Local-lag and Timewarp: Providing Consistency for
Replicated Continuous Applications

Martin Mauve!, Jiirgen Vogel', Volker Hilt?> and Wolfgang Effelsberg’

IPraktische Informatik IV

University of Mannheim
L15, 16

68161 Mannheim

Germany

Phone: +49 621 181 2616

Fax: +49 621 181 2601

e-mail: {mauve vogel effelsberg}@informatik.uni-mannheim.de

2Bell Laboratories

101 Crawfords Corner Rd
Holmdel, NJ 07733

USA
Phone: +1 732 332 6432
e-mail: volkerh@dnrc.bell-labs.com
The work described in this paper was conducted while Volker Hilt was with the Universitat
Mannheim.

Abstract— In this paper we investigate how consistency
can be established for replicated applications changing their
state in reaction to user-initiated operations as well as the
passing of time. Typical examples of these applications are
networked computer games and distributed virtual environ-
ments. We give a formal definition of the terms consistency
and correctness for this application class. Based on these def-
initions, it is shown that an important tradeoff relationship
exists between the responsiveness of the application and the
appearance of short-term inconsistencies. We propose to ex-
ploit the knowledge of this tradeoff by voluntarily decreasing
the responsiveness of the application in order to eliminate
short-term inconsistencies. This concept is called local-lag.
Furthermore, a timewarp scheme is presented that comple-
ments local-lag by guaranteeing consistency and correctness
for replicated continuous applications. The computational
complexity of the timewarp algorithm is determined in the-
ory and practice by examining a simple networked computer
game. The timewarp scheme is then compared to the well-
known dead-reckoning approach. It is shown that the choice
between both schemes is application-dependent.

Index Terms— EDICS: 8-VRAR, 6-MMMR, 7-CONF, ad-

ditional keywords: Networked Games, Consistency, Repli-
cated Continuous Applications, Timewarp, Local-Lag

I. INTRODUCTION

ONSISTENCY in replicated applications and in dis-

tributed systems has received extensive attention in
theory and practice. The vast majority of work in this area
has been carried out with the assumption that the applica-
tions are discrete and change their state only in response
to (user initiated) operations. Examples for this class of
applications are networked text editors [1], [2] and shared
drawing tools [3]. We refer to this class as the discrete
domain.

However, currently a large number of replicated applica-
tions evolve that change their state not only in response to
operations, but also because of the passing of time. Very
prominent examples for these applications are networked
computer games [4]. Other examples are shared virtual re-
ality systems [5], as well as CSCW applications for joint
work with dynamic objects [6]. We call these applications
the continuous domain. For this class of applications the
issue of consistency is still largely unexplored. As we shall
show, the approaches for replicated discrete applications
are not usable in the continuous domain since they ignore
state changes caused by the passage of time.

In the area of distributed virtual environments (DVEs)
[5], [7], [8] a mechanism called dead-reckoning has been
specifically developed to tackle the problem of consistency
in the continuous domain. While dead-reckoning can pro-

vide consistency in the continuous domain, we will demon-
strate that it does not prevent a consistent but incorrect
state. While this might be reasonable for battlefield simu-
lations for which dead-reckoning was originally designed, it
is not suitable for other replicated continuous applications.
To address this problem, it is necessary to investigate the
issue of consistency and correctness in the continuous do-
main in a more general way than this has been done before.

An essential part of this work is therefore dedicated to
the formal specification of a consistency and a correctness
criterion for the continuous domain. These definitions al-
low the identification and evaluation of an important trade-
off between responsiveness and the appearance of brief
periods of inconsistency, called short-term inconsistencies.
This leads to the introduction of the concept of local-lag:
deliberately decrease responsiveness to lower the number
and to reduce the duration of short-term inconsistencies.

While local-lag makes the appearance of short-term in-
consistencies less likely, it cannot completely prevent them.
We therefore propose to use a timewarp algorithm to repair
short-term inconsistencies when they occur. The timewarp
algorithm provides consistency and correctness.

As a proof that local-lag and timewarp are viable con-
cepts, we have developed a simple networked computer
game. The game is used to verify the theoretical obser-
vations of the algorithms for local-lag and timewarp.

The remainder of this paper is structured as follows: Sec-
tion Two introduces the basic terminology that we use to
discuss consistency in the continuous domain. It is shown
in Section Three that mechanisms to ensure consistency
in the discrete domain cannot be used for the continuous
domain. In Section Four, the terms consistency and cor-
rectness in the continuous domain are formally defined, and
the tradeoff between responsiveness and short-term incon-
sistencies is identified. The concepts of local-lag and time-
warp are presented in Sections Five and Six, respectively.
Section Seven contains the discussion of a simple networked
computer game, verifying the theoretical results from the
previous sections. Dead-reckoning and timewarp are com-
pared in Section Eight. Section Nine concludes the paper.

II. TERMINOLOGY

The key characteristic of a replicated application is that a
local copy of the application’s state is maintained simulta-
neously by multiple application instances. These applica-
tion instances may reside on different computers that are
connected by a computer network, they are also termed
sites.

The state of a replicated application may change because
of (user-initiated) operations. An operation may be issued
at an arbitrary site. The operation or its effect on the state
of the replicated application needs to be communicated to
all sites so that all local state copies can be updated ac-
cordingly.

We call a replicated application discrete if it changes
its state only in response to (user-initiated) operations.
In continuous replicated applications the state may also
change because of the passage of time without requiring the

exchange of information. This implies that each instance of
the application has access to a physical clock which can be
used to measure the progress of time. In a real world sys-
tem, these physical clocks will never be fully synchronized.
In the remainder of this work we use the term time to refer
to one specific reading of one specific physical clock. Due
to limited synchronization this reading may not be reached
simultaneously (in the sense of a common wall-clock) by all
physical clocks.

In order to simplify the further discussion, we denote
with s;; the state that site ¢ holds at time ¢. Likewise
0;,to ¢~ identifies an operation that has been issued at site
¢ at a time t°, with ¢t* being the time the operation is
supposed to be executed. For now we assume that ¢t° = ¢*.
We shall discuss later that it may make sense to set t* to
a value greater than ¢°. It is assumed that the resolution
of the physical clock is sufficiently high so that no two
operations can be issued with the same execution time ¢*
at the same site 7, and therefore an operation is uniquely
identified by ¢ and ¢*. If this is not the case, an additional
local counter can be used to distinguish operations with
identical values for ¢ and ¢*. The set of all operations o0; to ¢«
that occur during the lifetime of a continuous replicated
application is called O.

