
ABSTRACT

In this paper we investigate how consistency can be ensured
for replicated continuous interactive media, i.e., replicated
media which change their state in reaction to user initiated
operations as well as because of the passing of time. Typi-
cal examples for this media class are networked computer
games and distr ibuted VR appl icat ions. Exist ing
approaches to reach consistency for replicated discrete
interactive media are briefly outlined and it is shown that
these fail in the continuous domain. In order to allow a thor-
ough discussion of the problem, a formal definition of the
term consistency in the continuous domain is given. Based
on this definition we show that an important tradeoff rela-
tionship exists between the responsiveness of the medium
and the appearance of short-term inconsistencies. Until now
this tradeoff was not taken into consideration for consis-
tency in the continuous domain, thereby severely limiting
the consistency related fidelity for a large number of appli-
cations. We show that for those applications the fidelity can
be significantly raised by voluntarily decreasing the respon-
siveness of the medium. This concept is called local lag. It
enables the distribution of continuous interactive media that
are more vulnerable to short-term inconsistencies than, e.g.,
battlefield simulations. We prove that the concept of local
lag is valid by describing how local lag was successfully
used to ensure consistency in a 3D telecooperation applica-
tion.
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INTRODUCTION
During the past decade the problem of consistency in syn-
chronous CSCW applications (e.g., shared text editors) has
been the focus of attention for many research groups. Most
work in this area has been done on the consistency ofrepli-
cated discrete interactive media [15,3,14], i.e., replicated

media which change their state only in response to user ini-
tiated operations. In the last three to four years, however, a
broad variety of applications has evolved which employ
replicated continuous interactive media, e.g., networked
computer-games, multi-user virtual reality, distributed sim-
ulations for training and education, as well as CSCW appli-
cations for jointly working with active objects. In contrast
to discrete media, a continuous medium can change its state
not only in response to user initiated operations, but also
because of the passing of time. For this class of media the
issue of consistency is still unexplored to a large extent.
Only in the area of distributed virtual environments (DVEs)
[12,13,5] have significant efforts been made to tackle the
problem of consistency in replicated continuous interactive
media.

As we shall show in this paper, the approaches for discrete
media are not usable in the continuous domain. Moreover,
the algorithms used for DVEs focus on optimizing respon-
siveness at the cost of frequent short-term inconsistencies.
While this might be reasonable for a battlefield scenario, it
provides only mediocre results for other continuous media.
It is therefore necessary to investigate the issue of consis-
tency in the continuous domain in a more general way than
this has been done before.

In order to get a broader insight into consistency for the
continuous domain, it is necessary to establish a common
view on what consistency comprises for continuous media.
Also, restrictions and tradeoff relationships need to be iden-
tified. Only after this has been done is it possible to evaluate
the approach currently used by most DVEs and propose
improvements. An essential part of this work is therefore
dedicated to the formal specification of a consistency crite-
rion for the continuous domain.

With this definition in place, we are then able to identify
and to evaluate the tradeoff between responsiveness and
short-term inconsistencies. This leads to the concept of
local lag - deliberately decreasing responsiveness to lower
the number of short-term inconsistencies. As a proof that
local lag can improve the consistency related fidelity of rep-
licated continuous interactive media, we have successfully
applied the concept to an application which is able to share
arbitrary active VRML (Virtual Reality Modeling Lan-
guage) objects between a group of users. Throughout this
work we use the terms continuous domain and continuous
media as an abbreviation for replicated continuous interac-
tive media, while the terms discrete domain and discrete
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media are used synonymously for replicated discrete inter-
active media.

In Section Two of this paper we discuss the consistency
model for discrete media and show why approaches which
implement this consistency model fail in the continuous
domain. The third section is dedicated to the formal defini-
tion of the term consistency for continuous media. Here we
also examine the tradeoff between responsiveness and
short-term inconsistencies. With these tools in place, a
commonly used approach to achieve consistency in DVEs
is evaluated in Section Four. This approach is called dead
reckoning. A concept to exploit the tradeoff between
responsiveness and short-term inconsistencies is proposed
in the fifth section - it is called local lag. Section Six briefly
outlines a 3D telecooperation application which makes use
of local lag to achieve consistency. A summary and an out-
look to future work is given in Section Seven.

