackers [Sco17] is therefore to implement a signature check into the app. On each appli-
cation start this check will be executed to verify the current signature is associated to the
release developer certificate. The certificate signature must be stored in a static hardcoded
string. Signatures returned by the PackageManager can then be compared to the string at
runtime. This solution is weak considering experienced attackers who will simply remove
the check in the repackaging process.

Third-party checking A more promising proposal to check the signature is through the
opptain API. Specifically third-party apps can check after installation or after an opptain
update if the available opptain version is genuine. The API will provide the method along
with an embedded release certificate. Granted that the signatures do not match the third-party
app should inform the user about the tempered version. Of course this solution only works if
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the third-party app is installed from a trustworthy source, implementing the official API. A
suggestion for the method is seen in Listing 4.1.

Listing 4.1: Validating opptain certificate

boolean validateOpptainCertificate(Context context) {

PackageManager pm = context.getPackageManager();

PackageInfo packageInfo = pm.getPackageInfo(opptainPackageName,

PackageManager.GET_SIGNATURES);

byte[] cert = packageInfo.signatures[0].toByteArray();

InputStream is = new ByteArrayInputStream(cert);

CertificateFactory cf = null;

X509Certificate c = null;

try {

cf = CertificateFactory.getInstance("X509");

c = (X509Certificate) cf.generateCertificate(is)

} catch(CertificateException e) {

return false;

}

return c.equals(opptainCertificate);

}

4.3 Trust and Reputation

To tackle the problems introduced by malicious nodes, trust and reputation metrics can be
applied to evaluate if data should be forwarded to a particular node or not. First of all, the
distinction between the two terms must be clarified, as both are often used interchangeably
by mistake. "Trust is a particular level of the subjective probability with which an agent

assesses that another agent or group will perform a particular action, both before he can

monitor such action (or independently of his capacity ever to be able to monitor it) and in a

context in which it affects his own action" [Gam88]. "Reputation of an agent is a perception

regarding its behavior norms, which is held by other agents, based on experiences and obser-

vation of its past actions" [LI04]. "In contrast to trust, which tries to predict a future action,

reputation is a passive property depending on past actions" [TL09]. Both metrics can be
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used as a substitution for certificate authority (CA) systems, which cannot be implemented
in infrastructure-less decentralized Opportunistic Networks, to offer a solution for assuring a
certain level of safety in the interaction between possibly unknown users.

4.3.1 Trust

Trust is a metric effective for thwarting Sybil and impersonating nodes. That is because Sybil
nodes often have fewer trust relations and lower activity times than normal users, making
them detectable or ignorable due to low trust values. A trust form appropriate to use in
opptain is social trust [TLA10]. In comparison to other trust approaches, it is not based on
network interactions but rather on human social interactions. It can be distinguished into two
different approaches, explicit social trust (te) and implicit social trust (ti), by leveraging the
social network structure and its dynamics.

Explicit social trust Explicit social trust is derived from consciously made friend ties by
building a robust graph of paired users. Direct friendships are established through users, that
meet each other face to face due to their mobility to authenticate their identities in a secure

pairing. During the pairing and in all future encounters the users will exchange all their
friends collected so far. This friendship data is then used as the basis for the calculation of a
tree-like friendship graph. The graph is rooted at the users node at level 0 and branches off
to a maximum of n levels, with n being the maximum hop count. Edges always represent a
hop to the next level and are sequentially, this means edges that would lead to a node on the
same level or skip levels are ignored. The construction is implemented as a modified breadth
first search algorithm. The depth and inter-connectivity of a node in the graph are used as
parameters for the trust function, which is designed to decrease the trust with increasing
depth and to increase it for well connected nodes in the graph. Direct friends have a trust

