
RTP/I - Towards a Common Application Level
Protocol for Distributed Interactive Media

Martin Mauve, Volker Hilt, Christoph Kuhm�unch, Wolfgang E�elsberg

Abstract|Distributed interactive media are media that in-
volve communication over a computer network as well as
user interactions with the medium itself. Examples of this
kind of media are shared whiteboard presentations and net-
worked computer games. One key problem of this media
class is that a large amount of common functionality is cur-
rently redesigned and redeveloped for each single medium.
In order to solve this problem we present a media model and
an application level protocol called RTP/I. Derived from
the experience gained with audio and video transmission
using RTP, RTP/I is de�ned as a new protocol framework
which reuses many aspects of RTP while it is thoroughly
adapted to meet the demands of distributed interactive me-
dia. By identifying and supporting the common aspects
of distributed interactive media RTP/I allows the reuse of
key functionality in form of generic services. Furthermore
RTP/I makes it possible for applications of di�erent vendors
to interact with each other in a standardized way.

Index Terms|Distributed Interactive Media, Multime-
dia Communication and Networking, Transport Protocols.
Shared Whiteboard Systems, Networked Computer Games,
Distributed Virtual Environments

I. Introduction

T
HE class of distributed interactive media, i.e., net-
worked media involving user interaction, has received

increasing interest over the past decade. Important repre-
sentatives of this media class are shared workspaces [1],
[2], distributed virtual environments [3] and networked
computer games [4]. These media often require common
functionality. A prominent example is late join support,
which allows late coming participants to synchronize with
the current state of the session. Support for late com-
ers is needed by almost all distributed interactive media,
ranging from shared whiteboards to networked computer
games. Other functionality frequently needed is support
for consistency, timing, and session recording. Currently
this common functionality has to be designed and imple-
mented individually for each application. This leads to a
tremendous overhead in the development of applications for
this media class and, at the same time, to many incompat-
ible proprietary implementations. Thus even applications
for the same media type but developed by di�erent vendors
cannot interact with each other.

The main reason for this problem is the lack of a stan-
dardized protocol framework upon which applications and
reusable functionality could be based. To solve this prob-
lem we developed (1) a media model, so that it is possible
to discuss problems and solutions independent of an in-
dividual medium and (2) a standardized application level
protocol framework to be able to make applications inter-
operable and to allow the direct reuse of common function-
ality as so called generic services. The protocol framework
is called "Real-Time Application Level Protocol for Dis-
tributed Interactive Media" (RTP/I).

In Section Two we discuss existing approaches that have
been proposed for communication in distributed interactive
media. In the third section we investigate important as-
pects of the distributed interactivemedia class and describe
how it di�ers from other media classes. Section Four covers
important design considerations that should be taken into
account when developing a protocol for this media class.
This includes issues like identi�cation of data units, con-
sistency, fragmentation and meta information. With these
requirements explained, we introduce the "Real-Time Ap-
plication Level Protocol for Distributed Interactive Media"
(RTP/I) in Section Five. The sixth section describes how
we have used RTP/I for the development of applications
and generic services. Section Seven concludes this paper
with a summary and an outlook.

II. Existing Approaches

A large number of proprietary application level proto-
cols for speci�c distributed interactive media have been
developed, including protocols for shared whiteboard appli-
cations, networked computer games or distributed virtual
environments. These protocols are application or media
dependent and they do not capture the common aspects
of the distributed interactive media class. Therefore it is
not possible to develop generic and reusable functionality
based on these protocols.

For distributed non-interactive media, such as audio and
video, the Real-Time Transport Protocol (RTP) [5] has
been developed. RTP is a exible protocol framework
that can be tailored to the speci�c needs of di�erent non-
interactive media. RTP has been very successful, it is cur-
rently used by the majority of tools for streaming audio
and video over the Internet. RTP has also been used for
some distributed interactive media (e.g., the digital lecture
board (dlb) [2] and DIVE [3]).

The main reason why it is not a good solution to use RTP
for distributed interactivemedia is that audio and video fol-
low a fundamentally di�erent mediamodel than distributed



interactive media. Audio and video transmissions have an
ephemeral state which is frequently and redundantly trans-
mitted. In addition the state of the medium is inuenced
only by a single entity - the sender of the stream. In con-
trast distributed interactive media are about managing the
shared state of a medium. All participants are potentially
able to change that state. The key problem of this me-
dia class is to keep the shared state reasonably similar for
all participants of a session, i.e., to maintain consistency.
These fundamental di�erences in the media models prevent
RTP from being an optimal �t for distributed interactive
media. For an in-depth discussion on why not to use RTP
for distributed interactive media the reader is referred to
[6].
Despite of the fact that RTP has been developed with the

audio/video media model in mind, it includes many aspects
which are also useful for distributed interactive media. Ex-
amples are participant identi�cation, time-stamps, and the
general concept of a exible protocol framework. However,
because of RTP's audio/video based media model it is not
appropriate to use this protocol directly for distributed
interactive media. For these reasons the Real-Time Ap-
plication Level Protocol for Distributed Interactive Media
(RTP/I) presented here is a separate protocol which reuses
many aspects of RTP while it is thoroughly adapted to
meet the demands of distributed interactive media.
It has also been proposed to use a reliable multicast

framework like the Reliable Multicast Framing Protocol
(RMFP) [7] as a foundation for the communication in dis-
tributed interactive media. This approach is mainly based
on the observation that many elements of this media class
require some degree of reliability. Furthermore, reliable
multicast protocols typically provide a number of mecha-
nisms that are directly applicable to distributed interactive
media, such as application-level naming, message ordering,
and participant identi�cation.
There are two main reasons why a reliable multicast

framework is not an appropriate base for a common appli-
cation level protocol for distributed interactivemedia: �rst,
there exist many distributed interactive media which either
do not need reliability or which do not use multicast. Sec-
ond, a reliable multicast framework is generally applicable
to several media classes, ranging from bulk-data transfer
to distributed interactive media. Therefore, it should not
capture aspects which are only relevant to a single media
class. However, this is exactly the information required to
develop reusable functionality.