CONSISTENCY IN REPLICATED DISCRETE
INTERACTIVE MEDIA
A replicated discrete interactive medium is a medium that
changes its state solely because of (user initiated) opera-
tions. Its state is kept in a replicated fashion for each partic-
ipant of a session. Therefore each user initiated operation
needs to be executed at each site.

Generally speaking, consistency for replicated discrete
interactive media entails finding a ’correct’ sequence of all
the operations issued by the participants of a session and
making sure that, at all participating sites, the state of the
medium looks as if all operations had been executed suc-
cessfully in that particular sequential order. To be more pre-
cise we use the terms causal ordering relation and
dependent operation from Sun and Ellis [15,3,14], which
are derived from Lamports work on virtual clocks [7]:

“Definition 1: Causal ordering relation “→”. Given two
operations Oa and Ob generated at sites i and j, then
Oa→Ob, iff: (1) i=j and the generation of Oa happened
before the generation of Ob, or (2) i≠j and the execution of
Oa at site j happened before the generation of Ob, or (3)
there exists an operation Ox, such that Oa→Ox and
Ox→Ob.

Definition 2: Dependent and independent operations.
Given any two operations Oa and Ob. (1) Ob is dependent
on Oa iff Oa→Ob. (2) Oa and Ob are independent (or con-
current), expressed as Oa||Ob, iff neither Oa→Ob, nor
Ob→Oa.”[15]

In order to illustrate these terms consider the session
depicted in Figure 1: in this session the three operations O1,
O2 and O3 take place. The causal ordering relation for this
example is O2→O3, since O2 is executed at site 2 before O3
is generated. An example for the semantics of O2 could be
that the user at site 1 marks a certain part of a text in a
group text editor. In reaction to this, the user at site 2
chooses to delete a different section as operation O3 (maybe
because the section marked by the user at site 1 contained
all the information of the deleted section). From the order-
ing relation it can be derived that O3 depends on O2, while
O1 and O2, as well as O1 and O3, are independent of each
other.

Based on the definition of the causal ordering relation, there
are two consistency correctness criteria that are generally
used to define the term consistency for replicated discrete
interactive media [15,3,14]:

Based on the definition of the causal ordering relation, Ellis
and Gibbs give the following consistency correctness crite-
ria in the context of the GROVE (GRoup Outline Viewing
Editor) system [3]:

(1) Convergence property. After all operations have been
executed the state of the discrete interactive medium is
identical at all sites.

(2) Precedence property. For any two operations Oa and
Ob, if Oa→Ob, then at each site Oa will be executed before
Ob.

The first criterion ensures that all users will eventually see
the same state of the interactive medium after all operations
are completed, it is the fundamental consistency criterion.
A violation of this criterion would result in different states
of the replicated medium and therefore render it useless.

The second criterion makes sure that dependent operations
are executed in order. If (2) were not required, the user at
site 0 might see the result of dependent action O3 before the
result of action O2 was visible. This would be confusing to
the user since the causality of the operations would not be
preserved.

Figure 1: Discrete replicated interactive medium

In order to ensure that the consistency correctness criteria
are not violated a number of different approaches exists.
These range from a strict single user floor control policy, to
more sophisticated algorithms such as operational transfor-
mation [3]. Since at least the convergence property is also
desirable for replicated continuous interactive media, the
question arises whether the approaches that ensure this cri-
terion for discrete media could be reused in the continuous
domain. Unfortunately the answer to this question is “No”.

The reason why the approaches for discrete media fail
when they are applied to continuous media is that consis-
tency in replicated continuous interactive media is not only
about finding a correct sequence of operations and making
sure that at each site the result of all operations looks as if
the operations had been executed in that sequence. In addi-
tion it requires that the result of all operations looks as if the
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operations had been executed at thecorrect point in time.
The algorithms for establishing consistency in the discrete
domain can therefore be regarded as insufficient for the
continuous domain.

