
Design and Evaluation of an Anonymization
Service for Structured P2P Overlays

Bachelor Thesis
by

Andrej Morlang
born in

Karaganda

submitted to

Technology of Social Networks Lab
Jun.-Prof. Dr.-Ing. Kalman Graffi

Heinrich-Heine-Universität Düsseldorf

Oktober 2014

Supervisor:
Jun.-Prof. Dr.-Ing. Kalman Graffi

Abstract

This thesis describes the anonymization services for the Chord-Overlay.

The original Chord [10] design is focused on fast performance of routing, which means that each

request can be found in O(logN) steps. This Chord design does not consider the anonymity aspect

for the given routing model. Therefore, existing anonymity routing techniques has been reviewed.

According to this knowledge, different designs are created, but because of the depth impact of the

necessary changes in the implementation, the already researched solution AChord [12] is regarded

firstly. While AChord contains disadvantages on the join process and performance, AChord approach

is modified into the “SChord” in this thesis. The new anonymous service SChord is implemented in

the given simulator PeerfactSim [8] as well as the original AChord service. Further, the simulator

already contains the Chord overlay. The overlay design has three weak point where the anonymity is

threatened. Those are the joining process, the finger table [10] update and the routing process. The

joining process and the finger table are specified by the overlay, while the routing process may be

adapted in some ways. The routing itself contains further three anonymity aspects, sender anonymity,

responder anonymity and the intercommunication anonymity between the sender and responder.

To test these anonymous conditions each service is modified by a spy operation. The spy operation

can act passively or/and actively, to differentiate between the types of attack and to achieve proper

evaluation results. Each service Chord, AChord and SChord is tested by active and passive type of

eavesdropper, and the results of the spy process are compared on these three services.

The given results represents that SChord is the most anonymous service while it knows the minimal

number of participants on the overlay in all anonymity aspects, in comparison to the AChord and

Chord services. The AChord service provide more anonymity on the routing process than Chord but

because of the disadvantages in the design of the join process it may collect, under certain circum-

stances, more information of the network than Chord. Still AChord provide anonymity services while

Chord does not concern about the anonymity at all.

iii

Acknowledgments

I would like to thank my family and friends for their support. Especially I would like to express my

gratitude to my advisor Tobias Amft for the correcting the grammar and style, and advising me on this

bachelor thesis.

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

2 Related Work 3

2.1 Crowds . 4

2.1.1 Working principle . 4

2.1.2 Anonymous-Routing principle . 4

2.1.3 Anonymity degree . 5

2.1.4 Anonymous-Routing example . 5

2.2 Ants . 6

2.2.1 Working principle . 6

2.2.2 Anonymous-Routing principle . 7

2.2.3 Anonymous-Routing example . 7

2.3 MIXes . 8

2.3.1 Working principle . 8

2.3.2 Anonymous-Routing principle . 9

2.3.3 Anonymous-Routing example . 10

2.4 Onion Routing . 11

2.4.1 Working principle . 11

2.4.2 Anonymous-Routing principle . 11

2.4.3 Anonymous-Routing example . 12

2.5 Freenet . 13

2.5.1 Working principle . 13

2.5.2 Anonymous-Routing principle . 14

2.5.3 Anonymous-Routing example . 14

3 Design and Solution 17

3.1 Simulator . 17

3.2 Chord and Pastry . 18

vii

Contents

3.2.1 Finger Table in Chord . 18

3.2.2 Routing in Chord . 19

3.2.3 Routing Table in Pastry . 20

3.2.4 Routing in Pastry . 20

3.3 Design . 20

3.3.1 Friend in the Middle . 20

3.3.2 Single User . 21

3.3.3 Friends . 23

3.3.4 AChord [12] . 25

3.4 Solution . 26

3.4.1 Join procedure . 26

3.4.2 Routing procedure . 27

3.4.3 Finger Table . 27

3.4.4 Summary . 28

4 Implementation 29

4.1 Chord . 29

4.2 AChord & SChord . 31

4.2.1 Routing procedure . 31

4.2.2 Join procedure . 32

4.2.3 Finger Table . 32

4.3 Spy procedure . 32

5 Evaluation 35

5.1 First example: Active spy process . 36

5.2 Second example: Join process and finger table impact 38

5.3 Third example: Multiple Spies . 41

6 Conclusion 45

6.1 Future Work . 46

Bibliography 47

viii

List of Figures

2.1 Routing example of Crowds [1] . 6

2.2 FANTs routing [2] . 8

2.3 BANTs routing [2] . 8

2.4 Sender anonymity Cascade . 10

2.5 Sender and Responder anonymity Cascade . 10

2.6 Onion . 12

2.7 Onioin-Routing . 13

2.8 Routing on Freenet [7] . 15

3.1 Chord Finger Table [10] . 18

3.2 Pastry Table [11] . 19

3.3 Friend in the Middle routing method . 21

3.4 Layer Model . 22

3.5 Single User routing method . 23

3.6 Basic Friends routing method . 24

3.7 Advanced Friends routing method . 25

4.1 Flowchart of the get operation in Chord . 30

4.2 Chord request routing . 31

4.3 AChord and SChord request routing . 31

ix

List of Tables

2.1 Crowd degree of anonymity [1] . 5

5.1 Example 1: Setup for the active spy procedure. 36

5.2 Example 1: Node 192.76.21.1 from Latin America joined on 25m 36

5.3 Example 1: Node 64.167.127.97 from North America joined on 32m 36

5.4 Example 1: Detailed view of the known nodes from Node 64.167.127.97 37

5.5 Example 2: Setup for the passive spy / finger table and joining procedure. 38

5.6 Example 2: Node 61.8.4.98 from Australia joined on 15m 39

5.7 Example 2: Node 205.153.101.1 from Germany joined on 50m 39

5.8 Example 2: Node 210.185.12.33 from Italy joined on 101m 39

5.9 Example 2: Detailed view of the known nodes from Node 210.185.12.33 40

5.10 Example 3: Setup for the multple spy procedure. 42

5.11 Example 3: Results of the multple spy procedure. 42

xi

Chapter 1

Introduction

Decentralized peer-to-peer overlays are often used as file sharing network. Compared to centralized

networks, decentralized networks are almost invulnerable against breakdowns, since the information

is stored distributed on different nodes of network. Each member expands the capacity of the existing

network by providing a part of its own disk space to it, so the network remains scalable. To achieve ef-

ficient search of the content, different approaches have been developed e.g. Pastry, Chord, Kademlia.

Still the mentioned overlays are not concern about the anonymity of participants inside the overlay.

In general, anonymity means that each user is allowed act on the network, so that the identity of the

acting user remains unknown to the whole network. This anonymity aspect can be divided further by

three states: sender anonymity, receiver anonymity and the anonymous intercommunications between

sender and receiver. Sender anonymity is when the sender of a specific content can not be (clearly)

defined by any member of the network. The receiver anonymity is when the holder of specific content

can not be (clearly) defined by any member of the network. The anonymous intercommunications

between sender and receiver means that the initiator must remain unknown to the responder as well

as the responder hast to be unknown to the initiator. Those three anonymity aspects may appear to be

identical but they are not, since each aspect has its own technique to achieve the required anonymity

condition. The two implemented approaches from Chapter 4, try to fulfill these anonymity condition.

Additionally an eavesdropper (spy-node) exist to test the implemented approaches on those anonymity

aspects. The loss i.e. nonexistence of anonymity may tracing further consequences to the data stored

on the network. If the source (e.g. responsible node) can be clearly defined, it is possible to remove

the data form the network by replacing the sources storage. Because of the design, members must

store particular information even if they do not request it. A member is always responsible for the

information it stores. Basically, any corrupted content may be stored on any members node, if this

node is known to the attacker. This opens a new facet why the anonymity in these overlays must be

included.

There are few anonymity approaches existing for peer-to-peer overlays in general, and even less for

structured peer-to-peer overlays. Mainly because the anonymization procedure is in contrast with the

efficient search for the given overlay. While the members in the overlay remain anonymous to each

1

Chapter 1 Introduction

other, the efficient routing is difficult to accomplish.

Based on the given simulator PeerfactSim [8], “SChord” anonymity service for a structured peer-

to-peer overlay is developed in this bachelor thesis and evaluated with the AChord [12], an already

existing solution. The remainder of this thesis is structured as follows. Chapter 2 represents related

work, which describes existing anonymity methods and point out the differences, disadvantages and

advantages of them. Chapter 3 represented several anonymity designs. “Friend in the Middle”, “Single

User”, “Friends” and “SChord” are developed up by me, according to the given information from

Chapter 2 and from the AChord approach. AChord is an already existing solution, represented in

[12], which I did not developed. Chapter 4 describes the simulator structure and the implemented

anonymity services AChord and “SChord”, as well as the testing conditions. Where Chapter 5 evaluate

those states. In Chapter 6 the results are summed up.

2

Chapter 2

Related Work

A short insight and integration of existing anonymity routing methodes is give in this Capter.

Existing anonymity routing methods can be classified by three categories.

• “Trustful Environment” - services relying on the aspect of the community.

• “Discreet User” - services that share no information about the user.

• “Indirect Swarming Communication”- services which are flooding the network until the respon-

der replies.

Crowds [1] relies on trustful environment since a user communicates via other participants. The mem-

ber remains invisible for the end target but every participant can read the messages forwarded to the

destination and source. Crowds is categorized as the Trustful Environment service. Although de-

cryption of the routed content i.e. message, does not directly provide anonymity, some application

are supported by it. Onion routing [5] is one of them. In some cases it is similar to Crowd’s routing

method by the random path transmission with two main differences: Before forwarding the message, a

proxy strips away any user specific information and when forwarding a message, it is always protected

with a key of the next user on the path. Another discreet user service is Mixes [3], which equally to

Onion routing encrypts the messages on the routing path. Further, Mixes mix the users among them-

selves to provide more anonymity. Mixes can be modified to provide the receiver anonymity as well,

but this approach is usually not used for the real time communication. Onioin routing and Mixes are

categorized in the Discreet User service. The represented methods provide only the anonymity for

the initiator of the request but not for the responder. This is others in the indirect swarming com-

munication services, where the receiver remains unknown as well as the initiator. There both sides

communicate indirectly with each other. The message is e.g. forwarded via a key to the next partici-

pant closer to this key, but it remains unknown who is the real initiator and responder. Those methods

3

Chapter 2 Related Work

are represented in Ants [20] [2] and on Freenet [7]. Freenet and Ants are categorized as the Indirect

Swarming Communication service. In the following, these routing methods will be explained.