III. CONSISTENCY IN THE DISCRETE DOMAIN

Existing approaches such as [9], [1], [2] to establish con-
sistency in the discrete domain are about finding a ‘correct’
sequence of all those operations that are not independent
of each other. These algorithms make sure that eventually,
at every site, the state looks as if all dependent operations,
issued at all sites, had been executed successfully in that
particular sequential order. The common root of these ap-
proaches is Lamport’s work on virtual clocks [10].

With the tremendous amount of earlier work invested
into consistency for replicated discrete applications, the
question arises whether these approaches can also be reused
in the continuous domain. As we shall show, this is not the
case. The reason why the approaches for the discrete do-
main fail when they are applied to the continuous domain
is that consistency in replicated continuous applications is
not only about finding a correct sequence of operations and
ensuring that at each site the result of all operations looks
as if the operations had been executed in that sequence. In
addition it requires that the result of all operations looks
as if the operations had been executed at the correct point
in time. The algorithms for establishing consistency in the
discrete domain are therefore insufficient for the continuous
domain.

To illustrate this problem, we examine a very simple ex-
ample, based on a session involving a replicated discrete
application. This session is attended by two users U; and
U,. U; performs an operation. This operation will be ex-
ecuted first by U;’s instance of the application and some
time later (because of the network transmission delay) by
U>’s application instance. Since for a replicated discrete
application a single operation cannot result in inconsisten-

cies, consistency algorithms from the discrete domain will
take no special action in this example.

Now we transfer this example to the continuous domain:
in a distributed simulation a train is approaching a switch.
The simulation is attended by two users, U; and Us. Just
before the train arrives at the junction, U; operates the
switch. In U;’s application instance the operation takes
place immediately. However, the information about U; op-
erating the switch will arrive at Us’s application instance
at a later point in time, due to network delay. Applying
the operation at this point in time to Us’s application in-
stance leads to an inconsistent state because the train has
already passed the switch in Uy’s application instance. As
explained above, methods for ensuring consistency in the
discrete domain will take no action to correct this problem.
This reveals the core reason why the mechanisms for con-
sistency used in the discrete domain are not sufficient for
continuous replicated applications: they neglect the prob-
lem of executing operations at the correct point in time.

IV. CONSISTENCY IN THE CONTINUOUS DOMAIN

In the following the terms consistency and correctness
for the continuous domain will be defined and it will be
shown that the synchronization of the physical clocks of
the individual sites has no impact on both aspects. In ad-
dition, an important tradeoff between consistency-related
artifacts for this application class will be identified which is
influenced by the synchronization of the participating site’s
physical clocks.

A. Consistency and Correctness

Let the reception function R; be defined to return false
if a given operation has been received by site i after time ¢
and true otherwise (see Equation 1).

false
true

0j o+~ received by i after ¢

Ri(taoj,tO,t*) = { (1)

else

Then we define the term consistency for the continuous
domain by means of a consistency criterion. A replicated
continuous application ensures consistency iff Expression 2
evaluates to true. The interpretation of this expression is
as follows: at any time ¢ the state at any two sites ¢ and j
must be the same, if both sites have received all operations
that are supposed to be executed before t¢.

Vt,i,j | vt* S t, Oy, to,t* €0 |

Ri(t, 0w to 4+) A Rj(t, 00 t0,0x) = (810 = 8j¢) @)

This definition implies two important things. First, sites
which have not yet received all information required to cal-
culate the correct state do not affect the question whether
the application ensures consistency or not. This is impor-
tant since otherwise in the presence of network delay, no
application would ever be able to provide consistency. Sec-
ond, if at any time ¢ all sites have received all operations,

then the state at all sites at that time must be identical.
This ensures the common meaning of the term consistency.

The consistency criterion given here is a stronger require-
ment when compared to those typically used in the discrete
domain (e.g., [2]). By requiring that s;; = s;, it takes into
account that the state may change over time, which is not
considered (and not necessary) in the discrete domain. The
consistency criterion for the continuous domain can thus be
regarded as a specialization of the consistency criteria used
in the discrete domain.

It should be noted that consistency is completely in-
dependent of the synchronization of the distinct physical
clocks. The consistency criterion only requires that at
the same reading of the physical clocks the same state is
reached if all preceding operations have been received. It is
irrelevant whether or not the same state is reached at the
same reading of a common wall-clock.

Besides consistency one might also require that the state
of a replicated continuous application be correct in the
sense that it is the state that would have been reached by
issuing and executing all operations on one single instance
of the application at the correct point in time. Guarantee-
ing consistency only makes sure that all sites determine the
same state provided that they have received all operations
that are required to do so. This is not necessarily the state
that would have been reached by executing every operation
Oj to,t* at t*.

In order to provide a formalized definition of the term
correctness we define a virtual perfect site P such that:

« for any operation 0; 0 ¢+ € O Rp(t*, 0 10 1+) = true, i.e.,
all operations are received by P by the time they should
be executed, and

o P calculates the state of the application by executing
all operations o0; 4~ € O at t* and by determining all
time-dependent state changes according to the rules of the
application.

The virtual perfect site P therefore always has the state
that a single non-distributed application would have when
fed with the same operations.

Correctness can then be defined by the following correct-
ness criterion: a replicated continuous application provides
consistency and correctness, iff Expression 3 evaluates to
true. The interpretation of this expression is as follows:
at any time t the state at any site ¢ must be the same
as the state of the virtual perfect site P, provided that ¢
has received all operations that are supposed to be exe-
cuted before ¢. Note that Expression 3 implies consistency.
Furthermore, as for consistency, correctness is completely
independent of the synchronization of the physical clocks
at distinct sites.

Vi, i | V" <ty oyge s €0 |
Ri(t, 00 t0 t+) = (Sit = SP,t)

(3)

Strictly speaking the definitions of consistency and cor-
rectness require that the state can be calculated without
consuming time, i.e., that the algorithms used to estab-
lish consistency or correctness are executed arbitrarily fast.

This is acceptable for a theoretical discussion of algorithms.
In a real world system, the algorithms for achieving con-
sistency or correctness will require time to calculate a new
state. However, due to the limited resolution of the human
perception this does not pose a real problem as long as the
state calculation is sufficiently fast.