III. Distributed Interactive Media

A. Classi�cation of Distributed Media

In order to de�ne the scope of our work, we distinguish
between distributed media types by means of two crite-
ria. The �rst criterion ascertains whether the medium
is discrete or continuous. The characteristic of a discrete
medium is that its state is independent of the passage of
time. Examples of discrete media are the shared viewing
of still images or shared whiteboard presentations. While
discrete media may change their state, they do so only

in response to external events, such as a user drawing on
a digital whiteboard. The state of a continuous medium,
however, depends on the passage of time and can change
without the occurrence of external events. Video and ani-
mations belong to the class of continuous media.
The second criterion establishes whether media are in-

teractive or non-interactive. Non-interactive media may
change their state only in response to the passage of time
and they do not accept external events. Typical representa-
tions of non-interactive media are video, audio and images.
Interactive media are characterized by the fact that their
state can be changed by external events such as user inter-
actions. Shared whiteboard presentations and distributed
virtual environments represent interactive media. Figure 1
depicts how the criteria characterize di�erent media types.

interactive media

continuous m
edia

discrete m
edia

non-interactive media

video transmission

shared whiteboard

of images 
shared viewing

distributed
animation

Fig. 1. Examples of Distributed Media

Distributed media that are neither interactive nor contin-
uous are well understood and therefore discussed no further
here. Media types that are non-interactive and continuous
have already been investigated to a large extent in the con-
text of audio and video transmission. Especially RTP [5]
provides a solid base for the development of applications
and services for this media class.
In contrast, proprietary protocols are used by almost all

applications for distributed interactive (continuous, as well
as discrete) media. The usage of proprietary protocols pro-
hibits the development of generic services for important
aspects such as recording or support for late comers. How-
ever, generic services like these would be within reach if
distributed interactive media would share a common ap-
plication level protocol for the data they transmit. RTP/I
is such a protocol.

B. Model for Distributed Interactive Media

A distributed interactive medium has a state. For exam-
ple, the state of a shared whiteboard presentation is de�ned
by the content of all pages present in the shared white-
board. In order to perceive the state of a distributed inter-
active medium a user needs an application, e.g., a shared



whiteboard application is required to see the pages of a
shared whiteboard presentation. This application gener-
ally maintains a local copy of (parts of) the medium's state.
The architecture of applications for distributed interactive
media is therefore said to be replicated. For all applications
participating in a session the state of the medium should
be at least reasonably similar. It is therefore necessary to
synchronize the local state of the distributed interactive
medium among all participants, so that the state of the
medium is consistent.

The state of a distributed interactive medium can change
for two reasons, either by the passage of time or by events.
The state of the medium between two successive events is
fully deterministic and depends only on the passage of time.
Generally, a state change caused by the passage of time
does not require the exchange of information between ap-
plications, since each user's application can independently
calculate the required state changes. An example of a state
change caused by the passage of time is the animation of
an object moving across the screen.

Any state change that is not a fully deterministic func-
tion of time is caused by an event. Examples for events are
user interactions with the medium, e.g. an annotation on
a shared whiteboard page or the generation of a random
number. Whenever events occur, the state of the medium is
in danger of becoming inconsistent because the local copies
of the state might cease to be synchronized. Therefore, an
event usually requires that the applications exchange infor-
mation - either about the event itself or about the updated
state once the event has taken place.

In order to provide for a exible and scalable handling of
state information, it is often desirable to partition an inter-
active medium into several sub-components. In addition to
breaking down the complete state of an interactive medium
into more manageable parts, such partitioning allows the
participants of a session to track only the states of those
sub-components in which they are actually interested. Ex-
amples of sub-components are 3D objects (an avatar or a
car) in a distributed virtual environment, or the pages of a
shared whiteboard.

While it would be conceivable to declare all the infor-
mation that is required by the application to display the
distributed interactive medium, to be part of the medium's
state, this is generally not desirable. Often a substantial
part of the information needed by a participant in order to
render a medium's state remains constant over the course
of a session. We call this constant information the envi-
ronment of a distributed interactive medium. Examples
of environments are the base world descriptions of dis-
tributed virtual environments, or the postscript slides of
shared whiteboard presentations. Since the environment
stays constant, there are no mechanisms required to syn-
chronize it among the participants of a session - the en-
vironment information just needs to be received once by
each participant of a session. Since the environment does
not need a real-time protocol, we do not further investigate
how the environment is shared between participants.

It can be derived from our model that four main ele-
ments are involved in a distributed interactive media ses-
sion: the application, the environment, states, and events.
As described above, only the transmission of states and/or
events needs the support of a common application level
protocol. Event and state transmissions form the basis of
a distributed interactive media stream. Note, that the term
stream is used in a somewhat di�erent fashion than for au-
dio and video: a distributed interactive medium's stream
can have multiple senders - all participants of a session
could potentially contribute to the stream.

IV. Design Considerations

In this section we examine important considerations that
should inuence the design of an application level protocol
for distributed (continuous as well as discrete) interactive
media. These considerations can be grouped into the fol-
lowing categories:
� core functionality for distributing event and state infor-
mation,
� support for maintaining the consistency of the shared
state,
� support for fragmentation of oversized states and events,
� getting the current state of a sub-component in a stan-
dardized way,
� conveying meta information, and
� exibility to customize the protocol to the speci�c needs
of individual media.
In the following sub-sections we will examine each of these
categories in detail.

A. Core Functionality

The core functionality of an application level protocol for
distributed interactive media is to enable the dissemination
of event and state information that are framed by a com-
mon header. The common header needs to exhibit enough
information for generic services to take appropriate actions
without knowing anything about the medium-speci�c en-
coding of states and events. Two obvious pieces of informa-
tion that should be visible to a generic service are the type
of the data (event vs. state) and an identi�cation of the
sub-component to which they refer. With these two pieces
of information a generic service can interpret the semantics
of a distributed interactive media stream to a high degree.

