
ABSTRACT
In this paper we present a method for sharing interactive
and dynamic 3D models that are collaboration-unaware,
i.e., models that have not been designed to be used by mul-
tiple users at the same time. This functionality is an essen-
tial requirement for the inclusion of arbitrary 3D models, as
generated by standard CAD or animation software, into
teleconferencing sessions. A key aim of this work is to
show that a large part of the required functionality can be
developed in a way so that it is reusable for other applica-
tions such as shared whiteboards or networked computer
games. Our method therefore consists of both an applica-
tion dependent part that handles the specific tasks required
for sharing 3D models, and of a number of generic services
such as synchronization, scalable support for latecomers,
and the ability to record and replay sessions. The generic
services are based on an abstract media model and the
RTP/I application level protocol for distributed interactive
media. Any other application for a medium that shares this
model and that uses RTP/I may reuse these generic ser-
vices. We have implemented a prototype called TeCo3D
demonstrating the feasibility of our approach.

1. INTRODUCTION
The tremendous increase in the graphics performance of
standard PCs has stimulated the development of many inno-
vative applications for interactive and dynamic 3D graph-
ics. Examples include the usage of 3D models for a variety
of purposes: to explain the handling and maintenance of
physical products, as virtual prototypes for industrial pro-
duction, as hands-on demonstration material for teaching
purposes, and as virtual products for sales support. While
the 3D models for these applications are typically devel-
oped for interaction with only a single user, it would often
be very desirable to be able to use them in a collaborative
environment with multiple users at the same time. For
example, an employee in a call-center could demonstrate

the usage of a product to a remote customer, a teacher in a
teleteaching environment could employ interactive 3D
models, or a videoconference could be enriched by includ-
ing a virtual prototype. Generally multi-user capability can-
not be integrated into every 3D model, since this would
significantly increase the complexity of developing these
models. Neither should one have to re-engineer existing 3D
models in order to use them in a distributed fashion.

To solve this problem we have developed a mechanism that
allows multiple users to share collaboration-unaware 3D
models, i.e., models which were not designed for distrib-
uted use. By means of this mechanism many users can
share an existing single-user 3D model while the applica-
tion actually performing the mechanism, rather than the
3D-model itself, will contain the complex tasks that such
shared usage entails (e.g., consistency maintenance and
support of late-comers). We have designed and imple-
mented such an application to demonstrate the feasibility of
our approach. It is called TeCo3D (TeleCooperation 3D).
TeCo3D enables the distribution of collaboration-unaware
3D models defined using the Virtual Reality Modeling Lan-
guage (VRML) [23]. The basic mechanism, however, is not
limited to VRML models, but can easily be adapted to other
3D description formats.

TeCo3D has been designed in a way that allows large parts
of its functionality to be reused for other distributed interac-
tive media, such as shared whiteboards, networked com-
puter games, and distributed virtual environments. In order
to achieve reusable functionality TeCo3D consists of a part
that explicitly deals with the sharing of 3D models, and of
generic parts which can be reused for other applications.
TeCo3D’s generic parts are based on an abstract media
model and the RTP/I application level protocol for distrib-
uted interactive media [12]. Any other application for a
medium that shares this model and that uses RTP/I may
reuse these generic parts, including important aspects such
as synchronization, support for late-comers, and session
recording.

In this paper we present the mechanism for sharing collabo-
ration unaware 3D models and we discuss the design of the
TeCo3D application. In particular we show how we were
able to realize a large part of TeCo3D’s functionality in a
reusable fashion.

The remainder of this paper is structured as follows: In Sec-
tion Two we show how interactive and dynamic 3D models
can be defined using the Virtual Reality Modeling Lan-
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guage. An overview of different ways to share these 3D
models is given in the Section Three. Section Four
describes a solution to the two main media dependent prob-
lems: how to access the state of, and user interactions with,
collaboration-unaware 3D models. In Section Five we
describe the foundation for the development of generic ser-
vices, which consists of an abstract media model and the
RTP/I application level protocol for distributed interactive
media. Three generic services are summarized in Section
Six. These include: consistency, scalable support for late-
comers, and session recording. In Section Seven we show
how the architecture of the TeCo3D application is com-
posed of medium specific functionality and generic ser-
vices. The experiences with the development and the usage
of the TeCo3D application are described in Section Eight.
This paper concludes with a summary in the last section.

2. INTERACTIVE AND DYNAMIC 3D MODELS
For the sake of simplicity we assume that dynamic and
interactive 3D objects are described using the Virtual Real-
ity Modeling Language. This does not limit the applicabil-
ity of our work since the methods presented here can easily
be adapted to other 3D description formats, such as
VRML’s successor X3D [27].

The Virtual Reality Modeling Language (VRML) is a “file
format for describing interactive 3D multimedia on the
Internet” [23]. The presentation of the VRML content (also
called a “world”) is realized by means of a VRML browser.
A detailed introduction to VRML can be found in [1] and
[3].

The basic building blocks of VRML arenodes (e.g., a
sphere node). Nodes containfields (e.g., the radius field of a
sphere node) which can be either elementary data types or
nodes themselves. The nodes in a VRML file form a hierar-
chy called ascene graph. The VRML browser displays the
visible parts of the scene graph. Interaction with VRML
worlds is realized by special nodes which are calledsen-
sors. A touch-sensor, for example, is able to catch mouse-
click events.

Figure 1 shows an example of a dynamic and interactive 3D
object that has been described in VRML. It is a red sphere
that moves when it is clicked on. Lines 4-18 describe the
visible geometry of the model - a red sphere with the radius
2. The model is made interactive by the inclusion of a
TouchSensor  in line 19. This sensor generates an event
when the red sphere has been touched (i.e., is clicked on).
The event is propagated (lines 30-31) to start a timer (lines
20-22). Upon receiving this event the timer starts generat-
ing events periodically for 5 seconds. The events generated
by the timer are forwarded (lines 32-33) to a position inter-
polator (lines 23-26) which converts them into 3D coordi-
nates. These coordinates are used as the new position of the
red sphere (lines 34-35 and 5).