2.1 Crowds

2.1.1 Working principle

Crowds working principle is to hide a user in a group of participants. The request travels along by

random number of users with crowd membership. When a user finally decides to send the request to

the “End Server” a path is established. End Server is defined as any website or webserver where a user

sends the request to. The decision of sending the request depends on the forwarding probability, which

itself is related to the number of Crowds participants. Since the origin remains unknown, because of

the path, each user sending a request appears to the end server more like any other user than like a

request initiator.

2.1.2 Anonymous-Routing principle

To join Crowd a user must registers himself on a server, called blender [1]. The blender maintains

all members of the crowd, decides whether a user may, or may not join the crowd i.e. group and

is responsible for the entry point and time, which is not related to regular time. The time described

here is how long the blender needs to wait until the responses of the crowd members reaches the

destination. When responses travel to long the blender is able to cut the path where the response

should be routed through. Further, in this time new requests are disabled. When the blender accepts

a user as a member of the crowd, it assigns a unique symmetrical key to this user. Further, it informs

the crowd that this user is going to join in. By doing this, all members first reset the existing paths and

then create new ones. This is how the newly joined members remains hidden. Now, the user who has

the membership, initiates the request and sends it to a random member of the crowd. Each member

has a list of active users wherefrom a random user is chosen. A user that receives the request has

two options, forwarding the request to the end server or passing it to another randomly chosen active

user(self-included), shown in Figure 2.1. If an active user does not respond, it is removed from the

list. These steps are repeated as long as the request does not reach the End Server. The probability of

forwarding a request to the End Server is related to the number of participants in Crowds. To avoid

similar behavior pattern and loops, each user possesses an identifier (ID), a random 128-Bit value,

which changes when predecessor ID remain the same. The response returns backward, by following

the path it has been sent before.

4

2.1 Crowds

2.1.3 Anonymity degree

According the research [1] of M. K. Reiter and A. D. Ruben Crowds provides the following anonymity

properties shown in Table 2.1.

n is the number of crowd participants.

p f is the probability for forwarding the request to the end server and must be in the range between

1/2≤ X ≤ 1.

c is the number of collaborating members along the path.

Attacker Sender anonymity Receiver anonymity
local eavesdropper exposed P(beyond suspicion) limn→∞ = 1

c collaborating members probable innocence P(absolute privacy) limn→∞ = 1
n≥ p f

p f−1/2(c+1) P(absolute privacy) limn→∞ = 1
end server beyond suspicion N/A

Table 2.1: Crowd degree of anonymity [1]

The left column describes the sort of attack, the middle and the right column represents how much

anonymity is offered against the specific attack. The likelihood degree of anonymization directly

depends on size of the crowd and partly on the forwarding probability. Since these values vary for

every crowd, a constant degree of anonymity can not be represented. In general it is said: the more

members participate, the higher is the chance to remain unknown.

2.1.4 Anonymous-Routing example

For visualization reasons each initiator of the request and each webserver to whom a request is sent

have the same number see Figure 2.1. Each number inside the circle is related to the same number

inside the square, although in the algorithm the webserver is not aware of the initiator. Each arrow

type represents different paths for every initiator and receiver. Each node knows only the predecessor

and the successor (if any exists). When joined, the crowd members creates new paths. Depending

on the forwarding probability, each member decides whether to route the request to web server or to

another member. Considering, from Figure 2.1, the member with the node-ID 3 as initiator. First, a

random node where to forward the request to is chosen. In this case, it is the node 1. Note that node 1

does not know if node 3 is the initiator or another request transmitter. After receiving a request node

1 decides to pass it further to node 6. This is where the request is finally send to the web server 3. For

the web server, node 6 appears as the requester and the real initiator remains unknown.

5

Chapter 2 Related Work

Figure 2.1: Routing example of Crowds [1]

2.2 Ants

2.2.1 Working principle

ARA [20] is a routing algorithm, developed for MANETs. MANET is a network, which provides mobile

communication via radio and without any infrastructure knowledge. Since mobile nodes and radio

have limited transmission range, it is necessary for each node to forward the content through other

nodes. Based on the ARA algorithm [20], the Ants [2] application is developed. This Ants approach

relies on swarm intelligence where subsets of swarms solve complex problems by cooperation [2].

The basic algorithm marks every node, by forwarding the request as well as the response, from source

to destination on the path. The more often a node is visited the more marks it has. On the opposite,

not used nodes decrease the amount of marks. Considering this, all nodes with the highest mark build

a path. The most often marked path must be the shortest since the information traveling by several

nodes is faster than by all the others.

6

2.2 Ants

2.2.2 Anonymous-Routing principle

Every marked node has a pheromone value, which is actually the mark itself [2]. Transferring infor-

mation through the node increases the pheromone value by a static pre-defined number. Every node

maintains a list of neighbors. When a route is established, the next hop is considered as the neighbor

with the highest pheromone value. This value decreases when the destination is not available or a

shorter path exists but also over period of time. The routing algorithm consists of three steps, which

are route discovery, route maintenance and route failure handling [2].

Route discovery is responsible for creating a new path. Therefore, FANTs (forward ants) and BANTs

(backward ants) are used [2]. The FANT is a small packet with a unique sequence number. Nodes,

which receive a FANT, take a record in the routing table. The properties are read as following:

destination address is the source address, next hop - the next node and pheromone value as a necessary

number of hops for the FANT to reach the node [2]. The FANT is forwarded via the neighbors until it

reaches the destination. The node destroys duplicated FANTs that contain the same sequence number

and destination address (if a record exist). At the destination, a FANT is decrypted and destroyed.

As a result, the BANT will be send to the source node. BANTs have the same routing principle as

FANTs. When source node receive the BANT, the data transmission follows.

Route maintenance handles the path changes as well as improvements when indicated. These

changes occurs through movement of mobile devices, which changes the length of the circuit as

well as other properties. The pheromone value increases during the process of path building and by

the amount of packages sent through a node. The value decreases, over time when the node routes

no packets through, or by detecting a loop. Loops can occur when several paths leads to the same

destination where the distance on the paths are none equal. As a result a node gets at least a double

requst, which actually represents a loop. However, the method provides a sleep feature to prevent

traffic overload. If the pheromone amount reaches a threshold, the node falls asleep. While sleeping,

the sleeping node will not accept any pakets from other nodes, except those that are destined to the

node itself.

Route failure handling recognizes route failures caused by missing acknowledgments. In this case,

the pheromone value is set to zero. The node tries to send the data packet via an alternative route if a

record exists, otherwise it informs the previous neighbor. Those precede on the same procedure. If a

packet is backtracked to the source node, it imitates a new route discovery phase.

2.2.3 Anonymous-Routing example

7

Chapter 2 Related Work

Figure 2.2: FANTs routing [2]

Figure 2.3: BANTs routing [2]

Figure 2.2 and 2.3 describe the process of establishing a route. The sender S initiates a request, since

no route exists, S sends the request (FANT) to all its neighbors. Node 2 does not contain the requested

information nor has it any neighbors. Consequently, it sends the request back to predecessor and

decreases the pheromone value to zero. Node 1 does not contain the requested information as well but

a neighbor is existing, so the request is forwarded to it. Node 3 routes the request to node 4 and 6. If we

assume that every connection has the same length, as a matter of fact the request from node 6 already

reaches the destination point when node 5 gets the information from node 4. The duplicated request

that follows from node 5 to node D will be destroyed and the pheromone value of node 5 decreases

to zero. Following the behavior of node 5, node 4 decreases the value to zero as well. Branches with

zero pheromone concentrate are invalid. Nodes 1, 3 and 6 increases the pheromone value. Now when

node D decrypts the message it floods the network again toward to node S. Again, the values of node

1, 3 and 5 increase and the path is finally established.

2.3 MIXes

2.3.1 Working principle

To provide anonymity, every message must pass at least one Mix or a Cascade [3]. A Cascade repre-

sent a row of Mixes to provide higher anonymity degree. Receiving a particular amount of requests,

a Mix transforms the input of each request, so that the output is related to another initiator. Depend-

ing on network state and amount of users, messages can be sent continuously or periodically. Every

8

2.3 MIXes

message gets encrypted and can be split into multiple items. Each initiator supplies the same amount

of messages to each Mix to prevent analysis of network traffic. A set of specific number of Mixes

or dummies requests, can be defined by a user, to reduce the traffic on the network, although it may

cause negative effect on the anonymity.

2.3.2 Anonymous-Routing principle

The approach on Mixes is to transform the input and the output of the message. First, a pair of keys are

created K+ (public key) and K− (private key). By encrypting the message K+(M) with a public key,

only the holder of a private key is able to decrypt the content. Additionally, a random string of bits,

here called R, is attached to the message. A is assigned as the destination address. The transformation

by the Mix from input into the output is illustrated as −− > and is interpreted as decryption. While

−−< represents the encryption on the returning path.

Request
1. Single Mix on request

The following method describes the anonymity methods for one Mix of forwarding the messages to

the destination:

K+
1 (R1,K+

a (R0,M),A)−−> K+
a (R0,M),A.

The Mix decrypts the input with the private key K−1 , separates the random string R1 and send the

remaining content forwards to destination as output.

2. Cascade of Mixes on request

For the cascade, the method remains the same, with the difference that the request is nested in the

series of Mixes.

K+
n (Rn,K+

n−1(Rn−1,,K+
2 (R2,K+

1 (R1,K+
a (R0,M),A))). . .)−−> . . .

K+
n−1,(Rn−1, . . . ,K+

2 (R2,K+
1 (R1,K+

a (R0,M),A))...)−−> K+
a (R0,M),A.

The first Mix decrypts information with K−n , keeps the Rn and routes the message to the next Mix.

The last Mix forwards the message to the destination, where the responder decrypts it to plain text.

Response
Now the reply needs to be sent back. Since the initiator should remain unknown, the following

procedure is responsible for routing the response back to source.

3. Single Mix on response

Back routing for a single mix:

K+
1 (R1,Ax),Kx(R0,M)−−< Ax,R1(Kx(R0,M)).

After decrypting the related message part with K−1 , a mix uses the random string R1 to re-encrypt the

9

Chapter 2 Related Work

message. Then the initiator get the response. When the initiator should remain unknown, Kx must be a

key chosen by the initiator. Only the initiator knows all random generated strings R1..n and the key Kx,

consequently he is the only one who can decrypt the message. Searching the entire output of the first

mix for the response with a Kx is how an initiator catches the response and remains anonymous.