B. Consistency

Besides the identi�cation of events and states, the chief
aim of an application level protocol for distributed interac-
tive media is to make it possible that the applications of all
participants can maintain a consistent, synchronized state
of the medium. Depending on the medium and the ap-
plication the consistency criterion can vary. The strongest
level of consistency would require that at all sites all events
and/or state updates be applied in the correct order at the
correct point in time. This level could be relaxed by allow-
ing events and state updates to get lost, or be processed
out of order, or at a "wrong" point in time. Obviously this
would require either some sort of repair mechanism or the



willingness of the user to accept a certain amount of incon-
sistency. Generally it can be said that diverse consistency
policies exist, that realize di�erent levels of consistency. An
application level protocol for distributed interactive media
should provide the information required to realize these
policies without imposing a certain policy on the medium
or the application.
Up to three types of mechanisms can be involved in

achieving consistency for a distributed interactive medium:

� reliabilitymay be required so that each participant learns
about all state changes caused by remote actions,
� ordering may be required if events are not commutative
(i.e., if the order in which events are applied to a state
matters),
� timing may be required since events and states might be
valid only at a single point in time.
In the following we will consider each of these mechanisms
and discuss whether and how they should be supported by a
general application level protocol for distributed interactive
media.

B.1 Reliability

There exist two main approaches to establish reliability
in distributed interactive media. The �rst is to rely on re-
liable transport protocols. Typical examples are TCP or
generic reliable multicast libraries on top of (multicast) IP.
The bene�t of this approach is a simple TCP-like interface
to the library providing reliability as well as a very clean
(layered) software architecture. Using transport level relia-
bility does not place speci�c requirements on an application
level protocol for distributed interactive media.
The drawback of a generic reliable transport protocol is

that it usually enforces ordered packet delivery and might
therefore be ineÆcient. For example, consider that a single
participant transmits an event for sub-component 1 and
then an event for sub-component 2. Imagine that the �rst
event gets lost for any one receiver. Now the second event
will be bu�ered by the reliable transport service until the
packet loss has been repaired. This is ineÆcient since the
application most likely would have been able to process
the event for sub-component 2 without waiting for the lost
event to be retransmitted. If the medium is continuous
the situation might be even worse. The time at which
the event for sub-component 2 should have been executed
could have been missed just because it was bu�ered by the
reliable transport service. This would most likely result in
the triggering of a state repair mechanism that could have
been avoided had the transport service not bu�ered the
event.
The second approach to establish reliability tries to avoid

this problem by requiring that the application is "network
aware" and helps with repairing packet loss. This approach
is commonly known as application level reliability. Appli-
cation level reliability is enabled by an architectural princi-
ple called Application Level Framing (ALF) [8]. With ALF
the application transmits data in form of application data
units (ADUs). An application data unit is a piece of infor-
mation which is framed in a way that allows the application

to interpret and possibly use the information independent
of other ADUs. ADUs can therefore be passed to the appli-
cation without enforcing a particular ordering. Examples
of ADUs for distributed interactive media are events and
states. The drawback of application level reliability is the
increased complexity of the application. This drawback
can be somewhat alleviated by using appropriate libraries
such as libsrm [9].
An application level protocol for distributed interactive

media can be regarded as a specialization of the ADU fram-
ing that is used for application level reliability mechanisms.
It extends the framing of these mechanisms to the speci�c
needs of distributed interactive media. The application
level protocol should not try to specify reliability mecha-
nisms. This would be inappropriate since the reliability
requirements of distributed interactive media vary widely.
Instead there should be a well de�ned way that allows ar-
bitrary application level reliability mechanisms to use and
extend the information provided by an application level
protocol for distributed interactivemedia. This leads to the
typical bene�ts of Integrated Layer Processing [8], namely
the avoidance of redundant header information, as well as
the reduction of copy operations.
In summarizing, it can be noted that both approaches

to achieve reliability should be usable with an application
level protocol for distributed interactive media. The pro-
tocol should not try to realize reliability, this is done either
by a transport level protocol or by the application, possi-
bly with the support of appropriate libraries. However, it
is the task of an application level protocol to capture the
common aspects of a media class. This information is fre-
quently required by applications and generic services, even
when a reliable transport protocol such as TCP is used.
An application level protocol therefore provides some of
the information required to deploy application level relia-
bility, independent of how reliability is actually realized.

B.2 Ordering

Sequence numbers are an important tool for the ordering
of transmitted events and states. One might argue that se-
quence numbers are not required if a reliable transport pro-
tocol is used, since such a protocol will ensure the reliable
and ordered delivery of data. However, sequence numbers
are not only needed for the detection of lost and misordered
packets. But they are also useful to address and identify
individual ADUs. This is required by a number of appli-
cations and services (e.g., consistency mechanisms, record-
ing, oor control), independent of the transport protocol.
Therefore sequence numbers should be part of the framing
speci�ed by an application level protocol for distributed
interactive media. Generally it is a good idea to have dis-
tinct sequence numbers for each sub-component and ADU
type (e.g., events and states). This allows application level
reliability to reuse the sequence numbers for �ne-grained
packet loss detection and recovery.
While sequence numbers can solve the ordering problem

for events and states from a single source, many distributed
interactive media additionally require that the messages



sent by all participants of a session are ordered. Such a
total ordering of all events and state transmissions can be
established by including a timestamp into each ADU. In
general it is possible to use either the timestamp values of
a physical clock or of a logical clock [10] for this purpose. If
the ADUs of two participants carry the same timestamp a
contention criterion such as a unique participant identi�er
can be used to break the tie.

B.3 Timing

Only timestamps that refer to a physical clock are usable
for the timing in continuous distributed interactive media,
since an event or state for this class of media is only valid at
a single point in (real) time. This requires the existence of
a common physical time base, established using protocols
like NTP [11] (typical deviation from the real time: less
than 50ms) and/or GPS receivers (deviation of less then
1ms). If a message arrives late in a continuous medium, it
cannot be directly applied to the local copy of the medium's
state. Instead there need to be taken actions to repair the
problem, before the local copy of the medium's state is
consistent again.

A physical timestamp is also required if the distributed
interactive medium is to be synchronized with other me-
dia such as audio and video streams. Logical time, as de-
scribed in Lamport's work on virtual clocks [10], could be
used in the absence of a common physical time. However,
they would only be appropriate for discrete interactive me-
dia. Generally it is preferable to use a physical clock, since
distributed interactive media are very likely to be used in
combination with continuous non-interactive media such as
audio and video.