While VRML provides all the mechanisms required for
simple animations, it does not (and was never intended to)
support full programming language functionality. However,
such functionality is required for complex 3D content,
which involves, for example, state information, non-linear
interpolation, or network activity. To allow for the model-

ing of more complex behavior, VRML provides hook-ups
for existing programming languages. Those hook-ups are
called script nodes. Script nodes define an interface
between the VRML world and a script written in a regular
programming language such as Java.

In addition to script nodes, VRML browsers can provide
another API for programming language interaction: the
External Authoring Interface (EAI) [25]. The EAI is sup-
ported by most state-of-the-art VRML browsers and pro-
vides methods by which a VRML browser can be
controlled by external applications. The EAI can be
employed, for instance, to load and modify VRML content
as well as to catch and send events.

VRML itself does not define any mechanisms for the dis-
tributed presentation of and interaction with 3D objects.
Instead, script nodes or the EAI must be used to realize
multi-user functionality.

3. SHARING 3D MODELS
The typical approach to share 3D models among a spatially
distributed group of users is to develop them specifically for
this purpose. The driving forces behind this approach are

01:#VRML V2.0 utf8
02:Group {
03:  children [
04:    DEF Trans Transform {
05:      translation 0 10 0
06:      children [
07:        Shape {
08:          appearance Appearance {
09:            material Material {
10:              diffuseColor 1 0 0
11:            }
12:          }
13:          geometry Sphere {
14:            radius 2
15:          }
16:        }
17:      ]
18:    }
19:    DEF TouchMe TouchSensor {}
20:    DEF Timer TimeSensor {
21:     cycleInterval 5
22:    }
23:    DEF Interp PositionInterpolator {
24:      key      [0, 0.5, 1]
25:      keyValue [0 10 0, 10 0 0, 0 -10 0]
26:    }
27:  ]
28:}
29:
30:ROUTE TouchMe.touchTime TO
31:      Timer.startTime
32:ROUTE Timer.fraction_changed TO
33:      Interp.set_fraction
34:ROUTE Interp.value_changed TO
35:      Trans.translation

Figure 1: VRML description of a moving sphere



multi-user 3D worlds [24,18]. These multi-user worlds
allow participants to enter a virtual world, enabling them to
interact with the representations of other participants as
well as with virtual objects. Users are represented by 3D
shapes known asavatars. Typically, the author of 3D mod-
els for multi-user worlds designs them specifically to sup-
port distribution. Therefore, we call these 3D models
collaboration-aware.

However, the vast majority of 3D models is not designed
for use in a multi-user world. This is quite natural since
multi-user worlds are only one small area where 3D models
can be employed. Moreover, making the models collabora-
tion-aware is costly in terms of additional complexity. We
call 3D models without support for multiple userscollabo-
ration-unaware. It is the aim of our work to enable the shar-
ing of collaboration-unaware 3D models.

One approach to support collaboration-unaware 3D models
is to share the output of a VRML browser with an applica-
tion sharing tool. Application sharing allows a spatially
distributed group of users to view and interact with an
unmodified single-user application. It is typically realized
by intercepting the communication between the application
and the window system. Doing this, an application-sharing
software is able to multiplex the output of a single-user
application to multiple users and to forward their actions to
the application [16,14].

Unfortunately, application sharing is quite unsuitable for
sharing 3D content for the following reasons:

• The required data rate is extremely high. In order to be
of acceptable quality 3D content needs to rendered with
at least 20 to 30 frames per second. The sharing of 3D
content would therefore produce a data rate similar to
the transmission of an uncompressed video stream.
Even if an application sharing tool used a compression
algorithm with high compression rates (which current
application sharing tools do not do), the resulting data
rate would still be very high.

• The shared VRML browser cannot use the support of
3D accelerators, since the output of the shared applica-
tion must be transmitted to the other participants of a
session. If this output is calculated and stored only by a
3D accelerator, it cannot be accessed for transmission.

• The computer that runs the VRML browser is a single
point of failure and a potential bottleneck for the whole
system.

• Since there exists only one application, application shar-
ing does not allow different users to view the model
from different perspectives.

It is fairly easy to experience the impact of these problems
by using freely available application sharing software (e.g.,
Netmeeting [14]) to share an arbitrary VRML browser.
Even with high-end computers and very simple 3D models
the results produced by this approach are generally unac-
ceptable.

In order to avoid these problems we propose to use a fully
replicated distribution architecture. That is, a separate
instance of an application for the sharing of 3D models runs

on each participant’s computer. This application consists of
a VRML browser that is used as a 3D presentation engine,
and some additional software controlling the VRML
browser via the External Authoring Interface. The user can
instruct the additional software to load a collaboration-
unaware VRML model. The initial state of the model will
then be transmitted to all participants of a session and pre-
sented by the VRML browser of each participant. It is the
job of the additional software to make sure that the local
instances of the 3D model remain synchronized, so that the
users get the impression that they all are interacting with
the same model. This requires that two fundamental prob-
lems be solved:

• State access. It is vital to be able to get and set the state
of the 3D model. Session participants must be provided
with an initial state, latecomers with the current state,
and regular participants may need to be re-synchronized
with a state transmission if serious problems (e.g., net-
work partitioning) occur. Access to the state of collabo-
ration-unaware VRML models poses a problem since
standard VRML browsers do not allow the retrieval of
that information, and no standardized format exists for
the representation of VRML state.