To illustrate this problem let us examine a very simple
example, based on a session involving a discrete replicated
interactive medium. This session is attended by two users
Ua and Ub. Now let Ua perform an operation on the
medium. This operation will be executed first on Ua’s copy
of the interactive medium and some time later (because of
the network transmission delay) on Ub’s copy of the
medium. Since for a discrete interactive medium a single
operation cannot result in inconsistencies no consistency
algorithms from the discrete domain will take any special
actions in this example.

Now let us transfer this example to the continuous domain:
Imagine a distributed simulation of a train that is approach-
ing a switch. As in the discrete case this simulation has a
replicated distribution architecture, so that each participant
holds a local copy of the simulation’s state. The simulation
is attended by at least two spatially separated users, Ua and
Ub. Operations caused by one of the participating users are
broadcasted to all other simulation participants so that they
can adjust the state of their copy of the simulation.

Just before the train arrives at the junction, Ua operates the
switch. In the copy of Ua’s simulation the operation takes
place immediately. However, the information about Ua
operating the switch will arrive at the copy of Ub’s simula-
tion at a later point in time. Applying the operation at this
point in time to Ub’s copy could lead to an inconsistent state
because the train might have already passed the switch in
Ub’s copy of the simulation. As explained above, methods
for ensuring consistency in discrete media will take no
actions to correct this problem. This reveals the core reason
why the mechanisms for consistency used in the discrete
domain are not sufficient for continuous media, namely
because they neglect the problem of executing operations at
the correct point in time.

CONSISTENCY IN REPLICATED CONTINUOUS
INTERACTIVE MEDIA
A replicated continuous interactive medium is a replicated
medium that changes its state in response to (user initiated)
operations as well as because of the passage of time. This
definition implies that the medium has access to a physical
clock that can be used to measure the progress of time. In
the scope of this work we assume that the physical clocks
of all the participants are reasonably synchronized - with a
deviation of less than about 50ms (achievable using NTP
[10] or GPS clocks). Furthermore we require that the cor-
rection of clock drift is done in a way that does not result in
decreasing the value of a physical clock, e.g., it can be done
by slowing down/halting the physical clock for a period of
time instead of simply decreasing its value. If a given phys-
ical clock cannot be controlled in this way, some software
may be required that adapts the reading of the physical
clock so that it obeys this restriction. In the following we
assume that this requirement is met.

In replicated continuous interactive media a user-initiated
operation needs to be executed at a specific point in time,
denoted by its timestamp. Similar to consistency in the dis-
crete domain, consistency for continuous media is about
finding a correct order of all operations. However, in addi-
tion it must be guaranteed that at all sites, the state of the
interactive medium after these operations have been exe-
cuted is the same as if the operations had been executed in
the correct orderat the time identified by their timestamps.

In order to be able to discuss this in a more formal way we
define a partial ordering on the user-initiated operations as
follows:

Definition 3: Partial physical time ordering relation “<”.
Given two operations Oa and Ob with timestamps Ta and
Tb, then Oa is said to happen before Ob, expressed as
Oa<Ob, iff Ta<Tb.

Definition 4: Any two operations Oa and Ob with times-
tamps Ta and Tb are said to be simultaneous, expressed as
Oa≈Ob, iff Ta=Tb.

Note that this definition is based on physical clocks, as
opposed to logical-clock based methods for discrete media.
The partial physical time ordering relation can be extended
to become a complete physical time ordering relation by
using an arbitrary tiebreaker for simultaneous operations.
An example of such a tiebreaker could be the IP address, to
break ties for simultaneous operations from two different
participants, in combination with a counter, to break ties of
the same participant.

Definition 5: Complete physical time ordering relation
“<<“. Given two operations Oa and Ob with timestamps Ta
and Tb and tiebreakers Ba and Bb, then Oa<<Ob, iff (1) Ta <
Tb, or (2) Ta = Tb and Ba<Bb.