C. Fragmentation

In the case that large ADUs are transmitted it is neces-
sary to fragment the information into smaller chunks that
�t into a network packet. While it is generally possible
to let the network layer handle this fragmentation, this is
often considered ineÆcient. The main reason for this is
as follows: if IP fragments transport layer (TCP/UDP)
packets and a single IP packet gets lost, then the complete
TCP/UDP packet is discarded, even though other parts of
the transport packet might have arrived intact [12].

If distributed interactive media could guarantee that
each ADU �ts into a network layer packet, then there would
be no need to support fragmentation in a application level
protocol. Unfortunately, it is very likely that many dis-
tributed interactive media will transmit states (and maybe
even events) that do not �t into a single network packet.
An application level protocol for this media class should
therefore support fragmentation of ADUs.

D. Getting the Current State of a Sub-Component

In a number of situations an application or a generic ser-
vice might need to get the current state of a certain sub-
component. Examples of those situations are: as means of
resynchronization if an event has been lost or received late,

as access point for random access in a distributed interac-
tive media recorder, or as an initial state for a latecomer
joining an ongoing session. Since this functionality is uni-
versally needed by many distributed interactive media, it
should be supported directly by a standardized state query
packet type.

E. Meta Information

Applications and generic services frequently need ad-
ditional information about the medium and the partic-
ipants of a session. For example, an application that
joins an ongoing session typically requires an overview of
the sub-components present in that session. It should be
able to decide for each sub-component whether the sub-
component is relevant for the local presentation of the
medium. Equipped with this information, the application
can then take the required actions to get the state of those
sub-components that are of interest to the local partici-
pant. Since the meta information about sub-components
is generally required for distributed interactive media, it
should be transported in a standardized way by an appli-
cation level protocol for this media class.
Information about the participants is desirable since

many applications that use distributed interactive media
require only a very simple session control functionality. An
application level protocol should support this by providing
a standardized means to communicate information about
participants. Typical participant information includes the
name, e-mail, and the phone number of session partici-
pants. This concept is very successfully used with RTP,
where many audio and video tools rely on the participant
description that is transported by RTP means.
Another interesting type of meta information that is con-

veyed in RTP are reception quality reports. Examples of
this kind of information are loss rates, latency and jitter.
These values are periodically transmitted by each partici-
pant. However, such a quality feedback is generally inap-
propriate as a standard component in an application level
protocol for distributed interactive media. The reason for
this is that ADUs might be retransmitted either by a reli-
able transport protocol or by a library for application level
reliability. This would render reports on loss rates, latency,
and jitter invalid. Instead such feedback should be part of
whatever mechanism is used to achieve reliability. Alter-
natively it could also be an optional protocol element used
only by those distributed interactive media that realize re-
liability without the help of retransmissions.

F. Flexibility

A "good" application level protocol for distributed in-
teractive media will provide a large amount of exibility,
especially in consistency related issues and for the actual
encoding of states and events. It is therefore necessary
to specify an application level protocol for distributed in-
teractive media as a protocol framework rather than as
a monolithic protocol. One kind of exibility has already
been discussed: the ability to use di�erent reliability mech-
anisms.



Additional exibility should be provided so that the pro-
tocol can be tailored to the speci�c needs of diverse dis-
tributed interactive media. Ideally this should be a two-
step process, as it is also used for RTP. The �rst step should
be a speci�cation document that de�nes the commonalities
of a sub-class of distributed interactive media. A possible
sub-class may exhibit the following characteristics: con-
tinuous medium, frequent transmission of sub-component
state information to achieve consistency, no reliability at
the transport level, no event transmission. This sub-class
would contain the majority of battle �eld simulations and
some networked action games.
In analogy to RTP we call such a speci�cation document

a pro�le. A pro�le may specify which reliability mecha-
nism(s) are to be used and how consistency is realized. A
pro�le may also de�ne additional information that is in-
cluded in the framing of the transmitted information. It
can de�ne additional meta information that is important
for this sub-class of media, e.g., quality feedback for media
sub-classes that do not use packet retransmission. How-
ever, a pro�le may not change the meaning of the infor-
mation that is speci�ed for the core protocol, since this
would prevent generic services from working properly for
the pro�le.
The second step in customizing an application level pro-

tocol for distributed interactive media should be the speci-
�cation of how a single medium is carried using the frame-
work set up by the application level protocol and possibly
by a pro�le. This de�nition contains the encoding of event
and state information, as well as the speci�cation of re-
liability, timing and consistency constraints that are not
already covered by a pro�le. Such a de�nition is called a
payload type speci�cation. Theoretically a payload type
speci�cation can be used without a pro�le or with multiple
pro�les. However, the usual case is a hierarchical rela-
tionship of a payload type de�nition that operates under
exactly one pro�le speci�cation. This allows services to be
speci�ed on three levels:

� they can be fully generic services and, as such, be usable
by any medium transported over the given application level
protocol for distributed interactive media,
� they can specify certain pro�les for which they are usable,
� or they can be limited to a number of speci�c payload
types.

V. Real-Time Application Level Protocol for
Distributed Interactive Media - RTP/I

RTP/I has been speci�cally designed to meet the de-
mands discussed in the previous section: framing of event
and state data, support for consistency and fragmentation,
a standardized way to query the state of a sub-component,
the ability to convey meta information, and a exible pro-
tocol design. RTP/I reuses many aspects of RTP, including
the concept of two distinct protocols for the transportation
of the data and meta information. The protocols used for
the transmission of the data is called the RTP/I data pro-
tocol while the protocol used for meta information is called
RTP/I control protocol (RTCP/I). These two protocols are

carried over distinct transport addresses in order to use the
demultiplexing performed by the transport service for the
distinction between RTP/I and RTCP/I packets.
We start the presentation of RTP/I by discussing the

data part of RTP/I. In a second step we move on to explain
how meta information is transported. In both parts we
reuse aspects of RTP when it is appropriate. A more formal
de�nition of RTP/I can be found in the RTP/I Internet
Draft [13]. An Open Source implementation of the RTP/I
protocol can be downloaded from our webpages [14].