• Sharing user interaction. Provided that all participants
received the same initial state for their local instance of
the 3D model, these instances will stay synchronized as
long as there are no user interactions with the model.
This is true since all other state changes of the 3D model
are deterministic and depend exclusively on the passage
of time (e.g., an animation as described above). How-
ever, as soon as a user starts interacting with the local
instance, the 3D model is in danger of becoming incon-
sistent. To prevent this a user action needs to be trans-
mitted to all participants of a session and then be
executed at all sites. However, one prerequisite of our
approach is that the 3D model is collaboration-unaware.
By definition such a model does not contain any mecha-
nisms to capture local user actions or to inject remote
user actions into the local model. How to circumvent
this limitation is the second key problem that has to be
solved.

It should be noted that additional problems need to be
addressed in order to enable the sharing of collaboration-
unaware 3D models. Examples are how to ensure synchro-
nization among all participants and how to support late-
comers in a scalable manner. However, these problems are
generic in nature and solutions to them should be reusable
for other media, such as shared whiteboards and networked
computer games. In the following section we will present
solutions to the two fundamental, medium dependent prob-
lems before tackling the medium independent problems in
Sections Five and Six.

4. MEDIUM SPECIFIC PROBLEMS

4.1 State Access
VRML browsers currently do not offer a standardized way
to save and restore the state of arbitrary VRML objects and
worlds. This is a severe constraint for applications which
use VRML browsers as 3D presentation and execution



engines. These applications are not restricted to 3D teleco-
operation applications for the sharing of 3D models. Rather
they are a large class of applications ranging from 3D
authoring tools to 3D presentation applications and multi-
user virtual reality systems. None of these applications is
currently able to access the state of arbitrary VRML con-
tent, even though this is vital to support fundamental func-
tionality such as saving and restoring a certain state or
transmitting it to a communication peer.

Given the universal need for such functionality, we devel-
oped an extension to the External Authoring Interface
(EAI). This extension allows external applications to get
and set the state of arbitrary VRML content in a standard-
ized manner. In order to support diverse applications, the
proposed methods allow not only the retrieval of a virtual
world’s full state, but also retrieval of the states of individ-
ual 3D objects. Since the results of state access should be
independent of browser implementations, we also specified
an encoding for state information. Data in this form is
either produced or consumed during state access. To encode
state information we use an efficient, easy-to-parse binary
encoding. A detailed description of the extended EAI and
the definition of the state format can be found in [13].

4.2 Sharing User Interaction
In order to solve the problem of sharing user interactions
with collaboration-unaware 3D content, the sensors of the
original model are automatically replaced with pre-built,
specialized script nodes (e.g., a cooperative version of a
touch sensor). These cooperative sensors have the same
VRML interfaces as the original sensor. They register with
the application controlling the VRML browser and allow it
to capture events produced by the local user and to inject

remote events into the local 3D model. The remaining parts
of the 3D model need not be changed in any way. Automat-
ically processing the collaboration-unaware model results
in semi-collaboration-aware VRML content that can be
shared by TeCo3D.

In order to demonstrate how the processing of 3D models
works, Figure 2 (a) shows an excerpt from a standard
VRML file. This fragment of VRML code contains a
TouchSensor  (line 13 - 14), waiting for the user to touch
(click on) some geometry. As the geometry is of no further
interest in this example, it is just indicated by three dots.
The second element in this example is aTimeSensor
(lines 15 - 17). As explained in Section 2, the user can acti-
vate theTouchSensor  by clicking on it. In Figure 2 (a)
this causes theTimeSensor  to start ticking, which can
then be used to control an animation, as in the moving
sphere example.

The processing needed to transform the original VRML
content into a semi-collaboration-aware VRML model is
shown in Figure 2 (b). For each sensor listening to user
input, an alternative implementation is supplied which is
called CoopX, where X is the name of the original sensor.
In this example aCoopTouchSensor  is declared in lines
3 - 10.  The declaration indicates that the actual implemen-
tation is contained in a file called CoopSensors.wrl.

Since the customized cooperative sensor has the same inter-
face as the sensor it replaces, the remaining VRML code
looks very similar to that in Figure 2 (a) except that the
TouchSensor  has been changed into aCoopTouch-
Sensor  (line 13).

 1 #VRML V2.0 utf8
 2
 3
 4
 5
 6
 7
 8
 9
10
11 Group {
12   children [
13     DEF TouchIt TouchSensor {
14    }
15     DEF Timer TimeSensor {
16       cycleInterval 5
17     }
18     ...
19   ]
20 }
21 ROUTE TouchIt.touchTime TO
22   Timer.startTime

(a)

#VRML V2.0 utf8

EXTERNPROTO CoopTouchSensor [
  field        SFString name
  eventOut     SFTime   touchTime
  ...
]
[
 “../CoopSensors.wrl#CoopTouchSensor”
]
Group {
  children [
    DEF TouchIt CoopTouchSensor {
    }
    DEF Timer TimeSensor {
      cycleInterval 5
    }
    ...
  ]
}
ROUTE TouchIt.touchTime TO
  Timer.startTime

(b)

Figure 2: Example of VRML content processing for TeCo3D



It is important to notice that the transformation of the
VRML model can be doneautomatically without human
intervention. This ensures that the user perceives TeCo3D
to provide true support for sharing collaboration-unaware
VRML models.

Figure 3 is a code excerpt from theCoopSensors.wrl
file. It shows how theCoopTouchSensor  is realized.
The sensor consists of two parts: a regularTouchSensor
and aScript  node referencing a Java class. An object of
the referenced class is generated whenever aCoopTouch-
Sensor  is used in a VRML model. This object registers
with the application for the sharing of 3D content as soon as
it is created, establishing the link between VRML content
and the application.