Figure 1 illustrates the terms consistency and correct-
ness. In this example, one separate instance of a continu-
ous distributed application is running at each (real) site 1
and 2. These sites are connected by a computer network.
P is the virtual perfect site which receives all operations
such that they can be executed at t*. Sites 1 and 2 issue
one operation with t© = ¢t*. Provided that the clocks of
all sites are perfectly synchronized and assuming that the
transmission over the computer network takes a positive
amount of time, both operations will arrive late (i.e., after
t*) at the site that did not issue it. Following our defini-
tion, the application is consistent if it guarantees that for
t < 2 and t > 6 the states at both sites are identical. Cor-
rectness is achieved if the state of site 1 is identical to the
state of P for t < 3 and ¢t > 6 and if the state at site 2 is
identical to the state of P for t < 2 and ¢ > 5.

sitel siteP site 2
0122 >

0z3

/ t=5
t=6
\J
time
Fig. 1. Consistency and correctness

B. Short-Term Inconsistencies and Responsiveness

Both the consistency and correctness criteria make no
statements about the time during which a site has not yet
received all operations that it needs to calculate the cur-
rent state. It is therefore possible that consistency-related,
transient artifacts occur, even if the correctness criterion is
met by the application. In the example above, this could
happen during 3 <t < 6 for site 1 and during 2 < ¢t < 5 for
site 2. In addition to the basic consistency and correctness
criteria, we therefore define two additional fidelity criteria.

The first fidelity criterion is the avoidance of short-term
inconsistencies. If for an operation 0;to 1« and a site j the
expression R;(t*,0; 0 ++) evaluates to false, then this oper-
ation is said to have caused a short-term inconsistency of
the application at site j. Ideally, short-term inconsistencies
should be non-existent.

It should be noted that the term ‘short-term inconsis-
tency’ identifies a situation where the state of at least two

sites is different from each other because an operation is-
sued at site 7 arrives at site j after ¢*. It does not refer
to a situation where the consistency or the correctness cri-
terion are violated. Because we assume that the applica-
tion ensures the consistency or the correctness criterion, a
late arrival means that the state of at least one site needs
to be repaired. In the previous train example this would
mean moving the train from a position on one branch of
the tracks to a different position on the other branch of
the tracks for one of the participants. This results in a
consistency-related artifact that may be visible to a user.

Furthermore, operations may be issued while at least
one site is encountering a short-term inconsistency. It may
therefore happen that an operation is based on a state
that needs to be corrected by the employed consistency
or correctness mechanisms. For example, assume that in
the train example Us pulls the brakes of the train after it
has passed the switch but before the operation from Uj
has arrived. In this case, U intends to stop the train be-
cause it is going in the ‘wrong’ direction. After U has
issued this operation, the operation from U; arrives (late).
If the employed consistency mechanism modifies the state
at the site of Us, then the operation of stopping the train
would cause the train to be stopped while heading in the
‘right’ direction. This might violate the original intention
of U,. Operations that are based on a state visible during
a short-term inconsistency are therefore another source for
consistency-related artifacts.

The length of a short-term inconsistency depends on the
offset between the physical clocks, the transmission delay
and on how much earlier an operation was issued (¢°) than
it should be executed (¢*). It can be calculated for site j
and operation o; to ¢« as shown in (4), where T} denotes the
reading of a common wall clock at the time the physical
clock at site k reaches t* and d;; denotes the (unidirec-
tional) network delay from i to j. If (4) yields a negative
result then the operation has not caused a short-term in-
consistency. We assume that the longer a short-term incon-
sistency persists, the more likely it is that the implications
discussed above will distract the users.

i (0ie) = dij + 17 =T — (t* —t°) (4)

The second fidelity criterion concerns the response time
of a continuous replicated application. The response time
of an operation o;to 4~ is defined as t* — t°. The ideal
response time is zero.

If the response time exceeds a certain threshold, the users
will notice that a delay exists between the time the oper-
ation was issued and the time the operation is executed.
This will result in an unnatural behavior of the application.
Response time and responsiveness are used synonymously
in the context of this work.

While it would be desirable to guarantee that no
consistency-related artifacts occur in a continuous repli-
cated application, this is not possible. The reason is that
the optimization of the response time and the avoidance of
short-term inconsistencies are conflicting goals. The con-
nection between both fidelity criteria is contained in Equa-

tion 4 where the response time can be increased to decrease
the duration of a short-term inconsistency (and vice versa).
To illustrate this tradeoff, Figure 2 shows an example
where the responsiveness is optimal (t° = t*). In this case
the operations issued by the users take effect immediately.
The points in time when the two operations should take
effect are indicated by the dotted line. As can be seen,
only the user issuing the operation does not experience
short-term inconsistencies. Any other user will encounter
a short-term inconsistency for each operation due to the
transmission delay in the network.
site 3

site 1 site 2

0211

» 0322

time

e operation is executed in time
o operation is late = short—term inconsistency

Fig. 2. Optimizing responsiveness

Figure 3 shows the same example optimized for the short-
term inconsistency criterion. Here short-term inconsisten-
cies are completely avoided at the cost of increasing the
response time for each operation to the maximum transmis-
sion delay (and possible deviations in the physical clocks)
between any two participants. Note that the execution of
the operations is delayed at the originating sites until all
participants have a chance to act simultaneously. An event
received at a time before it should be executed does not
pose a problem. It is buffered by the receiver until the
time denoted by t* is reached.

There are two additional questions that remain to be an-
swered: What if the deviation in physical clocks between
sender and receiver happens to compensate for the trans-
mission delay? And, in an environment where network
packets might get lost, how exactly can we calculate the
maximum transmission delay for an operation?

The answer to the first question is that the time devi-
ation might indeed compensate for the network delay be-
tween a given sender and receiver. This makes it possible
for the sender to have a response time equal to zero while
the receiver does not experience short-term inconsistencies.
However, this works only when the sender and the receiver
do not switch their roles. As soon as the previous receiver
becomes the sender, short-term inconsistencies will occur

sSite3

site2

stel

0334

o operationisissued
e operation is executed

Fig. 3. Minimizing short-term inconsistencies

because of the large time deviation which now prevents
that any operation arrives at the new receiver in time.