value of 1, that the algorithm progressively propagates through the graph. The trust tej that
a node j on the next level gets, is depending on the amount of children the parent had, the
number of parent nodes and the hop distance of j from the root. To ensure a decrease of trust
in sparse graphs, a degradation factor, that simulates a minimum amount of children, must
be used. Additionally all indirect nodes are capped to a maximum trust value of 1, as they
should not be trusted more than direct friends.
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Since the users paired consciously, impersonation is thwarted directly and other misbehaving
or Sybil users can be identified quickly once they start malicious activities and attract negative
awareness. So, explicit social trust verifies that the user behind an identity is genuine with
honest intentions. Furthermore, as a CA cannot be assumed in an OppNet, the nodes take
the task of signing their friend’s certificates themselves, allowing for the transitivity of trust.
But explicit social trust only trusts direct friends or very well connected peers fully. This is
a trade-off between preventing malicious peers that manage to fool a trustworthy friend to
gain full trust and not limiting trust to only consciously paired friends. The disadvantage

of explicit social trust is the secure pairing that requires direct interactions and cannot be
automated, leading to a loosely connected graph, if only a few friendships are established,
that does not really convey trust to a lot of met peers.

Since opptain already offers a secure pairing via the QR-Code scanning mechanism only the
implementation of the trust calculation must be added to employ it into the routing protocol
forwarding decisions. The complexity for calculating the trust te is O(bd), as it can done
while constructing the friendship graph, with b being the branching factor and d being the

depth. The communication overhead depends on the amount of friends which is correlated
with the branching factor, so O(b). Considering the trust propagation the two most notable
characteristics [TLA10] found out are: for many real and synthetic traces nodes with a trust
value higher than 0.1 where mostly just 3 hops away and the propagated trust is only depended
on the node degree, not the network size or structure, making it highly salable. Sybils from a
single device always had lower trust than normal users due to their low social interconnection,
leading to them not being selected.

Implicit social trust Implicit social trust leverages mobility properties to assign trust to
unpaired wireless contacts that are encountered regularly in everyday life, so called familiars.
This can be neighbors, coworkers or other students for example, which are often in close
proximity but to whom a close relation does not exist. Furthermore, nodes are also classified
by their similarity. Familiarity can be obtained from the accumulated contact time or contact
frequency with peers that are in vicinity of each other, while similarity between two peers can
be obtained by comparing the amount of common familiars they share. The set of familiarity
values is exchanged with each encountered node and every time a node gets new data or when
connection times get updated it normalizes the values and then builds a graph with a two hop

trusted environment, based on the familiarity and the similarity of surrounding peers. The
weighted graph represents a local approximation of the network usable for routing to trusted
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peers. The implicit social trust tij in an encountered node j is calculated by simply adding
both discussed values once they are acquired. The choice for a two hop environment stems
from the uncertainty that further away hops are still in the near surrounding.

Implicit social trust conveys trust based on the persistence of an identity to not be a fast
switching one. It requires no conscious user interaction, therefore it can be automated and
in contrast with explicit social trust it does capture the mobility dynamics which can be used
to establish trust. On the contrary, the honest intent of an node can not be verified with this
trust, but as with the explicit one, misbehaving peers can be identified easily through the
persistence that identifies them.

As opptain also tracks contact time and NASGL exchanges neighbors for routing decisions
and aggregation, implicit trust should be easy to implement. The complexity for the trust ti

has to be calculated for a two hop environment graph, leading to O(b2), with b as branching

factor, correlating to the number of familiars. This can become really complex if there is no
appropriate aging algorithm to keep b at a feasible size. As for communication overhead, it
is the same as with explicit social trust O(b) and relies just on the number of familiars. The
maximal trust propagation is bound to a maximum value of 2, since familiarity and similarity
are normalized to 1. The number of trusted nodes is comparable to explicit social trust. A
notable finding from comparing the distribution of the trust values with the groups generated
by community detection algorithms [TLA10]: the structure of local communities is indirectly

exposed by the implicit social trust graph. For Sybils to gain a lot of influence via familiarity,
they would have to increase their own familiarity while decreasing the familiarity by all other
nodes which is hard to achieve let alone unnoticed. To gain high similarity multiple Sybils
would need to collude, but even then transitivity of trust is only limited and they would need
to be active at the same time.