TheTouchSensor  (lines 8 - 10) is responsible to provide
the functionality of a standardTouchSensor  for the
CoopTouchSensor . The output of theTouchSensor
is routed (line 21) to the Java object of theScript  node.
Whenever an event is generated by theTouchSensor ,
this Java object notifies the application. The application can
then transmit the event to its peer instances. Vice versa, the
application can inject remote user interactions into the
script node, making the 3D model change its state as if the
local user had interacted with the model.

5. GENERALIZATION
Having solved the two media dependent problems, it is pos-
sible to access the state of arbitrary 3D models and to inter-
cept user interactions with a collaboration-unaware model.
While this functionality is certainly most important for the
sharing of collaboration-unaware 3D models, other issues
still need to be addressed. For example, latecomers need to
be supported in a scalable way and a mechanism is needed
to make sure that user interactions are executed simulta-

neously at all sites. It is common that these additional prob-
lems are solved in a medium specific fashion for a single
application, e.g., a shared whiteboard implementation or a
single networked computer game. In fact we have done so,
too, in a very early prototype of TeCo3D [10]. However,
further consideration reveals this to be a waste of resources.
Neither could the solution developed for TeCo3D be reused
for other applications nor can existing solutions be reused
for TeCo3D.

In order to make the solution to common problems for dis-
tributed interactive media reusable, we propose to general-
ize them. To this end we defined an abstract media model,
so that problems and solutions can be discussed indepen-
dent of any specific medium. Furthermore, we designed an
application level protocol called RTP/I, which captures the
common aspects of this media class. Generic services, such
as synchronization and latecomer support, can then be
developed in a reusable fashion based only on the informa-
tion provided by the media model and the application level
protocol rather than on medium specific knowledge.

5.1 Media Model
In order to provide a generic service that is reusable for a
whole class of media, it is important to investigate the com-
monalities of this media class. In the following we give a
brief overview of the characteristics of the distributed inter-
active media class. A more detailed discussion can be found
in [13].

States and Events
A distributed interactive medium has astate. In TeCo3D
this is the state of the shared 3D models. In order to per-
ceive the state of a distributed interactive medium, a user
needs anapplication, e.g., the TeCo3D application allows a
user to view the state of shared 3D models. The application
generally maintains a local copy of (parts of) the medium’s
state. Applications for distributed interactive media are
therefore said to have areplicated distribution architecture.
For all applications participating in a session the local state
of the medium should be at least reasonably similar. To
guarantee this, it is necessary to synchronize the local cop-
ies of the distributed interactive medium’s state among all
participants, so that the overall state of the medium iscon-
sistent.

The state of a distributed interactive medium can change for
one of two reasons, either bypassage of time or byevents.
The state of the medium between two successive events is
fully deterministic and depends only on the passage of
time. Generally, a state change caused by the passage of
time does not require the exchange of information between
applications, since each user’s application can indepen-
dently calculate the required state changes. An example of a
state change caused by the passage of time is the animation
of an object (such as the moving red sphere).

Any state change that is not a fully deterministic function of
time is caused by anevent. Generally events are (user)
interactions with the medium, e.g., the user clicks on the
red sphere to start an animation. Whenever events occur,
the state of the medium is in danger of becoming inconsis-
tent. Therefore, an event usually requires the applications to

 1 #VRML V2.0 utf8
 2
 3 PROTO CoopTouchSensor [
 4   eventOut     SFTime   touchTime
 5   ...
 6 ]
 7 {
 8   DEF TheTouchSensor TouchSensor {
 9     ...
10   }
11   DEF TheCoopTS Script {
12     url   “TeCo3D.netsensors.
13           CooperativeTouchSensor.class”
14     field SFString theName IS name
15     ...
16     eventIn  SFTime set_touchTime
17     eventOut SFTime touchTime_changed
18                     IS touchTime
19   }
20   ...
21   ROUTE TheTouchSensor.touchTime TO
22         TheCoopTS.set_touchTime
23 }

Figure 3: Implementation of cooperative sensors



exchange information - either about the event itself or about
the updated state once the event has taken place. For the
sharing of 3D models the events are the user actions as they
are captured by the cooperative sensors.

Partitioning the Medium - Sub-Components
In order to provide for a flexible and scalable handling of
state information, it is desirable to partition an interactive
medium into severalsub-components. In addition to break-
ing down the complete state of an interactive medium into
more manageable parts, such partitioning allows the partic-
ipants of a session to track only the states of those sub-com-
ponents in which they are actually interested. Examples of
sub-components are individual shared 3D objects or the
pages of a shared whiteboard.

Discrete vs. Continuous Media
Distributed interactive media can be sub-divided intodis-
crete and continuous distributed interactive media. While
discrete distributed interactive media (e.g., shared white-
boards) change their state only in response to events, con-
tinuous distributed interactive media (e.g., shared dynamic
and interactive 3D models) may also change their state
because of the passage of time. In order to ensure consis-
tency discrete media need to make sure that events are
applied to the shared state in the correct order. Continuous
media must execute events in the proper order and at the
correct point in time. If these conditions are not met the
state of the distributed interactive medium may become
inconsistent and the shared state may require a repair.

5.2 RTP/I
While the media model provides a first insight into the dis-
tributed interactive media class, the design and implemen-
tation of generic functionality requires a more formal
foundation. The Real Time Application Level Protocol for
Distributed Interactive Media (RTP/I) [12] provides such a
foundation.

RTP/I consists of two parts: a data transfer protocol for the
transport of event and state information, and a control pro-
tocol for meta-information about the medium and the par-
ticipants of a session:

• Thedata transfer protocol (RTP/I) frames the transmit-
ted states and events of the medium with information
that is common to the distributed interactive media
class. Given this information generic services can inter-
pret the semantics of events and states without knowing
anything about their medium-specific encoding. Typical
examples of the information contained in the RTP/I data
framing are a timestamp, which indicates at what time
an event happened or a state was calculated, an identi-
fier for the affected sub-component, and the type of the
data (event vs. state information). In addition to state
and event transmission RTP/I is also used to request the
state of a sub-component in a standardized manner.