The second observation arises from the problem that in
an environment where packet loss occurs, it is impossible
to define an upper bound on the delay an operation needs
to arrive at a remote site. After all, the same packet might
get lost over and over again as it is being retransmitted
by the sender. This leads to the conclusion that, while a
reduction of short-term inconsistencies is desirable, a guar-
anteed prevention is not possible in networks that do not
guarantee the delivery of packets within a certain amount
of time.

C. Causality Preservation

In the discrete domain, consistency often includes causal-
ity preservation. That is, if there are two operations O; and
O that are not independent of each other (e.g., because
the user issuing operation O has seen the result of O;
before issuing O2), then it must be guaranteed that both
operations are executed in the correct order at each site.
This is done by delaying the local execution of operations
until all operations they depend on have been executed.

In the continuous domain, this poses an interesting prob-
lem: as long as there are no short-term inconsistencies,
causality is preserved since the operations are executed at
the correct point in time. Only when operations arrive late
and cause a short-term inconsistency it is possible that one
operation ‘overtakes’ an operation it depends on. If causal-
ity preservation should be guaranteed in this case, it would
require the delay of the operation until the operations it
depends on have arrived and have been executed. How-
ever, delaying the operation past the point where it should
be executed would cause another short-term inconsistency,
which is undesirable.

For this reason, causality preservation in not included
in the consistency or correctness criterion for the contin-

uous domain. It is implicitly contained in the short-term
inconsistency fidelity criterion.

V. LocaAL-Lac

In order to make use of the trade-off relationship between
response time and short-term inconsistencies, we propose a
concept called local-lag: Instead of immediately executing
an operation issued by a local user, the operation is delayed
for a certain amount of time before it is executed, i.e., t* >
t° for an operation o0; o ++. As depicted in Figure 3, if the
value for local lag is sufficiently high, it can reduce the
number and/or duration of short-term inconsistencies.

In the example with the train approaching the switch,
local-lag would work as follows: user U; would operate the
switch. This operation would be assigned ¢t* > t°. If the
difference between t* and t° is sufficiently large, this would
mean that the site of user Us would receive the operation
before it is due for execution at ¢*. Thus, the short-term
inconsistency would be prevented. On the other hand, the
execution of this operation for U; would be delayed. If this
delay is too high, it would be noticeable or even distract-
ing for Uy, e.g., the user issues the operation a long time
before the train passes the switch but the operation takes
effect some time after the train has passed it. Thus, it is
important that local-lag is chosen in a way such that is not
noticeable or at least not distracting for the local user.

It should be noted that the idea of delaying local oper-
ations is not new. For example, in [4] local state updates
are delayed by 100 ms for a networked computer game.
The key contribution of our concept of local-lag is that the
value for the delay is not arbitrarily set but is based on the
knowledge about the tradeoff between short-term inconsis-
tencies and response time.

A. Determining a Value for Local-Lag

As discussed above, it would not be desirable to move
from one extreme, where the response time is zero but
short inconsistencies are very frequent, to the opposite ex-
treme, where almost no short-term inconsistencies occur
but the response time is unacceptably high. Therefore, it
is important to consider both consistency-related fidelity
criteria. For a given replicated continuous application, we
propose to do this in three steps: (1) determine a minimum
for the local-lag needed to prevent a significant amount of
short-term inconsistencies, then (2) determine the highest
acceptable response time, and finally (3) choose a value for
the local-lag as a compromise.

A.1 Determining a minimal value for local-lag

In order for local-lag to be useful, it needs to significantly
reduce the number of short-term inconsistencies for all par-
ticipants. Moreover, short-term inconsistencies should be
reduced for each sender/receiver pair. Therefore, the local-
lag should be chosen such that there is a high probability
that I;(0;,t0,¢+) will evaluate to a value which is equal to or
less than 0 for any site j and any operation o; to ¢.

We therefore propose to use the maximum of the aver-
age network delays d; ; between any two sites ¢ and j as the

minimum amount of local-lag. Typical values for network
delays (assuming an uncongested network) are: less than
1 ms for a LAN, 20 ms within a European country, 40 ms
within a continent, and 150 ms for a world-wide session. If
the clocks of the participants are not completely synchro-
nized, the maximum offset between any two clocks should
be added to this value. Choosing the maximum of the av-
erage network layer delays adjusted by the clock offset as
minimal value for local-lag implies that short-term incon-
sistencies will occur only if packets get lost or the delay
jitter becomes significant because of network congestion.

A.2 Determining the highest acceptable response time

The maximum local-lag is dependent on how much re-
sponse time a user can tolerate for a given application. In
order to determine this value, the work conducted in the
area of System Response Time can provide a good orien-
tation [11], [12], [13]. Furthermore, for a given specific
application it may be a good idea to conduct perceptual
psychological experiments. Ideally, the experiments will
deliver the value of local-lag that is not noticeable by the
user. The literature about System Response Time sug-
gests that a lag value of 80-100 ms will not be noticeable
by the user, independent of the operation and the applica-
tion. Our own experiments (described later), indicate that
this value may be larger for certain applications.

A.3 Choosing a value for the local-lag

The previous two steps can result in two main cases:
either the minimum value for local-lag is smaller than or
equal to the highest acceptable response time, or it is not.
In the first case a value between the minimum value for
local-lag and the highest acceptable response time can be
chosen. If the highest acceptable response time is lower
than the minimal useful value for local-lag, then a true
tradeoff situation occurs. Given the values mentioned
above, this should be relatively rare, though it might hap-
pen for very demanding applications. In this case it is nec-
essary to lower the fidelity of both criteria in a way which
provides the best overall fidelity to the user. Most likely
this will require another set of perceptual psychological ex-
periments.

VI. TIMEWARP

If the amount of local-lag is sufficiently large, it elim-
inates a significant amount of short-term inconsistencies.
However, it does not completely prevent all inconsisten-
cies since operations might still arrive late due to jitter or
packet loss in the network. In order to ensure consistency
or correctness, it is therefore necessary to have a mecha-
nism to repair the state in these cases. In this section we
propose such a mechanism which we call timewarp.