4. Cascade of Mixes on response

As for a single Mix, back routing exist also for a Cascade, too.

K1(R1,K2(R2, ...,Kn−1(Rn−1,Kn(Rn,Ax))...)),Kx(R0,M)−−<

K2(R2, ...,Kn−1(Rn−1,Kn(Rn,Ax))...),R1(Kx(R0,M))−−<

Ax,Rn(Rn−1...R2(R1(Kx(R0,M)))...).

Every single Mix encrypts the message with the random string and routes the response to the next

Mix, from which it received the random string and the request.

2.3.3 Anonymous-Routing example

Figure 2.4 represents the concept of sender anonymity. Every initiator is informed about the numbers

Alice Bob Carol

Mix 1

Mix 2

Google HHU

A2 B1 B2 C1 C2A1

C2 C1 B2 A1 A2B1

A1 B2 B1 A2 C1 C2

Figure 2.4: Sender anonymity Cascade

Alice Bob Carol

Mix 3

Mix 1

Dave Eric

D2 C1 E1 B1 D1 A1

Mix 2

E1

A1 D2 B1 E1 C1D1

D1

D2 D1

D2 E1

Figure 2.5: Sender and Responder
anonymity Cascade

of Mixes it has to go to reach the destination. Equal to the length of the path is the number of

encryption of the request as well as the number of random strings. Bob forwards a request to Mix

1. There Mix 1 awaits the requests of all defined initiators, only when all requests arrive at Mix 1 it

forwards messages to Mix 2. Note that each requester must send the same amount of messages towards

10

2.4 Onion Routing

the Mix. When this is done, Mix 1 decrypts all requests and exchanges the initiators. Receiving

information, Mix 2 decrypts the requests and mixes the participants again, then transmits them to the

destination. The end server i.e. HHU decrypts the content as plain text and then responses. The key

selected by Bob encrypts the reply that also contains the random string. Getting the reply, Mix 2 adds

the random string to each reply and routes them to Mix 1. There Mix 1 adds the random string again

and sends it to the requester.

The method represented in the Figure 2.4 can be improved to anonymize the responder as well, see

Figure 2.5. Therefor a Mix, which maintains the request and the response at once, must exist i.e. Mix

2. The requester acts as described in Figure 4. Bob initiates a request with Mix 2 as destination. The

responder encrypts the reply and forwards it to Mix 1. Then the replies get mixed and encrypted via

Mix 1 and are sent to Mix 2. Mix 2 merges the request and the response, then sends a reply to Mix 3

where this one replies the encrypted response, to the initiator.

2.4 Onion Routing

2.4.1 Working principle

The most known application, which uses onion routing method, is called Tor. Tor allow user to surf

on the World Wide Web anonymously. Further, it prevents data traffic analysis. Tor service removes

user specific information from the request and establishes a path along the service nodes. The service

itself basically pretends to be the initiator of the request or rather the last node on the path. Because

of the service structure, only the last node is able to see and sent the request toward the destination.

Further, this node does not know the origin source of the request, since it does not contain any user

specific information, and receives the request always form nodes inside the service. When an answer

is incoming, the node route the response back to the previous node. The respond is traveled back

along the path until the first node of the service, there the response is sent to the real initiator.

2.4.2 Anonymous-Routing principle

The first router on the path uses a layer of encryptions according to the number of routers it passes on

the way to destination. Each router decrypts a layer before routing the request to another node closer

to the destination, represented in Figure 2.6. Only there the message is completely decrypted. The

response is transmitted back by the path the request was sent.

The exact algorithm contains four steps. Those are network setup, connection setup, data movement

and destruction and cleanup [5]. To join the Onion-network a client first connects to the application

11

Chapter 2 Related Work

Figure 2.6: Onion

proxy [5]. This proxy removes all information, which could give away the initiator of the message.

Only then, the data stream is sent to an anonymous link. An Onion Proxy creates a route via the request

is going to be sent, additionally it creates an Onion [5]. An Onion, Figure 2.6, is a data package that

is encrypted by several levels, which depending on the path length. Each Onion Router [5] decrypts

one layer of the Onion, finds the next hop and transmits information to it. Entry Funnel is defined

as the first router on the path and Exit Funnel as the last router on the path [5]. Furthermore, each

Entry and Exit Funnel maintains several requests and responses, while having a different path for each

one in the onion network. The Exit Funnel is responsible for delivering the message to the correct

destination. When the responder replies, data exchange occurs. The data is carried on the same route

backwards since every Onion Router knows it own successor and predecessor. As long as at least one

node, which is an Onion Router, on the path remains encrypted, the content of the message remains

unknown to a eavesdropper too. Further, the data is split into fixed packets. When the transmission

is finished or the connection breaks, a destroy command is send to clean up all information on the

path.

2.4.3 Anonymous-Routing example

When Alice begin the request, Figure 2.7. She firstly send the message to the Application proxy.

There the Alice’s specific information is removed and the request is send to the Onion proxy. The

Onion proxy defines the path and creates the Onion. This is possible, because the Onion proxy knows

all nodes on the network. Each layer of the Onion is encrypted with the public key of the receiving

12

2.5 Freenet

Figure 2.7: Onioin-Routing

node. By decrypting a layer the node finds an IP address, which represent the next hop on the path.

On the last hop, Exit Funnel, the message gets fully decrypted and the data is transmitted to Jane.

When Jane answers, the reply is routed backwards on the same path it was sent.

2.5 Freenet

2.5.1 Working principle

Freenet [7] is a file sharing network in which each node is considered as data storage. For copy right

reasons a participant does not know what information is stored on its own node. Each node learns the

network consistence by requesting the data itself or by routing it to others. Each data is represented as

a number. Similar request numbers are routed via nodes that possess similar information. The more

similar requests a node manages, the better it is informed about a certain batch of data. As a result,

the routing improves over time. Further, data can be duplicated when requested and deleted if unused,

to improve routing performance. The network is adaptive, since nodes with similar data learn each

other via intercommunication and maintains the exact location of the data on the network, which also

improves routing performance.

13

Chapter 2 Related Work

2.5.2 Anonymous-Routing principle

Nodes join the network by discovering at least one address of a node inside the network. Each first

node that is informed about a new node creates a commitment. This commitment should inform

the network about the new node. Since this peer to peer network is unstructured and has no central

administration, the only information a node has about the network comes from a locale routing table.

The commitment is sent to a randomly chosen node from the routing table. Each commitment has a

number of hops, which it may pass before getting invalid, called hops-to-live [7]. On this procedure,

random nodes learn about the new node and route a request forward, if necessary. For a data request, a

user must first calculate the key of the data file before sending a request. A key represents a stored data.

Then the user sends the first request to itself to check if its node contains the requested data. If a node

does not hold the requested data nor the exact entry of the key in the routing table, the node defines

the next hop via the number closest to the requested key. So the request reaches the source of the file.

If no requested neighbors contain the requested file, the request is send back to the predecessor. The

request is sent back to the real initiator when the hops-to-live reached zero. Additionally each request

has a unique identifier to prevent routing loops. Loop can occur when node receives the same request

more than once. An example of the prevent-loop procedure will be described further in the Figure

2.8. Note that each node recognizes the current predecessor as the initiator of the request so the real

initiator remains unknown. When the file is found, it is routed back on the same path it was forwarded.

Further, each node on the path creates an entry in the local routing table for the request and copies the

file into its own storage. The origin source is sent with the file, to provide more anonymity each node

on the path may pretend to be the source too. So when the file arrives at the initiator node, it takes an

entry of the last node which claims to be the source, in the local routing table. Those steps can reduces

the anonymity degree but are improving instead the routing quality of the network by grouping nodes

with same interests. Containing an entry of a key, other nodes will sent similar requests more likely to

this node then to any other. By replying the requests, a node gain more information about the network

and the storage of other nodes. When a storage of a node reaches the limit, the least recently used data

will be deleted to insert the new one.

2.5.3 Anonymous-Routing example

Starting with the node A which initiates a request, Figure 2.8. First A searches its own storage for the

requested file. Not finding the file, A creates number of hops-to-live. When these expires the request

is aborted. Since the routing table of A has the record of B as the nearest key to the requested one,

A chooses to route via node B. B proceeds on the same strategy and forwards the request to node

C. There, C cannot find the file and is unable to send the request any further, so a response with a

failure message is tracked back to B. Then B searches the routing table for the second closest key,

14

2.5 Freenet

Figure 2.8: Routing on Freenet [7]

which holds the node E. From E, the request is passed over to F where F considers B as the next hop.

Because of the unique request ID, B discovers that it already has this request and prevents the routing

loop by backtracking the request to F, with a failure message. Node F behaves as the node C and

backtracks a failure message, too. When E receives the failure message from F it forwards the request

to node D with the second closest key. Finding the file, D sends it back to E where E duplicates the

file and routes is back to B. From B, which duplicate the file as well, the requested file is forwarded to

A. Additionally A saves an entry on the routing table of the last known source of the file, in this case

it may be the node B, D or E.

15

Chapter 3

Design and Solution

This Chapter represent different anonymity routing approaches i.e. designs for the structured peer-to-

peer overlays. First, the content of the third Chapter consider the given circumstances by presenting

the given simulator and the structured overlays, where the designs should be implemented. Unfor-

tunately, only the Chord [10] overlay implements the two chosen anonymity routing designs. The

designs are represented. From “Friend in the Middle” to “Friends” design, the each design considers

deeper overlay impact and anonymization aspects as the previous. Then AChord [12] an already ex-

isting anonymous approach for the Chord overlay, is represented, which I do not design. Although it

actually belongs to the Related Work Chapter, AChord is maintained in this Chapter because AChord

specifies explicitly on the Chord overlay, other as the represented anonymous routing models in the

Related Work Chapter. Further, AChord is implemented and evaluated in this paper, and influence my

solution i.e. “SChord”. SChord is the second implemented approach on the simulator, after AChord,

for the anonymization of the Chord overlay. Afterwards the three designs Chord, AChord and SChord

are compared and evaluated in Chapter 5.

3.1 Simulator

To simulate realistic network conditions and achieve proper results the PeerfactSim [8] simulator is

utilized. This simulator contains different layers to work and evaluate with. Moreover it allows an

in depth study of the specific chosen properties, like overlay condition, member information, data

exchange and more.