• The RTP/I control protocol (RTCP/I) conveys informa-
tion about the participants of a session. This includes
the participants’ names and email addresses. This infor-
mation can be used to establish a light-weight session
control. Moreover, RTCP/I provides information about
the sub-components that are present in a session. Infor-

mation about each sub-component is regularly
announced. It includes the identifier and the application
level name of the sub-component.

RTP/I is closely related to the Real Time Transport Protocol
(RTP) [7], which is mainly used for the transmission of
audio and video. However, while RTP/I reuses many
aspects of RTP, it has been thoroughly adapted to meet the
needs of distributed interactive media.

6. GENERIC SERVICES
Based on the media model and RTP/I we are able to provide
additional functionality for TeCo3D in the form of generic
services that can be reused for other distributed interactive
media. We have developed three generic services: a consis-
tency service for continuous distributed interactive media, a
late-join service for the scalable support of latecomers, and
a recording service for the recording and replay of sessions
involving distributed interactive media. While TeCo3D is
the first application to use these services there are currently
three additional applications that are in the process of
adopting them: a shared whiteboard (mlb) [22], a toolkit for
remotely controlled Java applets for teleteaching [8], both
developed at the University of Mannheim, and the Audio
Enabled Multicast VNet project [19] at the Communica-
tions Research Center in Ottawa/Canada.

6.1 Consistency
Consistency has long been a research issue in the study of
discrete distributed interactive media. Generally speaking,
consistency for discrete distributed interactive media entails
finding a ’correct’ sequence of all the events generated by
the participants of a session and making sure that, at all par-
ticipating sites, the state of the medium looks as if all events
had been executed successfully in that particular sequential
order [20,9]. A number of different approaches exist to
ensure consistency for discrete distributed interactive
media. These range from a strict single user floor control
policy to more sophisticated algorithms such as operational
transformation [20].

To understand the challenge behind achieving consistency
for continuous distributed interactive media, consider the
following example: Imagine a shared 3D model of a train
that is approaching a switch. The session is attended by two
spatially separated users, Ua and Ub. Just before the train
arrives at the junction, Ua operates the switch (e.g., by
clicking on it). In the copy of Ua’s model the event takes
place immediately. However, the information about Ua hav-
ing operated the switch will arrive at the copy of Ub’s
model at a later point in time. Applying the operation at this
point in time to Ub’s copy could lead to an inconsistent
state, because the train might have already passed the
switch in Ub’s copy of the model.

As shown by the example, consistency forcontinuous
media requires that the result of all events look as if the
events had been executed at the correct point in time in
addition to having been executed in the proper order. The
algorithms for establishing consistency in the discrete
domain can therefore be regarded as insufficient for the
continuous domain.



The first step to understanding how to realize consistency
for continuous distributed interactive media is to specify a
consistency correctness criterion. This criterion defines the
term consistency for the continuous domain. In a second
step we will then show how this criterion can be guaranteed
through the use of a generic consistency service.

Consistency Correctness Criterion
A continuous distributed interactive medium is a distributed
medium that changes its state in response to (user initiated)
events as well as in response to the passage of time. This
definition implies that the medium has access to a physical
clock that can be used to measure the progress of time. We
assume that the physical clocks of all the participants are
reasonably synchronized, e.g., using NTP [15] or GPS
clocks.

In continuous distributed interactive media a user-initiated
event needs to be executed at a specific point in time,
denoted by its timestamp. We assume that there exists a
total ordering on all events established by using the times-
tamps of the events and an additional tiebreaker (e.g., the
IP-address of the sender) for simultaneous events. This
ordering relation is calledcomplete physical time ordering
relation.

The consistency criterion for continuous distributed inter-
active mediacan then be specified as follows: A continuous
distributed interactive medium isconsistent if some time
after all events have been executed at all sites, the state of
the medium at all sites is identical to the state which would
have been reached by executing all events in the order given
by the complete physical time ordering relation at the phys-
ical time denoted by the timestamps of the events.

Ensuring the Consistency Correctness Criterion
We have implemented a generic service that guarantees the
consistency criterion for continuous distributed interactive
media. The fundamental idea of this service is to delay
events that are generated by the local user until it is likely
that all other participants will have received the event. That
is, the timestamp of an event is greater than the time the
event was issued by the user. We call this method local lag
[11]. Given local lag the event can be executed simulta-
neously at all sites. This comes at the cost of a lower
responsiveness of the medium, since events are not exe-
cuted immediately. Preliminary perceptional psychological
experiments have shown that a delay value of below 80 ms
cannot be noticed by a user independent of the performed
action (e.g., click event, drag event, etc.). Furthermore,
users adapt to the local lag rather quickly, making delays of
up to 200 ms acceptable even if they are noticeable. A value
of 100 to 200 ms is generally sufficient, even for interconti-
nental sessions, to compensate the network induced latency.

While the introduction of local lag makes it likely that an
event is executed simultaneously at all sites, it cannot guar-
antee this. After all, the transmitted event might need multi-
ple retransmissions due to packet loss before it arrives
successfully at a given participant. In this case a state repair
will be required, since the overall state of the medium is in
danger of becoming inconsistent. In general there are multi-
ple algorithms that could be used to repair the problem

[11]. In our generic consistency service a participant who
receives an event late requests the transmission of the cor-
rect current state from another participant. In order to make
sure that the participant who replies to a request holds a
valid state for the affected sub-component, we use a floor
control mechanism. Only the holder of the floor for a spe-
cific sub-component is allowed to generate events and to
reply to state queries for that sub-component. The floor
holder therefore always knows the correct state of the sub-
component. The floor control mechanism we use is robust
to the failure of a floor holder and it can cope with duplicate
floor holders. Moreover, the floor can be passed to another
participant in a way that guarantees that the new floor
holder has a correct state. More details about the floor con-
trol mechanism and consistency in continuous distributed
interactive media can be found in [13].