A. Algorithm

We assume that each application instance 7 is initialized
at a potentially different point in time ¢! with the correct
state s; ;1 = sp,r. Timewarp requires that each applica-
tion instance maintains a list of operations L and a list

of states L{. The lists are assumed to be sorted by ¢* and
t, respectively. L¢ is initialized to be empty and L? is ini-
tialized to contain only s, ;. With these precondltlons the
timewarp algorithm can be defined as follows:

o Step 1. Wait for a constant amount of time 7. While
waiting receive local and remote operations and store them
in L?, and remember ¢, as the smallest ¢t* of any operation
received during T'. T' determines the frequency with which
new states are calculated and displayed to the user. For
example, if 20 updates per second must be shown to the
user, then T should be set to 50 ms minus the estimated
time required for the other steps.

o Step 2. Determine t§, such that ¢, = maz{t|(s;+ € L{)A
(t < t9)}. Le., choose the state in the list of recorded
states that directly precedes the earliest operation received
in step 1. ¢, denotes the time this state was valid.

o Step 3. Let t° be the current time. Do the following for
all times ¢ with ¢ <t < t° where there exists at least one
operation o ¢ + € LY in ascending order. Take s; ;s if this
is the first iteration, the state resulting from the previous
iteration otherwise. This is called the base state s; ;» of
this iteration. Using s; s+ as a starting point calculate the
state at time ¢ according to the rules of the application.
While doing this recalculate and replace each s; ,, € L? with
t® < n < t. Execute the operations with ¢* = t on the state
calculated for ¢ according to the rules of the application.
Continue with the next iteration. The informal description
of this step is as follows: starting with the state selected
in step 2 all operations that happened after that state was
valid are applied to that state in fast forward mode. This is
done by determining the state before each operation should
have been executed and then executing it. States in the
list of states are replaced by updated versions that take
the events into account that have arrived during step 1.

o Step 4. Use the resulting state from step 3 to calculate
the state at the current time ¢, save that state to L{ and
display it to the user. Go to step 1.

In the train example timewarp would work as follows:
the site of user Us would receive the operation after t*
during step 1. This can happen, e.g., because the applied
amount of local-lag was not sufficient to compensate for the
network delay. In Step 2 the last recorded state preceding
t* would be reconstructed. From this state on all events
would be applied to that state in fast forward mode during
Step 3, including the operation that arrived late. This is
done until the state reaches the current time. This state
would be saved and displayed to the user. Concluding,
timewarp would cause the train to be moved to the correct
position on the correct branch of the tracks.

B. Correctness

In order to prove that timewarp ensures correctness, we
show by complete induction that at any site all states that
are saved in the list of states are the same that would have
been calculated by the virtual perfect site P. This implies
correctness if T is chosen such that it is smaller than the
resolution of the physical clock and if the algorithm can be
executed arbitrarily fast.

e Prerequisites: Let ¢ be a site and ¢ be a time for which
Yw, t* < t, oytopr € O | Ri(t,0p,t0). Let i use time-
warp.

o Claim: Vs;p, € L | 8ip = SPn

o Induction Base: By definition s; ¢ = Spy!

¢ Induction Hypothe51s We assume that the claim holds
for all n < n*

o Induction Step: Let s;,, be a state in L{ with m =
min{k|(s;r € L) Ak > n*}. Then we know from Step 3
of the timewarp algorithm, that s; ,, has been determined
based on a state s;, with »r < n*, where we know that
Sir = Spr because of the induction hypothesis. As de-
scribed in Step 3 of the timewarp algorithm, from the time
r on timewarp has calculated the state before each event
according to the rules of the application. Also each event
has then been executed based on that state, again accord-
ing to the rules of the application. This is done until m is
reached. Since this describes exactly the behavior of the
virtual perfect site P it follows that s; ;, = sp,m, concluding
the induction step.

C. Computational Complezity

In order to determine whether timewarp provides cor-
rectness, we have assumed that the algorithm can be ex-
ecuted without consuming time. In a real-world system
we can no longer make this assumption and must there-
fore take the computational complexity of timewarp into
account.

In the following, we determine the computational com-
plexity of timewarp depending on the number of partici-
pants (n) in a session. To do so the following assumptions
are made:

e The number of operations scales linearly with the number
of participants, i.e., each user produces a constant average
number of operations per time interval, which seems to be
realistic.

e The maximum amount of time an operation arrives late
(i.e., the amount of time it arrived after ¢*) is a constant
determined by the network, and it is independent of the
number of participants in the session. This requires that
the participants of a session do not influence the maximum
delay of operations in the network. It seems a safe assump-
tion as long as the data transmitted for the session over the
network is only a small part of the total traffic carried by
the network.

e The amount of state information increases linearly with
the number of participants. I.e., each participant con-
tributes a certain amount of state to the overall state of
the application. In a distributed virtual environment this
could be the virtual representation of the user.

e The determination of a new state, based on a previous
state without accounting for any operations, is O(n?). Typ-
ically the calculation of the new state requires that all parts
of the state introduced by the individual participants are
checked against each other. For example, detecting colli-
sions between the virtual representations of the users would
require checking all of their positions against each other. If

the parts of the state can be calculated independent of each
other then the complexity would only be O(n).

o The execution of one operation has a complexity of O(n).
This is based on the observation that operations often need
to be checked against each part of the state that is intro-
duced by the participants in the session. For example, fir-
ing a laser beam requires that each virtual representation
of a user is checked whether it got hit.

With these assumptions it is clear that any algorithm
that calculates the complete state of the application at each
site will have at least a complexity of O(n2) for two rea-
sons: 1) the calculation of a new state based on an old state
is O(n?) and 2) a number of operations which linearly in-
creases with n needs to be executed with O(n) each.

Claim: The complexity of timewarp is O(n?) with n be-
ing the number of participants in a session.

Proof: Each cycle through all steps of timewarp is started
once the previous cycle is finished. The number of cycles
does not increase with the number of participants in the
session. Therefore, it is sufficient to show that each cycle
through all steps is O(n?). Each step of timewarp is exe-
cuted sequentially. It is thus sufficient to show that each
step has a computational complexity of at most O(n?).

o Step 1. The reception and storage of operations in a
sorted list during a constant period of time can be done
with a computational complexity of O(log(n)).

o Step 2. The determination of the starting state from
a sorted list is independent of the number of users. The
retrieval of that state is O(n) since the state grows linearly
with the number of users.

e Step 3. This step describes an iteration over all clock
readings for which an operation exists that needs to be ex-
ecuted at that reading. In the worst case at each reading at
least one operation will have to be executed. If we assume
that the physical clocks tick in discrete steps, this itera-
tion has therefore a constant number of steps depending
only on the amount of time covered by the timewarp. Per
our assumptions the maximum amount of time covered by
the timewarp is independent of the number of participants.
Therefore, the number of steps in this iteration is constant.
With this knowledge it is sufficient to show that each step
in the iteration has a computational complexity of at most
O(n?). During each step a new state is calculated which
is O(n?), and all operations that need to be executed at
this time are executed. Since the number of operations
per period of time increases linearly with the number or
participants, this is also O(n?).