Therefore, PeerfactSim maintains six layers: User Layer, Application Layer, Services Layer, P2P

Overlay Layer, Transport Layer, and Network layer. Additionally a Churn Model exists to simulate

the join and leave behavior of the users in the network. The two layers that need to be modified are the

Application Layer and the P2P Overlay Layer. The implementation of the anonymous routing method

was planned to be on the Application Layer to test and evaluate the anonymity on each structured

17

Chapter 3 Design and Solution

overlay implemented in PeerfactSim. Unfortunately, this was not possible. The modifications must be

done in the routing method inside the overlay, since the focus lies on the anonymity of a peer-to-peer

overlay and not in the design of an application, for any overlay, that is not anonymous. Although each

overlay has different routing approaches, the designed anonymity method can be transferred to any

other structured overlay implemented in PeerfactSim. The Application Layer is used to investigate

the information a user gains of the network, in order to confirm or disprove the functionality of the

anonymity service.

3.2 Chord and Pastry

For a lookup the structured overlays use the impact of a DHT to find a node related to the key. Note

that each data has a unique key in the DHT. Further, each node is related to a key,too. When a node

sends a request for the data, it initially starts a lookup to find the key/node in the DHT. Finding the key

it receives the IP Address of the responsible node. Afterwards the routing algorithm of the overlay

starts to route the request to the node containing the data. Both overlays, Chord [10] and Pastry [11],

are based on the ring topology. Each node maintains a local list of nodes it has contact to.

Figure 3.1: Chord Finger Table [10]

3.2.1 Finger Table in Chord

In Chord it is a list called finger table [10] where entries of requested nodes are recorded. The maximal

number of nodes each finger table may contains is O(logN). Each node has a predecessor and a

18

3.2 Chord and Pastry

successor, those are defined on the join procedure, to accomplish the ring structure. When a node

joins in, it receives the finger table information from the own successor. Then the node periodically

updates the finger table. When updating the finger table each node defines an ID for a position in the

finger table and search the responsible node for this ID.

3.2.2 Routing in Chord

Further, the nodes in the chord ring are always enumerated and have an ascending order, represented

in the Figure 3.1. This “clock” design has affects to the routing. Nodes may route requests only

forward to the next higher node. Before the initiation of the routing, a key (which is interpreted as an

ID) for the requested data must be calculated. This is necessary because any key is related to a node

on the overlay, so one specific node must be responsible for the calculated key. The routing begins

when the requested key is generated. The initiator node searches first in its own finger table for a

responsible entry of the destination node. When such entry exists, the node send the request directly

to the destination node. Otherwise, the node routes the request closer to the destination node. The

successor node, when the exact node is not maintained in the finger set, is the next node in the ring.

Figure 3.2: Pastry Table [11]

19

Chapter 3 Design and Solution

3.2.3 Routing Table in Pastry

Other than in Chord, Pastry nodes maintain three sub lists the Leaf Set, the Neighborhood Set, and the

Routing Table [11]. Figure 3.2 represents an example of those three sub lists. The Leaf Set contains

nodes with longest prefix matches to the ID of the node, the half of them lesser and the other half is

greater compared to the node ID. The Neighborhood Set maintains geographically closest nodes of the

recent node. The Routing Table is responsible for entries of nodes which route information through

this node and has appropriate prefix. In general, the Neighborhood Set is not applied for routing but

for other Pastry specific purposes.

3.2.4 Routing in Pastry

So beginning with the key a node takes a local lookup to check whether the node itself is responsible

for a requested key. When the node is not responsible for the key further revision occurs, otherwise

the routing is fulfilled. The node compares first the requested key with the range of the Leaf Set.

According to the result, the node routes the request directly to the destination node, which must be a

node from the Leaf Set. In the other case, a more similar node closer to the key is chosen, via a lookup

to the Routing Table. All nodes proceed on this method until the destination node is found.

3.3 Design

3.3.1 Friend in the Middle

• The first attempt was to hide only the initiator form the responder. This design aims to hide the

initiator by replacing it with a chosen friend. The design uses the public key en/decryption to

hide the conten of the message from eavesdropper, further it needs a list of nodes where to chose

the friend node from. To fulfill the requirements the overlay must provide these two conditions.

Therefore, the sender of the message defines a new node for each request, e.g. like a trusted

friend, and sends, the ID of the awaiting message and its own node ID. This friend node awaits

the response. When the response arrives at the friend node it forwards the answer back, to the

initiator of the request. The request or response is always encrypted with the public key of the

current destination node, destination nodes are represented in Figure 3.3 as squares.

The routing of the request starts from the initiator S represented in Figure 3.3, which forwards

the request to a random node chosen via the routing table A1. (In Figure 3.3 each empty arrow

form S to R route the same content and the arrows form R to F route the same content.) This

20

3.3 Design

Figure 3.3: Friend in the Middle routing method

random node A1 proceeds on the same way, by routing the request to another random node A2.

For this procedure, the request forwarding method of crowds can be applied, to randomize the

number of next hops before the request is finally routed to the destination. For convenience,

lets consider that the third node An sends the request directly to the destination. If An is unable

to send the request directly it will from now on route the request only into the direction of the

destination. If a node does not contain the responder in his routing table it routes the request

to the next known closest node to the responder ID. When the destination node R (responder)

receives the request, it decrypts the message to find the node IDF and the ID of the message

IDM. The node IDF defines where the response should be routed to. Again, node R choses

a random node to route the response to B1. B1 sends the response to B2. When the B2 node

decides to send the message forward to the destination, any further nodes (if existing) e.g. Bn

route the message near to the destination F (friend node), too. Finally, when the trusted node F

receives the awaiting message it decrypts the message, checks the message IDM and sends the

response directly to the initiator S.

Although here are some serious disadvantages compared to the next designs, this method has

certain unique properties. Nodes on the path do not know whether the forwarded message was

the request or the response. The only information seen is the node ID and the node public key.

Additionally the friend node changes every time, to gain more anonymity when a particular

friend node may be corrupt.

3.3.2 Single User

• Working further on the improvements of the “Friend in the Middle” design, it turned out that

the onion routing is the most anonymous and secure method to hide the initiator. Since the ini-

tiator itself defines the path it wants to route the message, additionally the initiator encrypts the

21

Chapter 3 Design and Solution

message and creates the whole layer model Figure 3.4. According to this procedure, each node

is only allowed to see the content of the message that the initiator wants this node to see. In

general, eavesdropping of the content and anonymity are two different approaches and must not

coexist or be related to each other. However, in this particular design the anonymity is provided

by encryption of the content.

Figure 3.4: Layer Model

Before initiating a request, the sender defines a path, of how the request and the response will

be routed. The path contains a number of nodes that are chosen randomly and/or by the routing

table. When this is done, the message gets encrypted with the public key of the receiver and

additionally contains another key, for the receiver, to encrypt the response as well. Further,

any nodes on the route, including the receiver, get encrypted information of the next hop on

the path. Figure 3.4 each layer represent the next node and must get the correct information

to achieve the goal i.e. reach the initiator with the response message. Only the node related to

the current public key can find the next node on the defined way. When the receiver encrypts

a layer, it finds a request, a key (a key generated by the initiator) and the ID of the next hop.

The receiver encrypts the response with the given key and forwards the information to the next

node. Decrypting a layer, a node send the content further to the next hop, if any exists. When

the initiator receives the information, it decrypts the response, since it knows the decryption of

the generated key and the algorithm terminates.

Figure 3.5 represent the routing process. The initiator S starts the routing. Therefore, it sends

the whole layer model to the defined node, which is A1. There A1 decrypts a layer to find the

next node where to route. This is An, now An proceeds in a same way and routes the content

to R. R is the responder which has the requested information. When receiving the package, R

22

3.3 Design

Figure 3.5: Single User routing method

decrypts it to find the content. In this example, it contains the following: the message itself, the

key to encrypt the response, next node and the public key of the next node. The only additional

operation, which R does, is to encrypt the response message before routing the content to the

next node. Since the response cannot be “hidden” on the S layer (because the responder must

therefore know the initiator) the response is additionally encrypted with the given key. Although

there may be better solutions for the encryption of the response, this method does not affect the

anonymity aspect that is why it will not be further considered. As well as all nodes on the path,

the responder R sends the response to the next given node B1 from the decrypted content. B1

decrypts his layer to find the next node Bn. Bn decrypts his layer too to send the response to S.

S on his part decrypts his layer and the response message. Here Bn can not distinguish if S is

the initiator or the next node on the path. To provide more guaranty S can create a dummy node

for itself to fake the size of the next layer and so distract the Bn node.

Although this method is extremely flexible for the initiator of the request, this method provides

no anonymity to the responder of the request. In a peer-to-peer overlay each member repre-

sents a node. Other than in “Tor” where the request is sent to the web server, the request and

response of particular information occurs by the nodes inside the overlay, since no web servers

exist. While each node of the certain overlay must remain anonymous, the method must guar-

antee the anonymity of the responder, too. In fact, this method does not provide the necessary

functionality of hiding the responder.

3.3.3 Friends

• To achieve anonymity, the responder must remain unknown to the initiator as well as to the

nodes along the path. In this specific overlay type, the only possible way to hide the responder

is given through indirect communication. The following method represents an approach for

this.

Figure 3.6 represents the basic idea of this design. Each node defines friend nodes whereby

23

Chapter 3 Design and Solution

Figure 3.6: Basic Friends routing method

the routing proceeds, the requested information is routed to the responsible node via its own

friends. When the responsible node is found the response is routed backwards on the same

path is was send. Each node maintains a list of Friends, those are nodes that have access to

all information inside the friend node e.g. Responder. Therefore, each node actually maintains

a DHT list of all “stored” information inside its friend nodes. By this means, a node stores

its own information plus all information of its friend’s storages. The routing begins when the

initiator creates a request. The first sender defines a number of friends, which the request must

pass before it is forwarded to the destination. When the node is permitted to route the request

into the direction of the destination, it takes a lookup on the local DHT. When a node from

the DHT is responsible for the requested information the request is forwarded to it, otherwise

the request is sent to the next closest node. When a node is responsible for the information, it

is unknown whether the node itself contains the information, or it has a friend that holds the

requested information. The responsible node has two assignments. First, to protect the real

holder of the information. Second to improve the routing of the request. When the friend re-

ceives the request, it forwards it to the next friend of whom he “thinks” (according to the DHT)

it might hold the information. When several candidates exist, the node forwards the request to

all candidates. Each friend forwards the request until the responder is found. The routing loop

prevention as well as the routing respond occurs via the request ID. Each request possesses a

unique ID, when a node receives a double request ID, the last request is either ignored or the

node receives a failure message. The response must contain the request ID to route the answer

backwards to the initiator. Further, it must be considered that deadlocks are possible. To avoid

this behavior and reduce unnecessary traffic on the network, friend nodes route the request, if

they are the initiators, directly to the next node, which may have the requested information.