A. RTP/I Data Transfer Protocol

The bulk of data for a distributed interactive medium
- states, events and requests for state information - are
carried in RTP/I data packets. Essentially RTP/I data
packets contain medium-speci�c information that is framed
by common header �elds. In RTP/I there exist four dis-
tinct data packet types: event, state, delta state, and state
query.

A.1 Event Packet Type

An event packet carries an event or a fraction of an event.
It is structured as depicted in Figure 2. The �rst two bits
of an RTP/I event packet contain the version number (V)
of the protocol. The E (end) and the fragment count �elds
are used for fragmentation and reassembly of ADUs that do
not �t into a single network packet. The fragment count is
set to 0 for the �rst packet of an ADU and it is increased for
each packet transmitted for that ADU. The end bit is set to
one if this packet is the last packet of an ADU. Recipients
of a fragmented ADU know that they have received all
parts of an ADU when they have received a packet with
the fragment count 0, a packet with the end bit set, and
all packets in-between as identi�ed by the fragment count.

PRIRT

length

PI

1
0 1 2 3 49

2
58 35 7 74 6 6 8 0 19

PT

32 0

reserved for reliability mechanisms

participant identifier

1

sub-component ID

2

sub-component ID (continued)

4

fragment countsequence number

5

timestamp

6

data

10
0

V=0

7 8

E

9

X

3

type

Fig. 2. RTP/I Data Transfer Protocol Packet

The type �eld identi�es the content of the packet.
There are four values used by RTP/I: EVENT, STATE,
DELTA STATE, and STATE QUERY. For event packets
the type �eld contains the value EVENT. In the type �eld
the values of 8 and above are reserved for use with applica-
tion level reliability mechanisms, e.g., this can be used to
identify an additional packet type for the detection of tail
loss. Furthermore, application level reliability mechanisms
may blend into the RTP/I header. The RT �eld identi-
�es the reliability mechanism that is used to transmit the



packet (e.g., libsrm [9]). The 16 bits that are reserved for
reliability can be used by reliability mechanisms to store
additional information. Examples are ags to mark pack-
ets for forward error correction or retransmitted packets.
If a given reliability mechanism needs more than 16 addi-
tional bits, it may append an extension header to the reg-
ular RTP/I header. This is signaled through the reliability
header eXtension (X) bit.

An application level reliability mechanism that is used
together with RTP/I is speci�ed in an RTP/I reliability
speci�cation document. The reliability speci�cation docu-
ment completely de�nes the employed mechanism and its
cooperation with RTP/I. It may do so by referencing an
existing speci�cation of the reliability mechanism and by
providing information on how it cooperates with RTP/I.
This includes the mapping of the information provided by
RTP/I (framing and meta information) to the informa-
tion required by the reliability mechanism, the speci�ca-
tion of any additional information that is to be stored in
the RTP/I framing, and the de�nition of any additional
packet types that may be required. Each RTP/I reliabil-
ity speci�cation is assigned a unique number in the range
of 2-63. There exist two prede�ned reliability mechanisms
that can be used with RTP/I. The �rst one is no reliability
(e.g., raw UDP). The second one is the usage of a reliable
transport protocol that is transparent to the application
(e.g., TCP). These mechanisms are assigned the numbers
0 and 1, respectively.

The PT (payload type), timestamp and participant iden-
ti�er �elds are similar to the corresponding �elds in the
RTP framework. The payload type �eld identi�es the pay-
load type transported in this packet (e.g., a speci�c shared
whiteboard encoding). The timestamp indicates the point
in time when the event must be applied to the medium.
Generally this value should be expressed in milliseconds of
a physical clock synchronized by NTP or a GPS receiver.

The 32-bit participant identi�er �eld makes it pos-
sible to identify participants independent of their net-
work/transport layer addresses. In contrast to RTP the
participant identi�er needs to be unique and stays con-
stant for the whole lifetime of a session. How to choose
a unique identi�er is outside of the scope of RTP/I. The
sub-component ID is a 64-bit value that uniquely identi�es
the sub-component the ADU refers to. As for the par-
ticipant identi�er, the mechanism used to choose unique
sub-component identi�ers is outside of the scope of RTP/I.

Additional information that is de�ned by a pro�le may
be stored in a �eld which is reserved for pro�le information
(PI). This allows pro�les to include important information
in the framing without having to add another 32-bit word
to the header. The last �eld relevant to the event packet
is the sequence number. It is increased by one for each
event ADU. The medium-dependent event data follows the
RTP/I header, its encoding is speci�ed in the payload type
de�nition. The PRI (priority) �eld is not used by event
packets.

A.2 State Packet Type

The RTP/I state packet type is used to transmit a sub-
component's complete state (or a fraction thereof if the
state is to large to �t into a single network layer packet).
A state packet has the same structure as an event packet
with the exception that an additional priority (PRI) �eld
is present. This �eld is necessary because setting the state
of a sub-component can be costly and might not always be
reasonable for all participants. A packet with high prior-
ity should be examined and applied by all communication
peers who are interested in the speci�c sub-component.
Situations where a high priority is recommended are re-
synchronization after errors, or packet loss. A state trans-
mitted with low priority can be ignored at will by any par-
ticipant. This is useful if only a subset of communication
partners is interested in the state. An example of this case
are late joins where only applications joining the session
might be interested in certain state transmissions.

The timestamp value of state packets has a di�erent
meaning than that for event packets. It denotes the point
in time when the state contained in the packet was ex-
tracted from the medium. When such a state is applied
to a sub-component of a continuous distributed interactive
medium at a later time, the time di�erence needs to be
accounted for.

A.3 Delta State Packet Type

In cases where a complex sub-component state of an in-
teractive medium is transmitted frequently by an applica-
tion, it may be desirable to be able to send only those parts
of a state that have changed since the last state transmis-
sion. This is similar to the concept of P frames in an MPEG
encoded video stream. RTP/I supports this by providing a
delta state packet type. A delta state ADU (possibly con-
sisting of more than one packet) can only be interpreted
if the preceding full state ADU is also available (see Fig-
ure 3). The main advantages of delta state ADUs are their
smaller size and that they can be calculated faster than full
state ADUs. The delta state packet has the same format
as the state packet, too.