« Step 4. Calculating the final state is O(n?), and storing
it can be done at O(n) since the size of the state increases
linearly with the number of users.

Since all individual steps require at most O(n?) and since
the number of timewarps does not grow with n, timewarp
has a complexity of O(n?).

An implementor of timewarp must be careful to make
sure that timewarps are not executed in response to each
operation that arrives late. This would result in an in-
crease of the computational complexity by a factor n. Step
1 defined above prevents this and makes the number of

timewarps independent of the number of participants. Fur-
thermore, an implementor should ensure that in step 3 the
state is calculated only once for each reading of the phys-
ical clock. If this is not taken into account and the state
is determined for each operation, then the computational
complexity would again increase by a factor n.

D. Further Considerations

In order to use timewarp in a real-world system, there
are several issues that need to be addressed. First of all
it is not possible to save all past operations and states
for an unlimited time. Therefore, elements in the list of
operations (L?) and in the list of states (Lf) need to be
deleted. This should be done so that it is very unlikely that
a timewarp needs to be conducted to a time for which the
operations or states have been deleted. In todays networks
several minutes would capture most cases, even if the time
required for loss detection, retransmission and congestion
control is taken into account. If an operation arrives that
precedes the operations and states in the lists, then some
alternate means must be used to repair the state. This
could include disconnecting the application instance and
performing a late join on the session.

Another concern is how to conceal the visual artifacts
that may result from short-term inconsistencies corrected
by timewarp. Examples are the jumping train from the
previous sections, or a player in a first person shooting
game that gets revived. Generally this requires the usage
of concealment strategies that are outside the scope of this
work. One possible approach to minimize the occurrence of
these artifacts is to delay the visual rendering of significant
events such as a player’s death in a networked game.

When timewarp is combined with local-lag, then the con-
stant time 7 in step 1 of timewarp will additionally increase
the average response time of operations and decrease the
likeliness that a noticeable short-term inconsistency occurs.
The reason for this is that the time interval 7" is used to
collect all events that should be executed in this iteration
of the timewarp algorithm. This rises the question whether
the time interval 7" can be used to replace local-lag. This is
not the case: local-lag is added individually to the execu-
tion time of each operation, allowing that each operation
is delayed by the amount of local-lag before a short-term
inconsistency will occur. The interval 7" on the other hand
just determines the amount of time between iterations of
the timewarp algorithm - the increase in response time and
protection from short-term inconsistencies will depend on
when the operation has been issued in relation to the start-
ing time of the interval 7" and may thus be different for dis-
tinct operations. As a result, a combination of local-lag and
timewarp does make sense: T should be chosen to match
the framerate of the application while the determination of
local-lag should take into account that the execution of an
operation is additionally delayed by % on average.

A similar approach as described here, which is also
termed timewarp, has been used in the context of paral-
lel discrete event simulation (PADS). A good introduction
to PADS can be found in [14]. In PADS a simulation is

split into different parts, and each part is simulated on one
computer. Each part may give input to or receive input
from the other parts in form of operations. Timewarp in
PADS allows the individual parts to be simulated indepen-
dently. When an input arrives that should have been taken
into account earlier on, a timewarp is performed to that
time, and the simulation is recalculated. This may lead to
the problem that operations sent earlier by the node that
performed the timewarp are no longer valid. Therefore, it
may be necessary to send anti-operations to those parts
that the original operations were sent to. This in turn
may cause further timewarps at those parts, triggering a
cascade. Therefore, timewarp is controversial for PADS.
However, in the context of consistency, there is no need
for anti-operations, since each site maintains a full copy of
the application’s state. This is the main difference between
applying timewarp to PADS and using it for maintaining
consistency in continuous replicated applications.

VII. EXPERIMENTAL RESULTS

In order to verify the theoretical observations and to
show that local-lag as well as timewarp can be used in real
applications, we have implemented a very simple networked
computer game. In this game each player controls a space-
ship which can accelerate, decelerate, turn, and shoot with
a laser beam of a certain length. Fach spaceship has three
hit points: each time it is hit by a laser beam, one of the
hit points is subtracted. If no hit points remain, the space-
ship is removed from the game. The number of players is
only limited by the processing power of the participant’s
computers. The game has been developed completely in
Java under JDK1.3 using IP multicast for communication.
A screenshot of the game can be seen in Figure 4.

[Let's do a TIMEWARP again
Options

=] B3

Fig. 4. Screenshot of the timewarp game

All experiments where conducted in a LAN where the
network delay was below 1 ms. In order to simulate ar-
bitrary network delays the game allows to delay incoming
packets by a fixed amount of time. This amount is cho-
sen at the startup of the application. The computers used
for the experiments where off-the-shelf PCs with Athlon
600 processors. The total number of participants in the
experiments was 19.

In a first series of experiments two users competed with
each other. The simulated network delay was set to 0 ms,
the amount of local-lag was increased stepwise in incre-
ments of 40 ms from 40 ms to 200 ms. The participants
were asked after each game whether they had noticed any
odd behavior in the game. The results where as follows: no
user noticed local-lag of 120 ms and below. The average
amount of local-lag that seemed to be noticeable was 160
ms.

In a second set of experiments we used no local-lag and
increased the simulated network delay from 40 ms to 200
ms. This was done to see when the visual artifacts that
occur when a state is repaired by timewarp are perceived
by the user. No participants reported that they noticed
odd behavior for values below 120 ms. On the average the
visual artifacts were recognized at 140 ms.

In order to evaluate whether the combination of local-lag
and timewarp performs superior to completely compensat-
ing the network delay with local-lag or not compensating it
at all, we conducted a third series of experiments. Here the
simulated network delay was increased from 80 ms to 400
ms in steps of 80 ms. In each experiment the amount of
local lag was chosen to be half of the network latency. As
a result, no user noticed odd behavior below 240 ms sim-
ulated network delay. On the average odd behavior was
noticed at 290 ms delay.