This will not affect the algorithm since it is the usual procedure for any friend. Additionally a

friend is not aware whether his friend is the original responder or not.

24

3.3 Design

Figure 3.7: Advanced Friends routing method

Figure 3.7 shows the routing procedure. In the given example nodes F1 to FN are the friend-

nodes chosen by each next friend-node. FN initiates the search process for the request. There-

fore, it firstly looks into its own storage. If the node itself does not contain requested information

it searches the DHT for the node, which is responsible for the information. Nodes maintained

in the DHT are always friends. In this example, those are N1 and N2. FN sends to both of them

a request. When N2 searches for the ID, it define the next node as N1. N1 has received a request

from FN and then from N2 with the same ID so the second request is returned back as a loop.

Now N1 look for the next node since it is does not contain the requested information. From N1

the request is send to N3, this is the real holder of the information. From there on the response

is routed back via N3−> N1−> FN−> F1−> S. Each member of this chain assumes that the

node before is the responsible node for the requested information.

This method may turn out to be good for the anonymity of each node but the implementation of

this method is not possible without changes of the existing overlay in depth.

3.3.4 AChord [12]

• Because the represented solution did not completing the required purpose or could be not

adapted into the simulator an existing anonymous routing method AChord [12] has been sug-

25

Chapter 3 Design and Solution

gested. This method relates only to the Chord overlay and was not evaluated in the given paper.

The authors writes that the lookup must be related to the hash value of the desired object and

not to the node that is responsible for its key [12]. Further, in the returning of the response

messages, the responsible node should not be mentioned. When a new node joins the network,

it must classify itself between the predecessor and the successor nodes. Therefore, the ID of the

successor and the predecessor are needed. AChord limits the access by allowing a node only to

search for the own predecessor and successor. Because of this, the authors supposes that only

the iterative search process is possible during the joining operation. Only when nodes leave the

overlay, the nodes are allowed to gain a new predecessor or successor. According to this step,

the new predecessor or successor must confirm the requesting node as his predecessor or suc-

cessor. Rather than in Chord, in AChord on a data request, which is recursive, the node always

gets a key instead of an ID back. Additionally, the response is tunneled back to the initiator. A

main part of Chord is the finger table where the IDs of contact nodes are maintained. The Chord

ring contains enumerated amount of all nodes, the finger table tries periodically to update itself

to find the best set of nodes for its own finger table to minimize the routing procedure. The

request for the update occurs recursively and is routed via all possible nodes towards the best

node. This procedure is replaced in the AChord solution with the following. When the node

searches for the i’th position for the own finger table it communicates directly with the node

on this position. Then the requested node N’ ask its own finger table for the node on the i’th

position. While the node N’ knows the ID of i’th position it determinates which node is the

best match for the reuester position. Rather the node itself or the node on i’th position, then the

better node is returned to the requester.

This approach will be considered further in the evaluation chapter.

3.4 Solution

The final solution, called SChord, is based on the AChord approach but is modified by me on some

aspects. SChord as well as AChord solution are both implemented into the simulator to illustrate and

evaluate the differences between them, and to point out the described improvements.

3.4.1 Join procedure

The joining procedure is changed because the iterative AChord search may reveal too much informa-

tion of the ring structure to the joining node, especially when the ring is steady. This may be a thread

of because each node communicates directly with the joining node. As described before each joining

node must know the ID i.e. IP of the successor and the predecessor, so the joining must compare those

26

3.4 Solution

IDs too. On this process, the joining node can record all the nodes it communicates with. The join

process is recursive in SChord, although each node on the routing way is aware of the new joining

node (as well as in the iterative method). The difference is that the newly node will almost not gather

any information about the network on joining. On the other side, the information about the new node

is mostly not useful to other nodes, since it is unknown where the node will be placed in the network

and to whom it is connected. Further, when the successor node is found it communicates directly with

the new node, so no other node knows the exact relation between those nodes (except the predeces-

sor). So nodes on the routing path gain no information about the network since they never receive

any information back. Direct communication is allowed while each node in the overlay knows the ID

of its direct neighbors (predecessor and successor). When a node leaves the network, it must inform

the neighbors so that they can interact with each other to close the gap and reestablish the ring again.

In addition, each node asks periodically its neighbors if they are present. When a neighbor does not

respond, the joining method is called again. The leave process of the nodes is not considered in this

bachelor thesis.

3.4.2 Routing procedure

Chord is based on a ring topology, further it is structured and routes the request only in clockwise

direction. To establish a certain proved degree of anonymity the requester and the responder must

remain unknown to each other. Therefore, AChord tunnels the response back to the initiator. The

tunneling procedure is not clearly described in the paper [12], so it was interpreted as the backward

routing via the same nodes the request was send. For each node, only the direct neighbors and the

nodes from the finger table are known. According to this knowledge, each request reaches the target

in maximal N−1 hops, if routed only per successor. The same statement is valid for the (backwards)

routing of response as well.

3.4.3 Finger Table

The finger table entry contains the perfect ID for each position in the finger table, according to this ID a

responsible node is recoded and returned for this position. It may be possible to exchange the returned

node ID with the requested key ID to hide the responsible node. Alternatively, the finger table may be

completely removed from the Chord routing method, since this would guarantee a certain degree the

anonymity. Of course this would affect the performance but that is a general problem of the trade off

between performance and anonymity. Further, it must be evaluated how much information the nodes

can record from entrys of the finger table in AChord and SChord. That is why the finger table for

now remains implemented. For the updating of the finger table AChord provides a curiously method

27

Chapter 3 Design and Solution

of checking the nodes i’th position. The given method is questionable, since it rarely would give any

other node back than the one which is now in the finger table for this position. This method is slightly

modified in SChord as following. The node which updating the own finger table, request the node that

is already on the i’th position with the perfect key for this position. This i’th node take a look up firstly

to itself if it is responsible for this key. If the node is responsible, it returns itself as the responsible

node. If not, the node searches for the next closes responsible node to the key and return this node’s

ID instead. Each finger table has the size O(logN), where N is the number of nodes on the network

i.e. the network size. Additionally, each node allows to have entries of with the maximal distance

to the node by N/2. By knowing this information, members are able to analyze the node’s range

of responsibility for the key. E.g. when knowing node X’s and nodes Y’s ID or key, it is possible

to determinate whether those nodes are neighbors, according to the key or ID and by knowing the

network size from finger table. And further define by this the responsibility dimension for the keys of

a particular node.

3.4.4 Summary

To sum it up, the danger of detecting the node identity has three potential threads: the join procedure,

the routing procedure and in the updating of the finger table. Those processes has to be modified, the

next chapter describes the implemented adaptions in detail, where chapter 5 evaluate those adaptions

and compare the Chord, AChord and SChord approaches on the anonymization aspects.

28

Chapter 4

Implementation

This chapter described the already implemented Chord [10] design and the changes which have been

made to achieve the required anonymity conditions of AChord [12] and SChord 1. Further, it describes

the spy procedure. To test these anonymous conditions each service is modified by a spy operation.

The spy operation can act passively or/and actively, to differentiate between the types of attack and

to achieve proper evaluation results. Each service Chord, AChord and SChord is tested by active and

passive type of eavesdropper, and the results of the spy process are compared on these three services

in the Evaluation Chapter.

4.1 Chord

When a user defines an operation it is performed from the AnonymityApp class. This class contains

the operations, which a user is allowed to define in the configuration file. Those operations are get,

store, initApp (join) and spy. The flowchart in Figure 4.1 represents the detailed view of the get func-

tion and the overlayNodeLookup procedure. In the given Chord version all four operation get, store,

initApp (join) and spy perform the search via the overlayNodeLookup. This implies that each opera-

tion type is returning a node back to the requester, before the actual condition is performed, Figure

4.2. Further, the UpdateFingerPointOperation uses the overlayNodeLookup for the updates of the

finger table as well. The communication with the other nodes is defined through the send-function,

in fact there are two send functionalities the sendAndWait- and the send-function. Referring to the

name of the function, sendAndWait awaits a response back where send only forwards the message to

the defined node. Additionally sendAndWait has a timer MESSAGE_T IMEOUT , when this expires

before the response arrives, it tries to resend the message again. If a certain number of messages has

been sent without success i.e. no response is received, the operation is aborted and terminates with a

failure condition. To differ between the awaiting messages, a receivingEvent exists. According to this

1The SChord is an abbreviation for the defined solution of the Chord-Overlay represented in Chapter 3

29

Chapter 4 Implementation

Figure 4.1: Flowchart of the get operation in Chord

event, the node that sends a request should get the correct response to its request. Nevertheless, this

functionality does not work properly when many nodes intercommunicate at the same time, because

the response does arrive at the wrong requested node. The second functionality is the send function,

which forwards the message only once to the destination, without cornering about package loss. To

distinguish between different operation types, each message must be defined into a type. The sent

messages arrives usually on the ChordMessageHandler class, if the message is a reply message other

classes can fetch it, referring to the receivingEvent, see Figure 4.1 when the node is found. So when

the message arrives at the ChordMessageHandler, the type of the message is first checked. Then the

ChordMessageHandler executes the defined properties for this specific message type, e.g. the search.

The search i.e. loop occurs when the ChordMessageHandler is not responsible for the key, see Figure

4.1 down right ChordMessageHandler, the request is then send to another node’s ChordMessageHan-

dler, this process repeats until the responsible node is found. In general, the ChordMessageHandler

has the task to search for the responsible node of the request. When found the responsible node a

30

4.2 AChord & SChord

response is sent back to the requester. There the defined operation is finally executed. The requester

receives firstly the ID of the responsible node, then the requester send again the key to the responsible

node to get the information from it, as can be seen in Figure 4.2.

Figure 4.2: Chord request routing Figure 4.3: AChord and SChord re-
quest routing

4.2 AChord & SChord

4.2.1 Routing procedure

This routing behavior of Chord, see Figure 4.2, has to be changed in AChord [12] and SChord, my

adapted design, to achieve the anonymous routing. Therefore, the ValueLookupOperation (get) and

the StoreOperation (store) do not receive nodes back but only the needed information. Still to route

the request and response, the node must know the ID of nodes it communicates with. According to

the AChord paper the response has to be tunneled back. The tunneling procedure is unfortunately

not exactly described in this paper. The implementation was supposed to route the request via the

information from the finger table and the response backwards via the same nodes. Because of to

much awaiting responses, (while each node on the way pretends to be the initiator of the request) the

response by the receivingEvent hit the wrong nodes. The anonymous routing procedure was imple-

mented with the following changes. The request is still sent towards the information form the finger

table, but the response routing occurred only by the predecessor, Figure 4.3. So each predecessor

pretends to be the responsible node for the given operation.