Full
State

Full
StateState

Delta
State
Delta

State
Delta

AB

A requires B for decoding

time

Fig. 3. Decoding of Delta States



A.4 State Query Packet Type

The state query packet type is used by a participant to
indicate that the transmission of a certain sub-component's
state is required. The state query is part of the data pro-
tocol (and not of the control protocol) for two reasons.
First, it requires the same header information as the other
RTP/I data packets. Second, it may make use of a reliabil-
ity service that could exist for the data part of RTP/I. The
structure of this packet type is the same as for all RTP/I
data packets (see Figure 2). However, it does not contain
any medium speci�c data.
Instead of being a regular request - as found in other

protocols - a state query packet is only an indication to the
receivers that a participant would like to get the state of the
concerned sub-component. A regular request/reply mech-
anism would be inappropriate for a protocol that should
work between more than two participants. The decision
whether any given receiver of a state query packet will re-
ply is made locally by the receiver. This decision is inu-
enced by the priority and should made such that it will
prevent a reply implosion if multicast is used. In detail the
meaning of the priority contained in a state query packet
is as follows:
� Priority 3 is the highest priority and is used when the
request needs to be satis�ed immediately, e.g., for resyn-
chronization after errors.
� Priority 2 is used when a response is required, but a short
delay is acceptable, e.g., for a late-join service.
� Priority 1 is used when a response is desirable but not
required, e.g., pre-fetching of sub-component state, which
might be needed later.
� Priority 0 is used when the state request is issued peri-
odically, e.g., for a recording service.

B. RTP/I Control Protocol - RTCP/I

In order to convey meta information RTP/I uses the
RTP/I Control Protocol (RTCP/I). RTCP/I compound
packets are transmitted by each participant in regular in-
tervals. The interval between the transmission of two com-
pound packets is called report interval. In order to keep the
overall data rate consumed by RTCP/I constant, the dura-
tion of the report interval is inverse proportional to both,
the average size of the compound packets and the num-
ber of users in the session. An RTCP/I compound packet
typically consists of two di�erent packet types: source de-
scription packets and sub-component report packets. The
source description packets convey information about the
identity of the participant, such as a unique name (e.g.
mauve@pilatus.uni-mannheim.de) or an e-mail address or
a telephone number. Sub-component report packets con-
tain meta information about the sub-components present in
the session. In the following we will only describe the sub-
component report packet, the source description packet is
used as de�ned in the RTP Internet Draft [5].

B.1 Sub-Component Report Packet

The sub-component report packet is used to announce
the sub-components present in a session, to indicate which

sub-components are actively used to display the medium
to the users, and to provide information for the mapping
from sub-component IDs to application level names. For
each report interval every participant checks whether any
sub-components that it tracks the state of have not been re-
ported by other participants in the last two report intervals.
All unreported sub-components are then reported using a
sub-component report packet. This algorithm is simple,
robust, and scalable - in most cases each sub-component is
reported exactly once per report interval, independent of
the number of participants and packet loss.

Applications and services can use the received sub-
component report packets to learn which sub-components
are actively used to display the medium to at least one
user. This information is very important since these sub-
components are likely to be of immediate relevance for the
session. Sub-components which are not currently used to
display the medium might be handled with a lower priority,
e.g., for applications that join an ongoing session, or for a
recording service. In order to make this distinction possible
the report for a sub-component includes its current status:
active or passive. The active sub-components of an appli-
cation at any point in time are those sub-components that
are required by the application to present the interactive
medium at that speci�c time.

The third information carried in sub-component report
packets are application level names for sub-components.
This functionality is required since partitioning the state
of a distributed interactive medium into several sub-
components leads to the question how an application can
decide which sub-component it is interested in. Typi-
cally this problem can be solved by providing each sub-
component with an application-level name. This name
should carry enough information about the sub-component
so that the applications or the users can decide whether
they are interested in the sub-component or not. Examples
for application level names are the titles of shared white-
board pages, or the textual description of 3D objects in a
distributed virtual environment.

The mechanism to convey application level names is op-
tional, a payload type may specify that it does not require
application level names for sub-components. One possible
reason for not using application level names could be that
the sub-component identi�er holds enough information for
the application to decide whether it is interested in the
sub-component or not.

As depicted in Figure 4, the sub-component report
packet starts with the protocol version number (V). The
name bit (N) signals whether the reported sub-components
are accompanied by an application level name. The sub-
component count (SC) �eld holds the number of sub-
components reported in this packet; note that one sub-
component report packet can carry information about sev-
eral sub-components. The type �eld is used to distin-
guish di�erent RTCP/I packet types (sub-component re-
port packets, source description packets, and bye packets).
In order to enable the combination of several RTCP/I pack-
ets into one compound packet, a length �eld is included in



each RTCP/I packet. The length �eld is followed by the
participant identi�er of the participant sending the packet.
The main part of the packet starts with a list of active
(A) ags. An active ag is set if the corresponding sub-
component is active for the sender. Finally the packet con-
tains a list of sub-component IDs that may be followed by
their application level names. The sub-component IDs ap-
pear in the same order as the active ags, so that a receiver
of the packet can associate the appropriate active ags with
a sub-component ID.

application-level name

6 7 8 9
1
0 1 5 75 94 23210 543 6 9

3
0 18

SCV=0

2

type

participant identifier

0

A

1

sub-component ID

2

sub-component ID (continued)

3

name length

4
0

6

padding

N

7

padding

8

length

Fig. 4. RTCP/I Sub-Component Report Packet

VI. Applications and Services

RTP/I has not been created in a "clean-room" environ-
ment - it rather is the solution to a "real-world" prob-
lem we encountered when developing applications for dis-
tributed interactive media. Examples for these applica-
tions are a shared whiteboard [2], remote controlled Java
animations for teleteaching [15] and a 3D telecooperation
application [16]. For each of these applications we had
to re-implement a substantial part of similar functional-
ity (e.g., session recording, oor control, support for late
comers). The prime reason for this problem was that di-
verse application level protocols were used to realize the
communication between session participants.
RTP/I is designed to solve this problem. Currently we

are in the process of replacing the proprietary application
level protocols of our applications with RTP/I. At the same
time we extract the common functionality from existing
application speci�c services and expand them to generic,
RTP/I-based, services.
The �rst application for which the integration of RTP/I

has been completed is a 3D telecooperation application
called TeCo3D. The �rst generic service which has been
de�ned is an RTP/I recording service. Other services like
a simple oor control and a late-join service have also been
developed. In order to demonstrate how RTP/I can be
used for the development of applications and services, we
will briey outline TeCo3D and a generic recording service
in the following two sub-sections.