Both the local-lag-based consistency mechanism and the
floor control mechanism are realized as generic services
that rely exclusively on the media model and RTP/I. Other
RTP/I-based applications may reuse them without further
modifications.

6.2 Late-Join
When a participant joins an ongoing session it is necessary
to provide the application of this participant with the cur-
rent states of the sub-components present in the session.
For example, if several 3D models are shared in a session, a
latecomer will need to receive the state of these models
before being able to participate in the session.

Since distributed interactive media regularly involve a
group of multiple users, it is important that this be done in a
scalable and efficient manner. We have developed a generic
late-join service with these properties [21]. It can be used
for arbitrary distributed interactive media.

Figure 4: Architecture of the late-join service

The architecture of the generic late-join service is depicted
in Figure 4. The late-join service intercepts the data (events,
states, and requests for states) that arrives from the base
session. Since the data is transmitted using RTP/I the
generic late-join service can understand the semantics of
this data to a degree sufficient to provide the late-join func-
tionality. Knowledge about the medium-specific encoding
is not required. After examining the data the late-join ser-
vice forwards it to the application.

The application transmits all regular data directly to the
base RTP/I session without informing the late-join service.
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Late-join information is handed from the application to the
late-join service. An example of this type of information is
the state of a sub-component that is required by the late-join
service to support a remote latecomer. The reason for pass-
ing this data to the late-join service instead of transmitting
it over the base RTP/I session is as follows: the generic late-
join service maintains an additional late-join RTP/I session.
This session is used to transmit all late-join oriented data.
The late-join service joins and leaves this additional RTP/I
session at appropriate times. This ensures that only a small
subset of all participants needs to handle late-join data.

Finally there exists a generic services channel. This channel
is shared by all generic services. It is used to convey signal-
ling data for the generic services. An application remains a
member of the generic services channel for the lifetime of a
session.

When joining an ongoing session the late-join service will
learn about the sub-components that are present in a session
through the RTCP/I reports on sub-components. Whenever
a new sub-component is detected the late-join service
informs the application and requests information on how to
perform the late-join for that sub-component. The applica-
tion may choose between a set of policies:

• No late-join. The application is not interested in the
state of the sub-component.

• Immediate late-join. The application needs the state of
the sub-component as fast as possible.

• Event-triggered late-join. The application needs the
state of the sub-component only when an event is
received that targets this sub-component.

• Bandwidth-oriented late-join. The application
requires that the state of this sub-component is only
requested when the bandwidth consumed by the session
falls below a certain limit.

When the condition occurs that was specified by the policy,
the state of the sub-component is requested by the late-join
service. This is done by transmitting RTP/I state queries to
the late-join group using a message implosion avoidance
mechanism. This mechanism makes sure that no message
implosion occurs if multiple latecomers want to request the
state of the same sub-component at the same time. A simi-
lar mechanism was first used by SRM [4] to achieve a scal-
able reliable multicast. In order to avoid a message
implosion, the late-join service waits a random length of
time before transmitting an RTP/I state query. Any other
late-join service that wants to send a state query for the
same sub-component suppresses this message when it sees
that the message has already been transmitted by someone
else. This can effectively prevent a message implosion.

The request is repeated if there is no answer after a certain
amount of time. If multiple requests for the sub-compo-
nent’s state go unanswered, it is concluded that there is no
application present in the late-join group who can send the
state of that sub-component. In this case the late-join ser-
vice will use the generic services channel to request that a
participant who is able to transmit the state of the sub-com-

ponent joins the late-join session and transmits the state. If
this too fails the application is informed.

Once the late-join service receives the desired state infor-
mation, it passes it on to the application and marks this sub-
component as complete. When there are no new sub-com-
ponents detected for a period of time and all sub-compo-
nents have been marked as complete, then the late-join is
finished. At that time the late-join service may leave the
late-join group. However, in order to serve other latecomers
an application will stay a member of the late-join group for
a certain period of time even when it has completed its late
join. This period of time is dynamic and depends on the
value the local application has for other late-comers. For
example, the more states of sub-components the application
can serve to other latecomers, the longer will it stay a mem-
ber of the late join RTP/I session.

By means of the generic late-join service arbitrary applica-
tions that rely on RTP/I can join an ongoing session in a
scalable and efficient way. The ability to specify policies
allows easy adaptation of the service to the specific needs
of a given application.

6.3 Recording
The ability to record a session is one of the most important
and universally needed aspects of video-conferencing. So
far the generic recording of audio and video streams has
been investigated and understood to a large extent [6]. Due
to the lack of a common framing protocol, ageneric record-
ing service for distributed interactive media was long
thought to be infeasible.

However, since RTP/I provides the required information,
we have been able to develop a generic recording service
that can be used to record and replay sessions involving
both RTP-based audio and video streams and RTP/I-based
distributed interactive media sessions [5]. The recording
service allows near-random access to the recording and it is
based exclusively on the common aspects of audio/video
and distributed interactive media as they are exposed by
RTP and RTP/I.

The main idea of the generic recording service for distrib-
uted interactive media is to record the RTP/I packets as they
are transmitted during a live session. Later on, the stream of
packets can be replayed in the proper order and timing as
provided by the RTP/I header information. The timestamps
of the replayed packets need to be re-calculated so that they
match the replay time. The stream produced in this way can
be interpreted and presented to a user by an unmodified
application, just like the stream of a regular session. It is
therefore not necessary to develop special viewers for the
recorded sessions.