31

Chapter 4 Implementation

4.2.2 Join procedure

The join-operation of Chord is implemented recursively, although the SChord join-operation behaves

similar to the one of Chord it was re-implemented. The routing of the join-operation of SChord and

Chord is represented in Figure 4.2. The only necessary change was in the AChord version, since it has

to be iterative. When the JoinOperation is called, the node defines firstly a random next hop to begin

the routing. Then the join-message is sent to this next hop. The next hop receives the join-message

by the ChordMessageHandler and directly returns the new next hop to the requester. This process is

executed as long as the successor is not found. Afterwards, the successor, the predecessor, and the

joining node exchange information.

4.2.3 Finger Table

The finger table must be limited to decrease the knowledge of the network and provide more anonymity.

When the UpdateFingerPointOperation is executed, the ChordMessageHandler of the next node (the

node that is requested by the initiator) looks at the i’th position of its own finger table entry. It com-

pares then which node is closer, the node itself (next node) or the node in i’th position, to the requested

key of the initiator and returns then the closer node. SChord’s design limits the finger table as well but

is different to AChord’s approach. It allows the next node (the node that is requested by the initiator)

to check the whole finger table for a node which has the responsibility for the given key, if this node

(next node) is not responsible for the given key. AChord’s and SChord’s UpdateFingerPointOperation

is iterative since it communicates with one node only.

4.3 Spy procedure

The spy procedure has the task to collect the ID of nodes and if possible to define the responsibility

range of the known nodes. The spy procedure is devided in the passive and active process. The passive

process saves all nodes which route or request the spy-node, while active process starts a request and

tries to determenate the responsible node for the requested key, and by this the responsibility range of

the node.

The spy-operation can be called passively and actively, and is new to all three Chord designs. The

passive spy is executed on the JoinOperation via initApp(true) function, which define the node as a

spy-node. A spy-node records any nodes that route information through. This passive operation affects

the ChordMessageHandler since this class represent the searching process. The passive spy, eaves-

dropping on the join-, store-, get- and update-messages. The active spy process is called by the spy

32

4.3 Spy procedure

function and is executed firstly in the AbstractChordNode class, then periodically in the ValueLookup-

Operation and the StoreOperation. The requested key changes every time the spy is executed on

ValueLookupOperation and StoreOperation. This is a necessary condition to reach new nodes. The

defined next hop in AChord and SChord is considered as the responsible node, because the received

response is always from the own successor, as can be seen in Figure 4.3. In the Chord design the active

spy collects the information from the receiving response, when the object or null (on store) or when

an acknowledgment (on get) is returned. The new nodes from active and passive spy observation of

the process are collected in a list. Additionally, each four minutes the Information function is called,

there the list gets sorted. Then by SafeToFile function a file with the collected information is created

in the folder of the spy-node. This file contains the known nodes e.g. the network structure and other

useful spy information.

33

Chapter 5

Evaluation

The overlay design has three weak point where the anonymity is threatened. Those are the joining

process, the finger table [10] update and the routing process. The joining process and the finger

table are specified by the overlay, while the routing process may be adapted in some ways. The

routing itself contains further three anonymity aspects, sender anonymity, responder anonymity and

the intercommunication anonymity between the sender and responder. The implemented spy opeartion

considers those anonymity aspects by collecting specific information of the network. This information

is represented in the tables of each example and show different aspects of the spy procedure and

techniques, example deals with. Those examples aims to point out the different elements of the

Chord overlay and to evaluate the implemented suggestions designed in this thesis and the following

paper [12].

The setup for each Chord variant contains for each one example the same properties. The first example

has the focus on the anonymous routing procedure (anonymous intercommunication) of AChord and

SChord 1 and represent the differences to the origin Chord routing trough the active spying process.

While the second example reviewing the finger table impact(sender anonymity, receiver anonymit)

and the anonymity affect by joining procedure based on the structure changes. The last example

shows the global impact on the anonymity when multiple nodes spying together.

The following operation are used during the evaluation.

• initApp: This operation represents the join process of a node. The values true and false are

interpreted as the permission for the spying. False if the node is not allowed to spy. True if

the node is allowed to spy. This spy is a passive spy-operation, which only eavesdrop when

something was routed by.

• get: The get-operation take a request via an given key and receives an response i.e. object back

if such exist.
1The SChord is an abbreviation for the defined solution of the Chord-Overlay represented in Chapter 3 and 4.

35

Chapter 5 Evaluation

• store: The store-operation stores an object on the responsible node which is defined by the key.

• spy: The spy-operation is the active spy procedure, which contains the get- and store-operations

and invokes them periodically.

5.1 First example: Active spy process

For the first example, the properties are set as following:

The simulation time is set to 60 minutes.

This simulation contains 514 nodes, where two of them are spy-nodes.

LatinAmerica contains one spy-node, Europe contains 512 nodes and NorthAmerica one spy-node.

Executed operations:

Group name Time Operation
Europe 1m-20m initApp false
LatinAmerica 25m initApp true
LatinAmerica 30m spy
NorthAmerica 32m initApp true
NorthAmerica 35m spy

Table 5.1: Example 1: Setup for the active spy procedure.

The first column of Table 5.1 represents the geographical position of a certain group of nodes i.e.

members. The second column shows the time when the operation begins, if an interval is given it

meant the node can decide when it executes the operation. The third and last column is the operation

column, it represents the operation provided via the whole group.

Spy Time 0:27:0 0:31:0 0:35:0 0:39:0 0:43:0 0:47:0 0:51:0 0:55:0 0:59:0
Chord 17/513 34/513 37/514 39/514 41/514 43/514 45/514 47/514 49/514
AChord 37/513 37/513 38/514 38/514 38/514 38/514 38/514 38/514 38/514
SChord 6/513 7/513 7/514 7/514 7/514 7/514 7/514 7/514 7/514

Table 5.2: Example 1: Node 192.76.21.1 from Latin America joined on 25m

Spy Time 0:34:0 0:38:0 0:42:0 0:46:0 0:50:0 0:54:0 0:58:0
Chord 23/514 53/514 58/514 60/514 62/514 64/514 66/514
AChord 297/514 297/514 297/514 297/514 297/514 297/514 297/514
SChord 8/514 8/514 8/514 8/514 8/514 8/514 8/514

Table 5.3: Example 1: Node 64.167.127.97 from North America joined on 32m

36

5.1 First example: Active spy process

When a node joins as the spy, it automatically begins the passive spying i.e. eavesdrop. To show the

active spying event in the first example, the spy-nodes are acting actively. They store and request

information on the network, while the other nodes do not do anything. In each time interval between

the spy outputs, represented in Table 5.2 and Table 5.3 as Spy Time, each spy-node performs one store

and one get operation. The keys for those operations are set to reach respectively another node. The

results from the Tables shows the joining procedure, the update of the finger table and the active spy

procedure. The two first properties are related to Chord’s structure and will be described in the next

examples. So let us consider the active spy process, which occurs after the join and updating part. The

node 192.76.21.1 Table 5.2 and the node 64.167.127.97 Table 5.3 represents those. The active Chord

spy learns about other nodes on each request if it communicates with unknown nodes. Following the

time line from Tables 5.2 and 5.3 a Chord node learns in each time interval two new nodes, since it

performs two operation. It may appear small sized but it is only a demonstration of the anonymity

issue. If this node performs N operation with N different keys, where N is the number of all keys

contained in the network, it will know the whole network size and each responsibility range of each

node. The active AChord and SChord spy-node does not learn about any new node on the store and

the get operation even if the responsible node is unknown to it. This happens because the response is

tunneled back to the requester by the nodes it already knows. The time line in the Tables 5.2 and 5.3

shows that AChord as well as SChord do not learn any nodes from active spy process. The next table

reveals the detailed view to the given statement.

Spy Time 0:27:0 0:31:0 0:35:0 0:39:0 0:43:0 0:47:0 0:51:0 0:55:0 0:59:0
Chord known nodes 17 34 37 39 41 43 45 47 49
Chord nodes by join 4 4 4 4 4 4 4 4 4
Chord nodes by FT 5 5 5 5 5 5 5 5 5
Chord nodes by spy 8 25 28 30 32 34 36 38 40
AChord known nodes 37 37 38 38 38 38 38 38 38
AChord nodes by join 36 36 36 36 36 36 36 36 36
AChord nodes by FT 1 1 1 1 1 1 1 1 1
AChord nodes by spy 0 0 1 1 1 1 1 1 1
SChord known nodes 6 7 7 7 7 7 7 7 7
SChord nodes by join 4 4 4 4 4 4 4 4 4
SChord nodes by FT 2 3 3 3 3 3 3 3 3
SChord nodes by spy 0 0 0 0 0 0 0 0 0

Table 5.4: Example 1: Detailed view of the known nodes from Node 64.167.127.97

Each result (number of known nodes) is subdivided in the three categories see Table 5.4, join proce-

dure, finger table, spy procedure. This subdivision allows a detailed evaluation for the above existing

results. Although the given result do not differentiate between active and passive spy process the setup

of the simulation allow to point out the exact process this example concentrates on. When a node joins

37

Chapter 5 Evaluation

the network, it needs some time to update the finger table properly that is why in the first two results,

according to time line, stabs out. Table 5.4 shows that the active Chord spy-node continuously gain

new infoarmtion about the network while acting actively, since no other procedures are executed.

While the AChord and SChord spy-node does not get any new inforamtions after the updating/joining

process. According to this AChord and SChord know 0% of the requested-responsible nodes,while

the Chord knows 100% of the requested-responsible nodes. Again, in the given example represents

that no new node can be learn from active spy process in the AChord and SChord. To improve the

performance of routing, the finger table define the next hop for a given request, actually the finger

table determinate the routing process. The next example describes the differences on the finger table

as well as on join process of the three Chord versions.

5.2 Second example: Join process and finger table impact

For the second example, the properties are set as following:

The simulations time is set to 120 minutes.

This simulation contains 1015 nodes, where three of them are spy-nodes.