Applications Using the social trust values in practice, a user will only communicate with
nodes that have a trust that exceeds a desired threshold value. It could also be implemented
with stages of actions that require a different threshold to let nodes with lower trust partic-
ipate. One such application would be the forwarding of non sensitive broadcast messages.
The social trust values can be used independently or can be combined for a unified trust

value [TLA10]. When combined they can be weighted, ttotal = we*te + wi*ti, to adjust the
influence of a trust to the total combined one, depending on the situation and environment.
For instance, in hostile environments a higher weight for the explicit social trust is more ben-
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eficial. The biggest problem associated with social trust are environments in which the user
has no social interactions [TLA10]. In this case there has to be either an adaptation of the

aging to faster environments to build a new trust graph, or an alternative system, like deriving
trust from reputation systems, that might not be as safe but at least provide some basic means
for secure communication.

4.3.2 Reputation

Reputation is a metric to rate the behavior and quality of service of nodes in Opportunistic
Networks. Adversaries that try to disrupt the network function will receive bad reputation for
their actions and thus can be detected through their poor rating. Evil nodes like a Blackhole

can then be ignored by the other benign network participants. A threat to reputation systems
are forged ratings, that can manipulate the ratings of a peer to get a high rating, abandon bad
reputation or evade responsibility for actions. For instance a misbehaving node can create
ratings that indicate a genuine node is acting malicious to cover himself. The ratings for the
reputation are retrieved from subjective experiences with a node and received as second-hand

experience from encountered trusted peers that also observed the node in question, and are
used to calculate the cooperativeness.

The realization of reputation systems in OppNets is hard, due to Sybil and liars that trick
the system easily, if it is not implemented in a safe manner. In the research of this thesis no
satisfying solution was found that would function in the whole network and simultaneously
be resilient to attacks. But [LD13] proposed an approach that seems reasonable in combi-
nation with the social trust scenario. Although declared as trust-based framework, with the
definition from the beginning of this section in mind, it is more of a reputation system. It
uses so called Positive Forwarding Messages (PFM) as evidence of the forwarding behavior
of a node and thereby can effectively detect two kinds of attacks: deliberately dropping data
and arbitrarily forwarding data. In some sense, the systems assist each other. PFM can detect
misbehaving nodes, that can then be identified through social trust while social trust miti-
gates Sybils and impersonation and therby effectively reduces forged metrics, increasing the
accuracy of PFM. Additionally to that, Encounter Tickets (ET) [LWS09] can be introduced.
ETs verify that two nodes really encountered each other. It is still exploitable, but an attacker
would first need to meet the node, about which he lies, so ETs increase the attack effort.
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4.4 OpptainBundle enhancements

The two main problems with OpptainBundles are that they are not signed nor are they en-
crypted by default. They are only encrypted, if the third-party app does it. Both issues can
be fixed relatively easy and the tools to do so are already available in opptain. First of all,
it must be clarified that not the whole OpptainBundle can be encrypted because almost all
parts of it are needed for routing and forwarding purposes. Only the PayloadData and Pay-

loadFile have to be ciphered by opptain. Similarly broadcast bundles cannot be encrypted.
In order to safe computation power, symmetric cryptography is used for the data. The used
secret key will be encrypted with the destinations public key and is then appended to the data.
Furthermore, a third-party app should inform opptain if it has encrypted both elements itself,
to not do it twice. This could be done by an extra attribute in PayloadInfo, e.g. isEncrypt-

edByApp. The next step is to sign the bundle. Again, not the whole bunde can be signed
because NetworkPath and AdditionalInformation are constantly changed as the bundle dis-
seminates through the network. Besides that, the signing is done after PKCS#1 [JMKR16].
In short terms: first the bundle will be digested with a hash function, next the resulting digest
will be signed with the sources private key and then the signed digest as well as the sources
public key are appended to the bundle. This enhancement will stop bundle manipulations
and guarantee confidentiality, authenticity that the origin is the real sender and integrity for
all attributes, except NetworkPath and AdditionalInformation.
A positive side effect of this approach is, that certain malicious bundles can be dropped by
benign nodes. Either they are not signed or the integrity check fails. The latter is possible
since the origin of a bundle is also the public key that can be used to verify the appended
digest.