Now we are able to define the consistency correctness crite-
rion for replicated continuous interactive media as follows:

(3) Consistency Criterion for Replicated Continuous
Interactive Media. A replicated continuous interactive
medium isconsistent if after all operations have been exe-
cuted at all sites, the state of the medium at all sites is iden-
tical to the state which would have been reached by
executing all operations in the order given by the complete
physical time ordering relation at the physical time denoted
by the timestamps of the operations.

It is noteworthy that a precedence property is not part of the
correctness criterion for replicated continuous interactive
media. As we shall see later, the precedence property will
be part of the fidelity criteria for the assessment of algo-
rithms that realize the consistency correctness criterion.

The consistency criterion for the continuous domain is
illustrated in Figure 2. The physical clocks of all three sites
are slightly out of synchronization, the dashed lines identify
the points in time with the same reading of the physical
clock at each site. The small filled circles indicate the time
when an action is executed. In the example the following
ordering of operations applies: O1<O2, O1<O3 and O2≈O3
as well as O1<<O2, O1<<O3 and O2<<O3 (if the site num-
ber is used as the tiebreaker).



Figure 2 shows a somewhat unrealistic situation in which
all operations are always known at all sites at the time
denoted by their timestamp. This situation, however, is
important, since the meaning of the consistency criterion is
that at some time after the last site has received all opera-
tions (for example at t=x), the medium will look as if the
operations had been executed as depicted in Figure 2.

By guaranteeing that the state of the medium will be identi-
cal at all sites after all operations have been resolved, the
consistency criterion is the most important prerequisite to
making sure that a replicated continuous interactive
medium is actually usable. However, even if the consis-
tency criterion is guaranteed by a proper algorithm, it is still
possible that consistency-related, transient artifacts occur.
In addition to the basic consistency criterion we therefore
define two additional fidelity criteria:

(4) Avoidance of short-term inconsistencies. If an opera-
tion with timestamp T is not executed at site i at the physi-
cal time T, then this operation is said to have caused a short-
term inconsistency of the interactive medium at site i. Ide-
ally, short-term inconsistencies should be non-existent.

Short-term inconsistencies occur when an operation issued
at site j arrives at site i after the time denoted in the times-
tamp of the operation. Because we assume that an algo-
rithm exists to ensure the consistency criterion (3) a late
arrival means that the state of the interactive medium at site
i needs to be repaired. In the train example this would mean
moving the train from the wrong position on one branch of
the tracks to the right position on the other branch of the
tracks. The fidelity criterion for the avoidance of short-term
inconsistencies includes the meaning of the precedence
property (2) as it has been specified for discrete media since
a reversal of the precedence of operations can only be
caused by the late arrival of remote operations.

Short-term inconsistencies basically have three implica-
tions: They may cause dependent operations to be executed
in the wrong order, they usually result in visual artifacts
(the train “jumps” from one position to a different one), and
a user might take actions that are based on an inconsistent
state of the medium. An example for the latter is the follow-
ing situation: Assume that in the train example Ub pulls the
brakes of the train after it has passed the switch but before
the operation from Ua has arrived. In this case, Ub intends
to stop the train because it is going in the wrong direction.
After Ub has issued this operation, the operation from Ua
arrives (late). In order to satisfy the consistency criterion
(3), the train will jump to the correct position. The net result
of both operations is that the train will stop while it is
headed in the right direction, which is a clear violation of
the intention of the users.

(5) Low response time. The response time of an interactive
medium is the time between the physical time a user issues
an operation and the timestamp of that operation. Assuming
that local processing time, memory access, and rendering
requires only negligible time, the ideal response time
should be zero.

If the response time exceeds a certain threshold the users
will notice that a delay exists between the time the opera-
tion was issued and the time when the operation is exe-
cuted. This will result in an ‘unnatural’ behavior of the
medium. Response time andresponsiveness are used syn-
onymously in the context of this work.