One challenging aspect of the development of a generic
recording service for distributed interactive media is the
realization of random access to the recorded stream. The
main problem here is that the listening applications need to
get the current state of the medium before they are able to
follow the recorded stream. Since the recorder is generic, it
will not be able to calculate this required state information.
Instead it will need to transmit a combination of recorded
packets which puts the receivers into the desired state at the



access position. If the medium has just one sub-component
and if the state of that sub-component is inserted frequently
into the live stream, a very simple mechanism for random
access would be: Start the reply at a time close to the
desired access point, where a state transmission was
recorded. In the event that the live stream of a medium does
not normally contain frequent state transmissions, the
recording service will be able to request this information
during the recording by using the appropriate RTP/I mecha-
nisms.

A more sophisticated random access method which sup-
ports realistic applications with more than one sub-compo-
nent or discrete media types with heavy weight states can
be found in [5].

7. TECO3D ARCHITECTURE
The TeCo3D architecture (see Figure 5) combines the ele-
ments presented so far to form an application which is able
to share collaboration-unaware 3D models. All elements
have been developed completely in Java. As a 3D presenta-
tion engine we use the Java3D VRML browser [26], which
we have extended to support the state access methods
described above. At the start-up of the application, the
VRML browser is loaded with an empty VRML world.
When the local user imports a collaboration-unaware 3D
object into the shared workspace, this object is processed so
that it becomes semi-collaboration-aware. The processed
object is then added to the VRML world by means of a reg-

ular EAI call. As the object is loaded into the VRML
browser, the collaborative sensors register with the applica-
tion. In this process they are assigned a unique ID so that
remote events can be routed to the correct cooperative sen-
sor.

The browser and the cooperative sensors are controlled by
TeCo3D specific functionality. This is accomplished by
using EAI calls and direct access to the script nodes that
implement the cooperative sensor functionality. The
TeCo3D specific functionality is supported by the generic
functionality for consistency and latecomers. In turn, these
generic services rely on RTP/I.

The generic recording service is not part of the TeCo3D
architecture. Rather it is a separate application that con-
nects to an existing TeCo3D session, either to record the
session or to replay a previously recorded one.

Reliable communication over UDP multicast and UDP uni-
cast is enabled by a reliability service. Currently we use the
iBus library for this purpose [17]. In future versions of
TeCo3D we will use a reliability service that is tailored to
the specific needs of distributed interactive media. For
example, such a reliability service would allow us to add
redundancy to the transmission of events, so that state
repairs due to lost and retransmitted events would become
less likely.

Figure 5: TeCo3D architecture
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Once a 3D model has been loaded into the shared work-
space of a single participant two important things might
happen. First, if there is more than one participant present
in the session, the initial state of the 3D model needs to be
extracted from the VRML browser and transmitted to the
other participants. Once a remote application has received
this state information, it can load the 3D model into the
shared workspace. Besides the initial transmission of a new
sub-component’s state, the ability to extract, transmit, and
set the state of sub-components is also needed to support
the synchronization and the late-join services.

The second thing that could happen is that the user starts
interacting with the 3D model. The actions of the local user
are captured by the cooperative sensors that have been
inserted into the model during the pre-processing. When
informed about a local event, the TeCo3D specific function-
ality takes two actions. First, it hands the event to the
generic synchronization service, which is responsible to
ensure that the event is delayed by the proper amount of
local lag before it is applied to the local 3D model. Second,
it is handed to RTP/I for framing and transmission. After
the time specified for the local lag has elapsed, the synchro-
nization service hands the event back to the TeCo3D spe-
cific functionality, which in turn injects the local event into
the 3D model.

When a remote event is received, it is handed directly to the
synchronization service. There it is checked whether the
event was received in time. If this is the case, then the event
will be buffered for the time that this event arrived early.
After this buffering it is treated exactly like a local event
(i.e., it is forwarded to the TeCo3D specific functionality
and then injected into the 3D model). If the event has not
been received in time (e.g., because of packet loss and
retransmission), the synchronization service triggers the
repair of the damaged state.

The TeCo3D architecture shows that only a minimal part of
the application needs to be developed in a media-specific
way. The generic services, the handling of the application
level protocol, and the reliability mechanisms are all real-
ized in a reusable form.

8. EXPERIENCES AND PERFORMANCE
The telecollaboration with collaboration-unaware VRML
content using TeCo3D has been demonstrated with differ-
ent VRML models on several occasions. The simple exam-
ple displayed in Figure 6 shows how a piece of furniture
can be assembled from a number of parts. It is a single-user
model that has been taken from a web page. With the help
of TeCo3D this single-user model can also be used in a
cooperative fashion. SIEMENS plans to use the TeCo3D
application as a starting point for the development of a 3D
telecollaboration product for call-center and help-desk
solutions.

Breaking down the application into several generic compo-
nents has proven to be a good idea. The reusability of com-
ponents is very important for distributed interactive media,
especially since they tend to be complex and tedious to
implement.

In addition to the reusability argument, the subdivision into
components also improved the overall architecture of
TeCo3D. In this context it is noteworthy that the late-join
service has been designed and implemented completely
separate from the remainder of the TeCo3D application.
Nevertheless, the integration of the service into the TeCo3D
application took only a couple of hours and worked right
away. This shows that the concept of generic and reusable
services based on RTP/I is valid and provides a significant
improvement over a situation in which services are applica-
tion-dependent.

While we were well satisfied with the overall performance
of the TeCo3D prototype in almost all tests we have con-
ducted, one issue needs to be addressed before it can be
brought to product-level quality:

With the Java3D VRML browser that we used for our pro-
totype the state access is rather slow. Extracting and encod-
ing state information can be done within an acceptable
length of time, in the range of 10ms to 200ms on a com-
puter with a Intel PII 400 processor. However, the decoding
of state information and the creation of the 3D model from
this information is very slow for complex VRML models
(e.g., the well known Floops cartoon). It can range between
50ms and several seconds. Values of more than 200ms to
400ms do lead to a noticeable delay and distract the user.
We attribute this performance problem to the Java imple-
mentation of the state decoding functionality.