Some minor enhancements that could be implemented: a threshold option in opptain for the
amount and maximum size of bundles to be accepted, finding a solution to protect the infor-
mation in NetworkPath and AdditionalInformation from forgery or manipulation. Consider-
ing, that AdditionalInformation can be bloated to over 1 megabyte so that an Intent delivery
of the bundle would fail, the attribute might be changed to a path, like PayloadFile.
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4.4.1 Private Data Storage

Since data, that would exceed the maximum size of an Intent, must be saved on the exter-
nal file system to be shared with opptain, sensitive data could get exposed if it is not en-
crypted beforehand. To solve this problem a FileProvider [Goo17e] seems reasonable. The
FileProvider allows apps to securely share selected files from their private storage; also works
for external files. An implementation of this solution could be integrated into the opptain API
to make it easy to use for developers.

4.5 Binder Attack Mitigation

A solution to decrease the chance of an open Binder attack surface, is to use lint with metadata
tags on RPC interface elements to see potential parameter violations during testing. Addi-
tionally it is inevitable to always perform sanity checks on both sites of the IPC but especially
on the server side of the Binder it is indispensable. Because even when the client does non
checking the server can still fend off malicious inputs. [FS16] proposed an intrusion diag-
nostic that blocks transactions on receive when they are similar to previously encountered,
dangerous transactions. Therefore sender and information of the incoming transaction, that
caused a fail, are logged along with a signature of the transaction. The sender is retrieved
by calling Binder.getCallingUid() and querying the PackageManager with the UID to get the
package name. The information of the transaction are recorded during de-serialization if an
unexpected exception occurs. The info contains parcel meta-data, the transaction signature
and the parameter that failed to parse. New incoming transactions matching this signature
can then be blocked if the user so wishes.

4.6 HotSpot Spoofing Mitigation

To thwart HotSpoot Spoofing, the client should check directly if the fingerprint from the SSID
and the fingerprint calculated from the received public key match. The connection must be
terminated if the spoofing is recognized. In the current implementation of the handshake,
the adversary will have collected the public key of the victim. To stop this, two extra steps
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in the protocol are required. Specifically, instead of starting with initiateChallengeBob, a
new handshake start requestVerificationKeyBob from Alice to Bob, which Bob answers with
sendVerificationKeyAlice should be added.

Figure 4.1: Handshake extension proposal

The attack in which a spoofing HotSpot uses a strong Wi-Fi device to lock peers and block
their communication can be mitigated. Defining a threshold for the maximum amount of
failed handshakes because of authentication failures is the first step. If the threshold is
reached, a peer should stop trying to connect to HotSpots for some time. Another solu-
tion is to detect and avoid non Android devices that emulate opptain. Ways to achieve this
are DHCP fingerprinting [Raj17] and network scanner applications (e.g. nmap [Gor17]).
Both methods are approximations and not absolutely correct and a skilled attacker will be
able to masquerade himself as Android device.

4.7 White- and Blacklisting

The opptain networking application offers white- and blacklisting functionality. As demon-
strated in Section 3.3.5 blacklisting is not very effective in OppNets with nodes being able to
generate their own DevideId on the fly. If a malicious node notices that it is blocked, it just
generates a new Id. Trust and reputation systems are a better solution to block nodes in this
situation. Nodes with a low rating will be simply ignored.
Whitelisting is more promising. Notably in scenarios with many nodes in vicinity, from
which several are whitelisted, a node can chose to be picky and only communicate with
white-listed devices without experiencing a high decrease in performance.
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4.8 Fake Meeting Time Mitigation

Fake Meeting Time is easily fended. The Server just has to check if a ConnectionId was al-
ready used before and if a database update changes multiple connection entries. If a previous
ConnectionId is received, it must be replaced with a new unused one. Furthermore, different
following actions are possible, depending on whether the client is also the same as previously
or a new client accidentally chose a used key. If it is the old one, the server might want to
drop the connection and give the client a bad rating. In the case of the new client, the server
may tell the client to chose a new ConnectionId before continuing.