While it would be desirable to be able to guarantee that no
consistency-related artifacts occur in a replicated
continuous interactive medium, this is not possible. The
reason for this is that the optimization of the response time
and the avoidance of short-term inconsistencies are
conflicting goals.

Figure 2: A consistent replicated continuous interactive medium
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Part (a) of Figure 3 shows an example where the respon-
siveness is optimal (response time = 0). In this case the
operations issued by the users take effect immediately. The
points in time when O1 and O2 should take effect are indi-
cated by the dotted line. As can be seen, only the user issu-
ing the operation does not experience short-term
inconsistencies. Any other user will have a short-term
inconsistency for that operation due to the transmission
delay of the remote operation.

Part (b) of Figure 3 shows the same situation optimized for
the short-term inconsistency criterion. Here short-term
inconsistencies are avoided at the cost of increasing the
response time for each operation to the maximum transmis-
sion delay between any two participants. Note, that the exe-
cution of O1 and O2 is delayed at the originating sites until
all participants have a chance to act simultaneously. An
event received at a time before it should be executed does
not pose a problem. It should be buffered by the receiver
until the time denoted by its timestamp is reached.

An observant reader might have noticed two peculiarities:

•  What if the time deviation between sender and receiver
happens to compensate for the transmission delay?

•  In an environment where network packets might get
lost, how exactly can we calculate the maximum
transmission delay for an operation?

The answer to the first question is that the time deviation
might indeed compensate for the network delay between a
given sender and receiver. This makes it possible for the
sender to have a response time equal to zero while the
receiver does not experience short-term inconsistencies.

However, further reflection reveals that this works only
when the sender and the receiver do not switch their roles.
As soon as the previous receiver becomes the sender short-
term inconsistencies will occur because of the large time

deviation which now prevents that any operation arrives at
the new receiver in time.

The second observation arises from the problem that in an
environment where packet loss occurs, it is impossible to
define an upper bound on the delay which an operation
needs to arrive at a remote site. After all, the same packet
might get lost over and over again as it is being retransmit-
ted by the sender. This leads us to the conclusion that, while
a reduction of short-term inconsistencies is desirable, a
guaranteed prevention is not possible in real networks.

With the definition of the convergence property in place and
the tradeoff between the two fidelity criteria discussed, we
will now investigate a frequently used algorithm for achiev-
ing consistency in replicated continuous interactive media.

DEAD RECKONING
An approach that is commonly used to guarantee that the
consistency criterion is satisfied in distributed virtual envi-
ronments (e.g., multi-user virtual reality and battlefield
simulations) is a combination of state prediction and state
transmission. In this approach the application “knows” how
the objects in the virtual environment should behave over
time. Examples are a plane that will fly straight at constant
speed or a projectile that will take a course dictated by the
physical law of gravity. The ability to predict the behavior
of objects is calleddead reckoning.

Each object for which dead reckoning is performed has a
single controlling application, e. g., for a plane this will be
the application of the pilot. The controlling application is
responsible to inform peer applications when the state of
the object deviates by more than a certain threshold from
the predicted state. In the event of a deviation, the control-
ling application transmits the complete state of the affected
object to all peers. Upon receiving this information, an
application discards the outdated state and uses the new
state to perform dead reckoning for this object. In order to

Figure 3: Short-term inconsistency vs. response time: the trade-off
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be able to use this approach over unreliable transport ser-
vices, the controller of an object additionally transmits the
state of the object at regular intervals in the form of so
called heart-beat messages.

User initiated operations are immediately applied to the
local state of the affected object. The object will thus be put
into a state that differs significantly from the predicted
state, thereby requiring the controlling application to trans-
mit the new state to its peer applications. Because of this
behavior the dead reckoning approach optimizes the
response time criterion, while each action will result in a
short-term inconsistency at each remote site.

While this approach has a number of important advantages
such as robustness and scalability, its disadvantages limit its
applicability:

•  It causes the maximum number of short-term
inconsistencies.

•  It requires that the state of each object be transmitted
for each operation. This could lead to a massive need of
bandwidth, especially when the size of the state of the
object exceeds a couple of bytes.