NorthAmerica contains 712 nodes, LatinAmerica and France has each 150 nodes, Australia, Germany

and Italy represent each, one spy-node.

Executed operations:

Group name Time Operation
NorthAmerica 1m-30m initApp false
Australia 15m initApp true
LatinAmerica 32m-45m initApp false
Germany 50m initApp true
LatinAmerica 55m-70m store
France 75m-85m initApp false
France 90m-100m get
Italy 101m initApp true
France 105m-114m get
Australia 115m spy
Germany 115m spy

Table 5.5: Example 2: Setup for the passive spy / finger table and joining procedure.

The given results2 show that the join operation of the AChord allow gaining more information, ac-

2Keep in mind that the network may need time to take effects and reestablish the ring structure.

38

5.2 Second example: Join process and finger table impact

Event 1-50m join 55-70m store 75-85m join 90-114m get x2 by
of 864 nodes by 150 nodes of 150 nodes 150 & one join

Spy Time 0:17:0 0:57:0 1:1:0 1:5:0 1:17:0 1:29:0 1:33:0 1:45:0 1:57:0
Chord 16/393 61/864 62/864 65/864 65/894 79/1014 79/1014 79/1015 79/1015
AChord 22/391 27/864 27/864 27/864 27/872 41/1014 41/1014 41/1015 41/1015
SChord 19/392 33/864 33/864 33/864 33/887 47/1014 47/1014 47/1015 47/1015

Table 5.6: Example 2: Node 61.8.4.98 from Australia joined on 15m

Event 1-50m join 55-70m store 75-85m join 90-114m get x2 by
of 864 nodes by 150 nodes of 150 nodes 150 & one join

Spy Time 0:52:0 0:56:0 1:0:0 1:4:0 1:16:0 1:28:0 1:32:0 1:44:0 1:56:0
Chord 17/864 37/864 41/864 41/864 41/879 50/1014 50/1014 50/1015 50/1015
AChord 15/864 15/864 15/864 15/864 15/868 15/1014 15/1014 15/1015 15/1015
SChord 7/864 8/864 8/864 8/864 8/870 8/1014 8/1014 8/1015 8/1015

Table 5.7: Example 2: Node 205.153.101.1 from Germany joined on 50m

Event 1-50m join 55-70m store 75-85m join 90-114m get x2 by
of 864 nodes by 150 nodes of 150 nodes 150 & one join

Spy Time - - - - - - 1:43:0 1:47:0 1:59:0
Chord - - - - - - 21/1015 34/1015 34/1015
AChord - - - - - - 178/1015 178/1015 178/1015
SChord - - - - - - 6/1015 6/1015 6/1015

Table 5.8: Example 2: Node 210.185.12.33 from Italy joined on 101m

cording to network size, than the Chord and SChord on join operation. Therefore, look at Table 5.8

and Table 5.3 from first example, at the first existing entry. This is where the AChord node knows

from begin on a relatively huge amount of nodes. There may be exceptions of course, since join pro-

cess is executed onto a randomly node, so if the random node is placed closely to the successor the

joining node will not know much about the network, Table 5.7 shows this. Still the most affect from

the join has the AChord version, since the process occurs iteratively, what means that the new node

communicates directly with each node on the way toward to successor. Because of this direct type

of communication, the new node is allowed to record all necessary information about the (next) node

it communicates with. Additionally the imprecise finger table information boost this impact. Since

the nodes do not have enough information about the nodes of the overlay, see the finger table lines of

Table 5.4 and 5.9, the new node must route through far more unknown nodes to reach the destination

i.e. successor in AChord than in Chord or SChord.

Because the finger table influenced the routing, no additional information can be collected through the

passive spy procedure, when the structure is once updated. This is a fact, since the routing refer the

information from the finger table. See the last event column (in time from 1:45 to 2:00) on Table 5.6

39

Chapter 5 Evaluation

Spy Time 1:43:0 1:47:0 1:51:0 1:55:0 1:59:0
Chord known nodes 21 34 34 34 34
Chord join 4 4 4 4 4
Chord FT 5 5 5 5 5
Chord spy 12 25 25 25 25
AChord known nodes 178 178 178 178 178
AChord join 177 177 177 177 177
AChord FT 1 1 1 1 1
AChord spy 0 0 0 0 0
SChord known nodes 6 6 6 6 6
SChord join 4 4 4 4 4
SChord FT 2 2 2 2 2
SChord spy 0 0 0 0 0

Table 5.9: Example 2: Detailed view of the known nodes from Node 210.185.12.33

and 5.7 the number of known nodes does not change although the nodes communicate. In the Table

5.8 on the same time from 1:43 to 1:47 a peak occur because this node joins there. The peak has the

most effect to the origin Chord because of the finger table properties. This peak shows the reestablish-

ing process of the Chord ring by other nodes via this node. In other words, when the node has joined

the network other nodes may add this newly node to their routing table. This is why there is always

a peak in the beginning(when the node join). For a closer look, let us consider the detailed view of

the known nodes by the node 210.185.12.33 Table 5.9. As said before the nodes do not learn new

nodes by passive spy of the routing procedure. This can be clearly seen by the AChord and SChord

the node. When join on a steady structure, node can not collect much information from the existing

network not by finger table or by spying process Table 5.9 (Spy- & FT-lines). The disadvantage of the

AChord join process was mentioned before. The reason why the Chord node gain more information

lies in the structure of updating of the finger table. The Chord nodes can access any node of the length

N/2 from its own position, in one-step, because each node route the request to the responsible node

for the given key. The SChord limits this condition, by allowing each node only to ask the given node

if this one has a better match for the key. Consequently, some sectors, which can be seen by nodes in

Chord, remains for the same nodes in SChord unknown. The AChord finger table is very imprecise

because of the given condition it and does rarely know any new node from the finger table. Again,

this passive spy result, since no active operation are performed, is the result of the reestablishing the

ring structure and redefining of the finger table. Such peak can be seen on each joining node, and is

represented in the each table in the first two intervals according to the joining time. Look at any node

Table if you want to.

So only three spots can give away new information about the node. Those are the finger table, the

active process executed by the node and the join procedure, which additionally affect the finger table.

In Chord all three possibilities reveal new information about the network i.e. ring structure. AChord

disable the gathering of the information on the active processes, further it limit the finger table in-

40

5.3 Third example: Multiple Spies

formation to minimum. As one can see in the Tables 5.4 and 5.9, the AChord finger table maintains

the minimal number of node in comparison to the other two Chord variants. This limitation implies a

potential threat. Because the finger table rarely get a new node, it remains imprecise. As a result, the

routing process may not work properly. In the best case, it decreases the performance speed, since the

node do not exactly know where to route the request to. The performance loss can be seen on Table

5.6 at 1:17 and at Table 5.7 at 1:16. In the worst case, the routing process initiates a loop where the

request never reaches the responsible node. Another aspect is that the nodes, which are maintained in

the finger table, have access to more nodes. This happens because nodes receive the finger table of the

successor, so nodes from finger table are routed more often than the nodes that are not in the finger

table. The joining procedure of AChord do a negative effect towards the anonymization, since it allow

recording each node on the way to the successor. The SChord disable the gathering of information by

active processes as well as AChord, Table 5.2 and 5.3. The limitation of the finger table exist too but

is still more precise than those of the AChord version, Table 5.4 and 5.9. The join process in SChord

remains recursive as in the origin Chord. To sum up the given evaluation results, the third example

represents the global sight of the network via multiple spy-nodes.

5.3 Third example: Multiple Spies

For the third example, the properties are set as following: The simulation time is set to 180 minutes.

The number of nodes increases each time beginning with 1015 nodes on first try and ending with 1111

nodes on the last. As the number increases the percentage amount for spy nodes increases too. The

spy-nodes are represented by Australia, Germany and Italy.

Executed operations:

To accomplish a total overview, the whole functionality of all characteristics must be released on

the simulation. Therefore, the node interact with each other, the none spying nodes as well as the

spying nodes. The Latin American and the France groups execute some action like store and get.

The Australian, German and Italian group perform the passive spy operation continuously after they

join and the active spy periodically from the given point of time. The North American group do not

act actively. This is the largest group of nodes in the given example, which have one simple purpose

to remain undetected. The result of this simulation will show if it is possible, for the spy-nodes, to

reconstruct the whole network with different types of members. The spy-nodes change the requested

key each time they begin an active spy process. The change of the key for the active spy process

aims to gather as much information as possible. The none spy-nodes request each times the same

key. Because of the structure changes, when new group joins, the requests for the same keys will be

routed via other nodes. The first group of spies join in the beginning of the simulation, the second in

on the half period and the third near the end. The joining time has different effects to the behavior

41

Chapter 5 Evaluation

Group name Time Operation
NorthAmerica 1m-30m initApp false
Australia 15m-25m initApp true
Australia 30m-45m Spy
LatinAmerica 45m-55m initApp false
Germany 60m-70m initApp true
Germany 75m-80m Spy
LatinAmerica 80m-90m Store
France 100m-115m initApp false
France 120m-130m Get
Italy 135m-145m initApp true
Italy 150m-160m Spy
France 160m-170m Get

Table 5.10: Example 3: Setup for the multple spy procedure.

to the results. When the first group join in, it maintains much more information from the passive spy

process, because the Chord ring is reestablished during the simulation while new nodes are joining.

The second group represent the average case, where the spies can see little changes reestablishing

process. The last spy group join on the completed network, so only communication between the

nodes are seen on the passive spy process.

Total num-
ber of nodes

1015 1024 1060 1111

Spy % of
total number
of nodes

0.29% 1% 4.5% 9%

Number of
spy nodes

3 12 48 99

Chord
known
nodes

252/1015 (24.83%) 694/1024 (67.77%) 1024/1060 (96.6%) 1111/1111 (100.0%)

AChord
known
nodes

451/1015 (44.43%) 551/869 (63.41%) 710/880 (80.68%) 842/902 (93.35%)

SChord
known
nodes

56/1015 (5.52%) 349/1024 (34.08%) 690/1060 (65.09%) 942/1111 (84.79%)

Table 5.11: Example 3: Results of the multple spy procedure.

The results from Table 5.11, give a summary to the previously approached functionalities given in

example one and two. The set-up of action on each try remains the identical, while the number of spy-

nodes grows. According to this result, the AChord is the most vulnerable design for the anonymity

manner. Foremost it is related to the iterative joining procedure described in the second example,

42

5.3 Third example: Multiple Spies

Table 5.8 and 5.9. Already at 0,29%, where only 3 nodes spies together, the known network size by

those nodes is disastrous, because 3/1012 nodes knows almost 45% of the whole network. Table 5.11

the AChord’s first column. Unfortunately, the tests with further spy nodes did not worked properly.