While the actual values determined by these experiments
are very likely to be specific for the application and pos-
sibly for the setup of the experiments, they do show that
a broad range of network delays is tolerated by the users.
Furthermore, the third set of experiments illustrated that
the introduction of local-lag can significantly increase this
range.

In another experiment we used the game to evaluate the
computational complexity of timewarp. In order to do so,
we replaced the network part of the game with code that
simulated an arbitrary number of remote players. This
code allows to provide a value for the maximal network de-
lay that an operation encounters. For each operation the
network delay is then drawn from a uniform distribution
between 0 and the maximum value. Each simulated par-
ticipant issued one arbitrary operation with a likeliness of
75% every 50 ms leading to an average of 15 operations per
second per simulated participant. The waiting time in step
one of the timewarp algorithm was selected to be 50 ms.

We increased the maximum network delay from 0 ms to
2000 ms in increments of 500 ms, and we increased the
number of participants from 1 to 201 in increments of 50.
For each combination we ran 500 iterations of the timewarp
algorithm and measured its duration as well as the num-

ber of events that had to be executed. The results from
measuring the number of operations per timewarp are de-
picted in Figure 5. These results confirm that the number
of events increases linearly with the number of players as
well as with the maximum amount of network delay.

number of events

1400
1200
1000
800
600
400
200
0

250
200

150

100

number of users

0

500 50

1000 1500 0

2000
latency (ms)

Fig. 5. Number of events per timewarp iteration

Figure 6 shows the amount of time required to complete
all steps of the timewarp. As predicted by the theoreti-
cal analysis, the timewarp duration increases with O(n?).
Also it can be seen that the amount of time required for
a timewarp increases linearly with the maximum network
delay. The reason for this is that linearly more events have
to be executed but the size of the state (e.g., the number
of spaceships) remains constant. Adding a participant lin-
early increases the number of events and the volume of the
state.

timewarp duration (ms)

400
350
300
250
200
150
100
50
0

250
200

150

100

500 number of users

1000
latency (ms)

1500 0

Fig. 6. Time required per timewarp iteration

The most noteworthy implication from Figure 6 is that
timewarp requires only very limited computational re-
sources if the number of participants is sufficiently small
(e.g., below 50). It should be noted that these figures were
reached using an unoptimized Java implementation. We

expect that with current off-the-shelf PCs, at a frame rate
of 20-25 frames per second, 100 to 150 participants could
be supported with an optimized implementation using C
or C++.

VIII. DEAD-RECKONING

An approach that is commonly used to guarantee that
the consistency criterion is satisfied in distributed virtual
environments (e.g., multi-user virtual reality applications
and battlefield simulations) is a combination of state pre-
diction and state transmission. In this approach the appli-
cation “knows” how the objects in the virtual environment
behave over time when no user interaction occurs. Exam-
ples are a plane that will fly straight at constant speed or
a projectile that will take a course dictated by the physical
law of gravity. The prediction of the behavior of objects is
called dead-reckoning.

Each object for which dead-reckoning is performed has a
single controlling application instance, e.g., for a plane this
will be the application instance of the pilot. Only the con-
trolling application may issue operations that change the
state of the object. The controlling application instance is
responsible to inform peer application instances when the
state of the object deviates by more than a certain thresh-
old from the predicted state. In the event of a deviation,
the controlling application transmits the complete state of
the affected object to all peers. Upon receiving this in-
formation, an application discards the outdated state and
uses the new state to perform dead-reckoning from here on.

User-initiated operations are applied to the local state
of the affected object. The object will thus be put into
a state that differs significantly from the predicted state,
thereby requiring the controlling application to transmit
the new state to its peer applications. Hence, operations
are not transmitted explicitly but as part of an object’s
state. Furthermore, the states are transmitted unreliably.
In order to repair packet loss in the network, the controller
of an object transmits its state at regular intervals in the
form of so called heart-beat messages.

One important property of dead-reckoning is that each
application instance is only responsible for the objects it
controls. For example, a collision between two objects that
an application instance does not control is not discovered
by that application instance. Instead the application in-
stance relies on the application instances that do control
these objects to transmit their state if a collision is de-
tected. These events can be considered as artificial oper-
ations. The benefit of this approach is that the compu-
tational complexity required by dead-reckoning is reduced
to O(n) since it is not necessary to check for interaction
between arbitrary objects, as is the case with timewarp.
The drawback is that the number of events and thereby
the number of short-term inconsistencies will increase.

In order to apply our consistency and correctness criteria
to dead-reckoning, we say that a site j has received an op-
eration o; to 4 if it has received a state update that includes
the effect of that operation. With this it becomes clear that
the consistency criterion is fulfilled by dead-reckoning: if

at time t two sites ¢ and j have received sufficient state
updates so that they know of all operations (including the
artificial ones) with ¢t* < ¢ then they will have the same
state. This is true since in this case they use the same data
for predicting the state of all objects.

While dead-reckoning provides consistency it cannot
guarantee correctness. The reason for this is that dead-
reckoning transmits state information and not information
about events. Combined with the fact that state updates
are transmitted unreliably it is not possible for an appli-
cation instance that receives a state update for an object
to determine how that state came to be. This in turn may
lead the application instance to calculate an incorrect state
for the objects it controls and distribute that state to the
other application instances.

This problem is illustrated by the following example.
Consider a car racing game where two cars A and B drive
side by side. At some point in time the application control-
ling car A receives a state update for B that puts B on the
other side of car A. If some of the state updates that pre-
cede this update for B were lost in the network, there is no
way for the controlling application of A to determine how B
got to this position. It is therefore not possible for the con-
trolling application of A to determine whether the two cars
collided, or whether B slowed down, moved over, and then
sped up again. The virtual perfect site P as defined above
will not have that problem since it receives all operations®
in time and calculates its state based on this information.
Therefore dead-reckoning cannot guarantee correctness.

It should be stressed that this problem is not restricted
to situations where packet loss occurs. An incorrect state
can also be reached if the controller of an object receives
information about the interaction between two other ob-
jects sufficiently late and thus did not take this interaction
into account when calculating its own state.

The tradeoff between short-term inconsistencies and the
responsiveness of the application can be conducted with
dead-reckoning in the same way it is done in combina-
tion with timewarp. In [4] the authors apply the principle
of local-lag (or bucket synchronization as they call it) to
a fully replicated game that also employs dead-reckoning.
In this game the local state update is delayed by a fixed
amount of 100 ms giving the state update time to reach
the remote game instances.