A. Using RTP/I for a 3D Telecooperation Application

TeCo3D is a shared workspace for dynamic and interac-
tive 3D models [16]. Its aim is to allow users to share
collaboration-unaware VRML (Virtual Reality Modeling
Language) models, i.e., models which have not been specif-

ically developed to be used by more than one user at a
time. With this functionality it is possible to include ar-
bitrary VRML content, as generated by standard CAD or
animation software, into teleconferencing sessions.
TeCo3D uses the Java3D VRML loader [17] as 3D pre-

sentation and execution engine. It employs a completely
replicated distribution architecture with reliable multicast
at the transport layer. When a user imports a local
VRML object into the shared workspace, the VRML code
is parsed and the parts which are responsible for user inter-
actions are replaced with custom components. This turns
the collaboration-unaware 3D objects into a collaboration-
aware model. User initiated operations are captured by the
custom components and are transmitted to all participat-
ing applications in the session, where they are injected into
the local model. In order to provide remote users with the
initial state of the imported objects and to recover from
inconsistencies we have enhanced the VRML loader by a
method to get and set the state of arbitrary VRML objects
[18].
The media model for distributed interactive media can

be applied to TeCo3D as follows: the sub-components are
the (independent) interactive 3D objects loaded into the
shared workspace. The state of a sub-component (3D
object) can be accessed through our enhancement of the
VRML loader. Events are the user interactions which are
captured by the custom components inserted into the 3D
objects. Since the state of dynamic and interactive 3D
objects can change because of the passage of time as well
as because of user actions, TeCo3D can be regarded as a
continuous distributed interactive medium.
We have de�ned the encoding of events and states within

a TeCo3D payload type de�nition. This de�nition also
speci�es how consistency is realized. TeCo3D uses a reli-
able multicast protocol at the transport layer and requires
that events are applied to the model of each participant
in the same order at the same time. This is a very strong
consistency criterion, which can be realized by voluntarily
delaying local actions until it is likely that they have been
received by all participants. This concept, called local-lag,
is explained in detail in [19]. If resynchronization is re-
quired because a participant has received an event late,
then the state request mechanism of RTP/I is used to re-
quest the state of a speci�c 3D object. First experiments
have shown that TeCo3D provides a highly accurate syn-
chronization between participants. Currently there are ef-
forts under way to use the TeCo3D prototype (including
the mechanisms for consistency and the usage of RTP/I)
as a foundation for a product of the SIEMENS AG.

B. Generic Recording Service for RTP/I

The ability to record a session is one of the most impor-
tant and universally needed aspects of video-conferencing.
So far the generic recording of audio and video streams has
been investigated and understood to a large extent [20].
There also exist �rst approaches to record the data trans-
mitted by a speci�c shared whiteboard [21]. Due to the lack
of a common application level protocol, a generic recording



service for distributed interactive media was long thought
to be infeasible. However, since RTP/I provides the re-
quired information, we have been able to develop a generic
recording service for this media class. The service is based
exclusively on the common aspects of distributed interac-
tive media as they are exposed by RTP/I.

The main idea of the generic recording service is to record
the ADUs (states and events) as they are transmitted dur-
ing a live session. At a later time, the stream of ADUs can
be replayed with the proper order and timing as provided
by the RTP/I header information. The timestamps of the
replayed ADUs need to be re-calculated so that they match
the replay time. The stream produced in this way can be
interpreted and presented to a user by an unmodi�ed ap-
plication, just like the stream of a regular session. It is
therefore not necessary to develop special viewers for the
recorded sessions.

One challenging problem with the development of a
generic recording service for distributed interactive media
is the realization of random access to the recorded stream.
The main problem here is that the listening applications
need to get the current state of the medium before they
are able to follow the recorded stream. Since the recorder
is generic, it will not be able to calculate this required state
information. Instead it needs to transmit a combination of
recorded ADUs which puts the receivers into the desired
state at the access position. If the medium has just one
sub-component and if the state of that sub-component is
inserted frequently into the live stream, a very simple mech-
anism for random access would be: start the reply at a time
close to the desired access point, where a state transmission
was recorded. In the case that the live stream of a medium
does not normally contain frequent state transmissions, the
recording service is able to request this information by is-
suing state query packets. A more sophisticated random
access methods which supports realistic applications with
more than one sub-component or discrete media types with
heavy weight states can be found in [22].

The development of generic services such as the recording
service and the integration of RTP/I into real applications
has provided us with the required knowledge to complete
the �rst cycle of protocol design, implementation, testing
and re-design. Therefore we are con�dent that the main
functionality of RTP/I, as described in this work, is both
appropriate and useful for the class of distributed interac-
tive media. At the same time we are very much aware of the
fact that the adoption of RTP/I by other applications will
likely result in new challenges and possibly enhancements
and additions to RTP/I.

VII. Conclusion

In this paper we discussed the development of a real-time
application level protocol for distributed interactive media.
Typical examples for this media class are shared white-
boards, distributed virtual environments and networked
computer games. The key advantage of a common applica-
tion level protocol is the ability to develop generalized and

reusable functionality, such as session recording, support
for late comers or consistency mechanisms.