This happened because some of spy nodes could not join the Chord ring in the given time. (This

performance issue was mentioned in the last passage of the second example.) Still it is possible to

glance at the not completed results. The origin Chord results are better, seems to be more anonymous,

since they number of known nodes is lesser than in AChord. This is provided by the Table 5.11,

note that on more simulation with other functionalities the result may appear different. Although the

result of the Chord are better than those of AChord, it does not mean that the Chord version provide

more anonymity, because the Chord spy can learn the network over time by executing the active spy

operations, see therefore Table 5.2 and 5.3. Still with only 3 Chord nodes it is possible to reconstruct

24,8% nodes of the network and with 4,5% of spy-nodes, according to the network size, the Chord

variant is able to cap almost the whole network 96,6%. The SChord is an improved version of the

AChord design and is the best anonymous Chord variant evaluated in this paper, since it maintains the

lowest amount of known nodes. Nevertheless, even here the impact of the multiple spy-nodes is huge,

because only 1% of the network nodes are able to gain approximately 35% of information from the

network scale.

Those examples represent only snap-shots for the existing solutions, with other set-up properties the

evaluations results may be different. Further, the AChord solution is more anonymous than the origin

Chord when the time and key for active spy process are set specific.

43

Chapter 6

Conclusion

This Chapter sums up the results of this bachelor thesis and gives a lead to the future work.

This bachelor thesis considers the anonymization of Chord [10] overlay. Therefore, an anonymity

service SChord is designed on the existing AChord [12] solution. The two services SChord and

AChord are implemented on the Chord overlay. Then AChord, SChord and Chord are evaluated and

compared by different anonymity aspects via spy-nodes. Spy-nodes can act passively and actively.

Thereby, the anonymous intercommunication between initiator and responder is tested through the

active processes. The passive processes represent an eavesdropper who tries to find the initiator of

the request (sender anonymity) and/or the responsible for the content (receiver anonymity). On the

two implemented anonymity services AChord and SChord, the sender anonymity and the anonymous

intercommunication are clearly tested and evaluated. Nevertheless, the receiver anonymity aspect can

not be guaranteed completely, because of the structure of the Chord ring i.e. finger table.

Although Chord does not concern about any anonymity aspects, in some of the evaluated examples,

the Chord node knows less information about the network than the AChord node. This is related to

the design of the join process, while Chord has the recursive join the AChord does it iteratively. This

means each node communicate directly with the joining node, this is where the new node collects a

lot of information about the network. Additionally, the imprecise finger table increases the amount

of next hop nodes on the routing path. Basically, the “later” (on greater the network size) an AChord

node joins the network, the more information it collect form the network. This is the point where

Chord may appear to be more anonymous, but the fact is that Chord is not anonymous at all. While

an AChord node can only collect information about the network i.e. nodes on join and eavesdropping,

Chord node can additionally record the responsible nodes form the active processes. So Chord does

not provide anonymous intercommunication between the initiator and the responder. This anonymity

condition on active process is possible for the AChord node, since the response is always returned

by the own successor. With this main difference, the AChord node must be routed by each node of

the network to record all network nodes. This is almost impossible because of the extremely limited

finger table of AChord. While a Chord node, can learn a node by the key it requests. So even one

45

Chapter 6 Conclusion

single Chord node is able to record i.e. reconstruct the whole network with enough keys and time.

SChord is an improved version of the AChord design. The join process in SChord remains recursive

as in the origin Chord to limit the knowledge of the network nodes for the joining node. Where the

active routing process in SChord is exact the same as in AChord. The limiting conditions of finger

table has been changed, so the finger table is more precise i.e. contains more different nodes that in

the AChord design.

According to the given results, SChord is the best anonymous solution while it knows the minimal

number of participants in the overlay, in comparison to the AChord and Chord solutions. The AChord

solution provide more anonymity on the routing process than Chord but because of the disadvantages

in the design of the join process it may collect, under certain circumstances, more information of the

network than Chord. Still AChord provide anonymity services while Chord does not concern about

the anonymity at all.

6.1 Future Work

Still the finger table impact for the anonymity must be considered further on greater number of nodes.

This is necessary because the given examples were too small to evaluate the finger table properly.

Further, the now designed and implemented model does not consider the leave procedure, the structure

changes were simulated only via the joining of nodes, but the nodes did never leave the network.

46

Bibliography

[1] Michael K. Reiter, Aviel D. Rubin

Crowds: Anonymity for Web Transactions.

ACM Transactions on Information and System Security (TISSEC) 1.1 (1998): 66-92.

[2] Mesut Günes, Udo Sorges, Imed Bouazizi

ARA – The Ant –Colony Based Routing Algorithm for MANTEs.

Parallel Processing Workshops, 2002. Proceedings. International Conference on. IEEE, 2002.

[3] David Chaum

Untraceable Electronic Mail, Return Address, and Digital Pseudonyms.

Volume 24, Communications of the AMC, February 1981.

[4] htt p : //research.microso f t.com/enus/um/people/antr/Pastry/

[5] Michael G. Reed, Paul F. Syverson, David M. Goldschlag

Anonymous Connections and Onion Routing.

Selected Areas in Communications, IEEE Journal on 16.4 (1998): 482-494.

[6] Aameek Singh, Bugra Gedik, Ling Liu

Agyaat: mutual anonymity over structured P2P networks.

Internet Research 16.2 (2006): 189-212.

[7] Ian Clarke, Oskar Sandberg, Brandon Wiley, Theodore W. Hong

Freenet: A Distributed Anonymous Information Storage and Retrieval System.

Springer Berlin Heidelberg, 2001.

[8] htt ps : //sites.google.com/site/peer f actsimkom/

[9] Charles W. O’Donnell, Vinod Vaikuntanathan

Information Leak in the Chord Lookup Protocol.

Fourth International Conference on. IEEE, 2004.

47

Bibliography

[10] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, Hari Balakrishnan

Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications.

ACM SIGCOMM Computer Communication Review, 31(4), 149-160.

[11] Antony Rowstron, Peter Druschel

Pastry: Scalable, decentralized object location and routing for large-scale peer-to-peer sys-

tems.

Microsoft Research Ltd and Rice University.

IFIP/ACM Middleware. 2001.

[12] Steven Hayel, Brandon Wiley

Achord: A Variant of the Chord Lookup Service for Use in Censorship Resistant Peer-to-Peer

Publishing Systems.

Peer Publishing Systems, Proc. Second Int’l Conf. on Peer to Peer Computing, 2002.

[13] Giuseppe Ciaccio

Recipient Anonymity in a Structured Overlay.

Telecommunications, 2006. AICT-ICIW’06. International Conference on Internet and Web

Applications and Services/Advanced International Conference on. IEEE, 2006.

[14] Giuseppe Ciaccio

Evaluating Sander and Recipient Anonymity in a Structured Overlay .

Privacy Enhancing Technologies. Springer Berlin Heidelberg, 2006.

[15] Leucio A. Cutillo, Refik Molva, Thorsten Strufe

Safebook: A Privacy-Preserving Online Social Network Leveraging on Real-Life Trust.

Communications Magazine, IEEE 47.12 (2009): 94-101.

[16] Andreas Binzenhöfer, Dirk Staehle, Robert Henjes

Estimating the size of a Chord ring.

University of Würzburg, Tech. Rep. 2004

[17] htt p : //www.graphviz.org/

[18] htt p : //www.lix.polytechnique. f r/ tomc/P2P/

[19] htt p : //www.anonymousp2p.org/programs.html

[20] Marco Dorigo, Vittorio Maniezzo, Alberto Colorni

Ant System: Optimization by a Colony of Cooperating Agents.

48

Bibliography

IEEE Transactions on Systems, MAN and Cybernetics-Part B: Cybernetics, Vol. 26 No.1,

February 1996

49

Ehrenwörtliche Erklärung

Hiermit versichere ich, die vorliegende Bachelorarbeit selbstständig verfasst und keine anderen als die

angegebenen Quellen und Hilfsmittel benutzt zu haben. Alle Stellen, die aus den Quellen entnommen

wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in gleicher oder ähnlicher Form

noch keiner Prüfungsbehörde vorgelegen.

Düsseldorf, 17.Oktober 2014 Andrej Morlang

51

Please add here

the DVD holding sheet

This DVD contains:

• A pdf Version of this bachelor thesis

• All LATEXand grafic files that have been used, as well as the corresponding scripts

• [adapt] The source code of the software that was created during the bachelor thesis

• [adapt] The measurment data that was created during the evaluation

• The referenced websites and papers

	Title Page
	Abstract
	Danksagung
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Related Work
	2.1 Crowds
	2.1.1 Working principle
	2.1.2 Anonymous-Routing principle
	2.1.3 Anonymity degree
	2.1.4 Anonymous-Routing example

	2.2 Ants
	2.2.1 Working principle
	2.2.2 Anonymous-Routing principle
	2.2.3 Anonymous-Routing example

	2.3 MIXes
	2.3.1 Working principle
	2.3.2 Anonymous-Routing principle
	2.3.3 Anonymous-Routing example

	2.4 Onion Routing
	2.4.1 Working principle
	2.4.2 Anonymous-Routing principle
	2.4.3 Anonymous-Routing example

	2.5 Freenet
	2.5.1 Working principle
	2.5.2 Anonymous-Routing principle
	2.5.3 Anonymous-Routing example

	3 Design and Solution
	3.1 Simulator
	3.2 Chord and Pastry
	3.2.1 Finger Table in Chord
	3.2.2 Routing in Chord
	3.2.3 Routing Table in Pastry
	3.2.4 Routing in Pastry

	3.3 Design
	3.3.1 Friend in the Middle
	3.3.2 Single User
	3.3.3 Friends
	3.3.4 AChord 12

	3.4 Solution
	3.4.1 Join procedure
	3.4.2 Routing procedure
	3.4.3 Finger Table
	3.4.4 Summary

	4 Implementation
	4.1 Chord
	4.2 AChord & SChord
	4.2.1 Routing procedure
	4.2.2 Join procedure
	4.2.3 Finger Table

	4.3 Spy procedure

	5 Evaluation
	5.1 First example: Active spy process
	5.2 Second example: Join process and finger table impact
	5.3 Third example: Multiple Spies

	6 Conclusion
	6.1 Future Work

	Bibliography