Currently all major VRML browsers have become available
in sourcecode format. We would therefore recommend to
use a C/C++ based professional VRML browser implemen-
tation as the 3D presentation engine for a TeCo3D product.
A prime candidate would be the blaxxun Contact VRML
browser [5]. This should alleviate the performance problem
of decoding VRML state.

Besides experimenting with the TeCo3D prototype we also
evaluated the performance of the generic consistency and
late join services. The performance of the recording service
was not evaluated since it does not provide time critical
functionality.

At the start of this prototype’s development we anticipated
problems with the consistency service for two reasons:

• Java might be too slow to provide for accurate synchro-
nization, and

• NTP might be too inaccurate, causing frequent short-
term inconsistencies even with high values for local lag.

Experimenting with our prototype, we were surprised to
learn that neither problem occurs in reality. A whole pas-
sage of an event from the generation inside the VRML
browser on one machine to the delivery of the event to the
VRML browser of another machine took less than 6ms in a
local network with two 400MHz Intel PII PCs. This
includes all protocol overhead and the processing in the
synchronization service. Furthermore, NTP proved to be
very accurate. Even when NTP servers from different coun-
tries were used, the time offset rarely exceeded 20 to 30ms.
These values are very acceptable for local-lag-based syn-
chronization.



To further examine the performance of the consistency ser-
vice we calculated the average amount of time required to
repair an inconsistent state that could not be prevented by
local-lag. In general the amount of time required for this
task consists of three main components: (1) the network
latency, (2) the time needed by the floorholder to extract
and transmit the state for the affected sub-component and
(3) the time required by the application to decode and apply
that state. Given average network delays of 50ms to 100ms
for a session within one continent, and the time required to
encode and decode the state of 3D models as discussed
above, we expected that TeCo3D will correct an inconsis-
tent state within a fraction of a second for low to medium
complexity models while complex models such as a full
Floops cartoon might take multiple seconds - dominated by
the slow state decoding in the prototype.

Preliminary experiments validated this expectation. The
repair of an inconsistent moving sphere needed less that
50ms on a LAN, while the repair of an inconsistent Floops
cartoon required several seconds. This suggests that the
performance of the consistency service is acceptable while
the state encoding in the VRML browser needs further
improvement.

The performance of the late join service can be split into
two parts. The first part is the amount of time required until
a late-comer knows about the existence of all sub-compo-

nents in a session. The second part is how long it takes to
request and receive the state of an individual sub-compo-
nent. As long as there is an application present in the late
join group which can answer the state request immediately,
the second part is very similar to the situation described for
repairing an inconsistent state. We therefore concentrate on
examining how long it takes for a late-comer to receive
information about all sub-components.

The RTP/I control protocol transmits information about the
sub-components present in a session in regular intervals.
These intervals are determined so that the control protocol
does not exceed a given bandwidth. The time required for a
late-comer to learn about all sub-components in a session is
therefore proportional to the number of sub-components
and the average amount of data transmitted for each sub-
component. The amount of data transmitted for each sub-
component, in turn, is dominated by the length of the appli-
cation level name chosen for the sub-component. For exam-
ple, in a session with 100 sub-components, average
application level names of 20 bytes, and a maximum
RTCP/I bandwidth of 4 kbit/s each sub-component is
announced once every 5 to 6 seconds. Summarizing we
expected that as long as there is no packet loss, a late-comer
will know about all sub-components within a small amount
of time on the order of a few seconds. This expectation was
met by experiments with the TeCo3D prototype.

Figure 6: Screen Shot of TeCo3D



9. CONCLUSION
We have presented a method for sharing interactive and
dynamic 3D models that are collaboration-unaware. The
TeCo3D application discussed here requires that these 3D
models be defined in VRML. However, our solution can
easily be adapted to other 3D description formats such as
X3D, the successor of VRML.

We proposed to use a distributed approach for TeCo3D
since centralized architectures like application sharing have
severe drawbacks for the sharing of 3D content (e.g., band-
width usage, inability to use 3D accelerators, single point of
failure). The problems that had to be solved to enable a dis-
tributed architecture were divided into two classes: those
that are specific to the sharing of 3D models, and general
problems that also occur for other distributed interactive
media.

The first media specific problem was how to access the
state of arbitrary 3D models. We solved it by extending the
External Authoring Interface of an existing VRML browser
with the capability to transparently get and set the state of
arbitrary VRML content. The second problem was to inter-
cept the user interaction with the collaboration-unaware 3D
model. The solution was to automatically replace the sen-
sors that are responsible for the user interaction with cus-
tomized collaborative sensors.

We solved the generic problems of consistency, scalable
support for latecomers, and session recording such that
these solutions can be reused for other distributed interac-
tive media. In order to make this possible we used the
RTP/I application level protocol for distributed interactive
media as a foundation of our application. All other applica-
tions that are based on RTP/I will be able to apply our solu-
tions to the generic problems. There are currently three
applications under development which will do so: a shared
whiteboard (mlb) [22], and a toolkit for remotely controlled
Java applets for teleteaching [8], both developed at the Uni-
versity of Mannheim, and the Audio Enabled Multicast
VNet project [19] at the Communications Research Center
in Ottawa/Canada.

The implementation of TeCo3D has been done completely
in Java. The Java3D browser was extended by the function-
ality for state access and used as a 3D presentation engine.
SIEMENS plans to use the TeCo3D application as a start-
ing point for the development of call-center and help-desk
solutions.
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