Comparing the consistency-related characteristics of
dead-reckoning and timewarp leads to the following results:
o dead-reckoning and timewarp provide consistency,
¢ only timewarp provides correctness,

o dead-reckoning has a computational complexity of O(n)
while the complexity of timewarp is O(n?),

o the reduced computational complexity of dead-reckoning
leads to artificial operations which increase the potential
for additional short-term inconsistencies.

The choice between dead-reckoning and timewarp as
mechanisms to maintain consistency has further implica-

lartificial operations are ignored by P, since they can be derived
from the other operations if the complete state is calculated as it is
done by P

tions that are not necessarily consistency-related. Dead-
reckoning requires that the state of each object be trans-
mitted for each operation. This is only feasible if the state
of the object is sufficiently small. Timewarp requires the
reliable exchange of operations, therefore the state of ob-
jects may be arbitrarily large without causing problems.
On the other hand, a reliable transport of the operations
must be ensured for timewarp.

An interesting limitation of dead-reckoning is that only
the controller may issue operations that change the state
of an object. If two or more users want to interact simul-
taneously with the same object, it is thus required that
the operations of those users whose applications are not
the controllers of the object must transmit the operation
to the controller. This potential detour of operations in-
creases the network latency they encounter.

The discussion shows that both approaches have individ-
ual advantages and drawbacks. Neither of them seems to
be superior for all imaginable applications.

An example where the dead-reckoning approach is used
successfully, is the battlefield simulation protocol DIS (Dis-
tributed Interactive Simulations) [8]. In a typical battle-
field simulation the state of the relevant objects is small
(position and velocity) in size and relatively easy to pre-
dict. Each object has only one controller (e.g., the pilot of
a plane, the driver of a car, etc.). The number of partic-
ipants in a battle field simulation can be extremely high,
on the order of up to 100000. Since the fate of individual
objects is only of secondary concern, correctness is not re-
quired for this application class. Therefore dead-reckoning
is a perfect fit for large-scale battlefield simulations.

On the other hand, for networked computer games with
a limited number of participants, correctness may be vital
to ensure fairness and to prevent cheating. Therefore, we
believe that timewarp will have an edge for those applica-
tions. Similarly, CSCW applications with dynamic objects
would profit from timewarp since the state of the objects
may be to large to be transmitted frequently [6].

IX. SUMMARY

In this paper we investigated mechanisms to provide
consistency for replicated continuous applications. It was
shown that the mechanisms from the discrete domain are
not suitable for this application class since they ignore the
need to execute operations at the correct point in time. In
order to get a better understanding of the overall problem,
definitions for the terms consistency and correctness were
given and the tradeoff between short-term inconsistencies
and response time was explained. We proposed the concept
of local-lag, i.e., artificially delaying local operations to op-
timize the consistency related fidelity of the application.
A timewarp algorithm was then introduced to guarantee
consistency. Moreover, it was shown that timewarp also
provides correctness. It has a computational complexity
of O(n?), which is optimal for applications where each ap-
plication instance maintains and calculates the complete
state. In order to demonstrate the viability of our ideas, a
simple networked computer game was implemented. Based

on this game the theoretical results were shown to hold
true in a practical implementation. Finally, timewarp was
compared to the well known dead-reckoning approach. We
concluded that timewarp and dead-reckoning are suitable
for different applications; none dominates the other in all
aspects.

ACKNOWLEDGMENTS

We would like to thank Mirko Friedrich, who imple-
mented the main part of the timewarp game.

REFERENCES

[1] C. A. Ellis and S. J. Gibbs, “Concurrency control in groupware
systems,” in Proceedings of the 1989 ACM SIGMOD Conference
on Managements of Data, Portland, OR, USA, 1989, pp. 399—
407.

[2] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen, “Achieving
Convergence, Causality-preservation, and Intention-preservation
in Real-time Cooperative Editing Systems,” ACM Transactions
on Computer-Human Interactions, vol. 5, no. 1, pp. 63-108,
March 1998.

[3] C. Sun and D. Chen, “Consistency maintenance in real-time
collaborative graphics editing systems,” ACM Transactions on
Computer-Human Interaction, vol. 9, no. 1, pp. 1-41, March
2002.

[4] C. Diot and L. Gautier, “A distributed architecture for multi-
player interactive applications on the internet,” IEEE Network
Magazine, vol. 13, no. 4, July/August 1999.

[5] E. Frécon and M. Stenius, “DIVE: A Scalable network architec-
ture for distributed virtual environments,” Distributed Systems
Engineering Journal, vol. 5, no. 3, pp. 91-100, 1998.

[6] M. Mauve, “TeCo3D - A 3D Telecollaboration Application
Based on VRML and Java,” in Proc. of Multimedia Computing
and Networking (MMCN’99 at SPIE’99), 1999, pp. 240-251.

[7] S. K. Singhal, Effective Remote Modeling in Large Scale Dis-
tributed Simulation and Visualization Environments, Ph.D. the-
sis, Department of computer science, Stanford University, 1996.

[8] S. Srinivasan, “Efficient Data Consistency in HLA/DIS++,”
in Proc. of the 1996 Winter Simulation Conference, 1996, pp.
946-951.

[9] C. Sun and C. Ellis, “Operational Transformation in Real-Time
Group Editors: Issues, Algorithms, and Achievements,” in Proc.
of the ACM 1998 conference on Computer Supported Coopera-
tive Work (CSCW’98), Seattle, Washinton, USA, 1998, pp. 59—
68.

[10] L. Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System,” Communications of the ACM, vol. 21, no.
7, pp. 558-565, 1978.

[11] S. Teal and A. Rudnicky, “A performance model of system de-
lay and user strategy selection,” in Proc. of Human factors in
computing systems 1992, 1992, pp. 295-305.

[12] B. Schneiderman, “Response time and display rate in human
performance with computers,” ACM Computing Surveys, vol.
16, no. 3, 1984.

[13] S. Card, T. Moran, and A. Newell, The psychology of human-
computer interaction, Lawrence Erlbaum Associates, Hillsdale,
NJ, 1983.

[14] R. M. Fujimoto, “Parallel Discrete Event Simulation,” Commu-
nications of the ACM, vol. 33, no. 10, pp. 30-53, 1990.