Miscellaneous

Android apps supporting a minimum API of 21 will be available for 71,5% of all Android

devices on the market [Goo17d]. Considering the former and the security threats in older
Android versions that got fixed in Android Lollipop, a suggestion to raise the minimum API
version of opptain to API level 21 seems reasonable. Beginning with Android 5.0 (API
level 21), the system throws an exception if a call to bindService() is made with an implicit
Intent. This prevents adversaries to hijack service sessions for opptain that were requested
via implicit intents by incautious developers. Moreover, multiple apps cannot define the same
permission anymore unless they are signed by the same signature. This prevents attackers
that exploit the mechanism that the first requester decides the characteristic of the permission
for all instances. Beforehand, the system would ignore the values from others and did not
even notice about it. Last but not least, the functionality to get information about other app
tasks was removed.
For the case that a user has to reset his device or that he was tricked to uninstall opptain,
there should be an option to backup the public-private-key pair in a safe manner. Of course,
it should be possible to load the backup to recover the old identity.

Chapter Conclusion

In this chapter solutions and mitigation mechanisms for attacks from the previous Chapter
3 were researched in literature or found after an analysis of the problem. The proposed
solutions were mainly discussed theoretically in this thesis. Like for the attacks, testing of
them is a task for future work.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

The objective of this thesis was to research security threats against Android-based Oppor-
tunistic Networks and to find possible solutions. A special focus while working on the thesis
was on the opptain networking application as a representative example. The course of action
to achieve the task was to first explain and characterize threats found in corresponding liter-
ature as well as to find threats by analyzing the opptain source code and behavior. This was
followed by a discussion of possible solutions and mitigation techniques.

The attacks and threats in the given scenario can be partitioned into attacks on the Android
device and attacks against routing and communication functionality of Opportunistic Net-
works. The former mostly violate confidentiality, integrity and authenticity of messages send
via the network while the latter mostly try to disrupt the functionality of the network by
spreading forged meta information and by not forwarding data in the expected way. Short
examples for both categories are adversaries listening to insecure communication channels
on Android and malicious network nodes that deliberately drop packets they receive, called
Blackholes.

The regarded network application opptain was found to be insecure in several points due
to either flaws in the current implementation or in general through its behavior. The most
severe: it relies on third-party apps to tell the truth about their identity; packets are not signed,
leaving them vulnerable to manipulation; all encountered nodes are treated equally, making
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it easy for an adversary to launch an attack. To solve the first, a short proof-of-work for an
access control system was developed, that authenticates the real app name. For the second,
a possible implementation approach for the signing process was described. And for the last,
a combination of promising trust and reputation systems, that were found in literature, was
proposed.

5.2 Future Work

While working on the thesis most threats and proposed mitigation mechanisms were only dis-
cussed theoretically because discussing them practically would have gone beyond the scope
of this thesis. In general, the implementation and testing of them are options for possible
future work.

First of all the access control system and packet signing can be implemented into the opptain
network application. Moreover, all the other threats found during this thesis should be tested
practically to find out their exact impact. Based on that, extensions to solve respectively
mitigate the threats accordingly should be developed.

Furthermore a design to implement a module for the trust and reputation system into opptain
should be discussed. Once this is done, the implementation and testing of parameters can be
conducted.

Another point to test are the Intent and Bundle Threshold. Specifically, values that guarantee
a high success rate to block spam and still offer efficient operation of the program need to
be investigated. Conditions for adapting the values are another point of interest. Also a
comparison of having a single threshold versus having multiple for different categories could
be evaluated to find the better approach of both.
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