As a starting point we de�ned a general media model.
This model identi�ed the common aspects which are shared
by all distributed interactive media. Based on the model as
well as on the needs of applications and generic services we
investigated the requirements that an application level pro-
tocol for distributed interactive media has to satisfy. Most
importantly these requirements included framing the core
data, support for consistency, conveying meta information
and the ability to tailor the protocol to the speci�c needs
of di�erent distributed interactive media.

In order to match the media model and the require-
ments we proposed the development of a new application
level protocol inspired by the Real Time Transport proto-
col (RTP). The new protocol is called "Real-Time Appli-
cation Level Protocol for Distributed Interactive Media"
(RTP/I). RTP/I reuses many aspects of RTP while it is
thoroughly adapted to meet the speci�c demands of dis-
tributed interactive media. We have proven that RTP/I is
viable by using it for a 3D telecooperation application as
well as for the development of a number of generic services.
Other applications are currently in the process of adopting
RTP/I as their application level protocol.

Acknowledgments

We would like to thank Colin Perkins for many inspiring
discussions about RTP and RTP/I. These discussions have
been very valuable for the design of RTP/I. Furthermore
the comments of the anonymous reviewers were a great
help for improving the paper.

This work was supported by the European MECCANO
Telematics for Research Project 4007 and by the German
BMBF (Bundesministerium f�ur Forschung und Technolo-
gie) with the "V3D2 Digital Library Initiative".

References

[1] M. Handley and J. Crowcroft, \Network Text Editor (NTE):
A scalable shared text editor for the MBone," in Proc. of the
ACM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication (SIGCOMM) `97,
1997, pp. 197{208.

[2] W. Geyer and W. E�elsberg, \The Digital Lecture Board - A
Teaching and Learning Tool for Remote Instruction in Higher
Education," in Proc. of the 10th World Conference on Educa-
tional Multimedia (ED-MEDIA) `98, 1998.

[3] E. Fr�econ and M. Stenius, \DIVE: A Scalable network architec-
ture for distributed virtual environments," Distributed Systems
Engineering Journal, vol. 5, no. 3, pp. 91{100, 1998.

[4] L. Gautier and C. Diot, \Design and Evaluation of MiMaze, a
Multi-player Game on the Internet," in Proc. of the IEEE In-
ternational Conference on Multimedia Computing and Systems,
1998, pp. 233{236.

[5] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, \RTP:
A Transport Protocol for Real-Time Applications," Internet
Draft, Audio/Video Transport Working Group, IETF, draft-ietf-
avt-rtp-new-08.txt. Work in prgress, 2000.

[6] C. Perkins and J. Crowcroft, \Notes on the use of RTP for
shared workspace applications," ACM Computer Communica-
tion Review, vol. 30, no. 2, 2000.

[7] J. Crowcroft, L. Vicisano, Z. Wang, A. Ghosh, M. Fuchs, C. Diot,
and T. Turletti, \RMFP: A Reliable Multicast Framing Proto-
col," Internet Draft, IETF, draft-crowcroft-rmfp-02.txt, work in
progress, 1998.



[8] D. Clark and D. Tennenhouse, \Architectural Considerations for
a New Generation of Protocols," in Proc. of the ACM Confer-
ence on Applications, Technologies, Architectures, and Proto-
cols for Computer Communication (SIGCOMM) '90, 1990, pp.
201{208.

[9] S. Raman, \Design and analysis of a framework for reliable
multicast," Master's Thesis, University of California Berkeley,
Berkeley, 1998.

[10] L. Lamport, \Time, Clocks, and the Ordering of Events in a
Distributed System," Communications of the ACM, vol. 21, no.
7, pp. 558{565, 1978.

[11] D. L. Mills, \Network Time Protocol (Version 3) speci�cation,
implementation and analysis," DARPA Network Working Group
Report RFC-1305, University of Delaware, 1992.

[12] C. A. Kent and J. C. Mogul, \Fragmentation considered harm-
ful," in Proc. of the ACM workshop on Frontiers in computer
communications technology (ACM SIGCOMM) `87, 1987, pp.
390{401.

[13] M. Mauve, V. Hilt, C. Kuhm�unch, J. Vogel, W. Geyer, and
W. E�elsberg, \RTP/I: An Application Level Real-Time Pro-
tocol for Distributed Interactive Media," Internet Draft, IETF,
draft-mauve-rtpi-00.txt. Work in progress, 2000.

[14] RTP/I, \The RTP/I homepage," http://www.informatik.uni-
mannheim.de/informatik/pi4/projects/RTPI/index.html, 2000.

[15] C. Kuhm�unch, T. Fuhrmann, and G. Sch�oppe, \Java teachware
- the java remote control tool and its applications," in Proc.
of the 10th World Conference on Educational Multimedia (ED-
MEDIA) `98, 1998.

[16] M. Mauve, \TeCo3D - A 3D Telecollaboration Application
Based on VRML and Java," in Proc. of Multimedia Computing
and Networking (MMCN'99 at SPIE'99), 1999, pp. 240{251.

[17] VRML Consortium, \The java3d and vrml working group,"
http://www.vrml.org/WorkingGroups/vrml-java3d.

[18] M. Mauve, \Transparent Access to and Encoding of VRML
State Information," in Proc. of the Fourth Symposium on the
Virtual Reality Modeling Language (VRML'99), 1999, pp. 29{
38.

[19] M. Mauve, \Consistency in Replicated Continuous Interactive
Media," To appear in: Proc. of the ACM Conference on Com-
puter Supported Cooperative Work (CSCW'2000), 2000.

[20] W. Holfelder, \Interactive Remote Recording and Playback
of Multicast Videoconferences," in Proc. of the International
Workshop on Interactive Distributed Multimedia Systems and
Telecommunication Services 1997 (IDMS'97), 1997, pp. 450{
463.

[21] MASH, \The Mash Archive System Documenta-
tion," http://mash.cs.berkeley.edu/mash/software/archive-
usage.html.

[22] V. Hilt, M. Mauve, C. Kuhm�unch, and W. E�elsberg,
\A Generic Scheme for the Recording of Interactive Media
Streams," in Proc. of the International Workshop on Inter-
active Distributed Multimedia Systems and Telecommunication
Services 1999 (IDMS'99), 1999, pp. 291{304.