•  Only one controller for each object is possible. This
prevents collaborative actions, such as two users
moving a single object.

An example where this approach is used, is the well known
battlefield simulation protocol called DIS (Distributed
Interactive Simulations) [13] and general purpose DVEs
such as DIVE [5]. In a typical battlefield simulation the
state of the relevant objects is small (position and velocity)
in size and relatively easy to predict, while each object will
have only one controller (e.g., the pilot of a plane, the driver
of a car, etc.). The number of visible artifacts can be
reduced by using intelligent algorithms to repair the state
instead of immediately adopting the new state. For exam-
ple, after a plane has changed its direction a remote applica-
tion can calculate a alternate flight path which will
eventually bring the plane back into the correct state (rather
than jumping immediately to the correct position). Because
of these attributes the state prediction and transmission
approach is adequate for battlefield simulations and some
distributed virtual environments.

However, this approach becomes less appropriate if an
interactive medium has one or more of the following prop-
erties:

•  the state of objects is complex,
•  visual artifacts cannot be concealed,
•  true collaboration is important, or
•  actions based on an inconsistent state are critical.
For several applications it might therefore be better to have
a closer look at the tradeoff between responsiveness and
short-term inconsistencies before simply maximizing
responsiveness. In the following section we will discuss
how to exploit the tradeoff to improve the consistency-
related fidelity of replicated continuous interactive media.

LOCAL LAG
The concept oflocal lag is simple: Instead of immediately
executing an operation issued by a local user, the operation

is delayed for a certain amount of time before it is executed.
To use the terms from section 3, this means that the value of
an operation’s timestamp will be greater than the point in
time when the operation is issued by the user. The delay
that is introduced for the local user in this way is called
local lag. As depicted in Figure 3 (b), if the value for local
lag is sufficiently high, then it can reduce the number of
short-term inconsistencies.

The concept of local lag is related to the work of Cristian et
al. [2] where a total ordering on broadcast messages from
multiple senders is established to achieve atomic broadcast.
In this approach operations also get a timestamp which is
greater than the point in time the operation is issued by a
sender. Operations are executed at the time denoted by that
timestamp. In order to calculate the timestamp Cristian et
al. assume that an upper bound on the transmission delay
can be given, so that operations never arrive after a certain
time.

In contrast we assume that such an upper bound does not
exist and that we have to cope with operations that arrive
late. The local lag approach therefore differs in two main
aspects:

•  The amount of local lag is calculated in a different way.
It is adapted to the specific needs of consistency for
replicated continuous interactive media.

•  There exist repair mechanisms should an operation
arrive late.

Determining a Value for Local Lag
Clearly it would not be desirable to move from one
extreme, where the response time is zero but short inconsis-
tencies are very frequent, to the opposite extreme, where
almost no short-term inconsistencies occur but the response
time is unacceptably high. Therefore it is important to con-
sider both consistency related fidelity criteria. For a given
replicated continuous interactive medium we propose to do
this in three steps: (1) determine a minimum for the local
lag needed to prevent a significant amount of short-term
inconsistencies, then (2) determine the highest acceptable
response time, and finally (3) choose a value for the local
lag.

Step 1 . Determining a minimal value for local lag.
In order for local lag to be useful it needs to significantly
reduce the number of short-term inconsistencies for all par-
ticipants. Moreover, short-term inconsistencies should be
reduced for each sender/receiver pair. We therefore propose
to use the maximum of the average network delays between
any two participants as the minimum amount of local lag.
Typical values for network delays (assuming an uncon-
gested network) are: less than 1ms for a LAN, 20 ms within
a European country, 40 ms within a continent, and 150 ms
for a world wide session. Choosing the maximum of the
average network layer delays as minimal value for local lag
implies that short-term inconsistencies will occur only if
packets get lost or the jitter becomes significant because of
network congestion.

If the clocks of the participants are not completely synchro-
nized, the maximum offset between any two clocks needs
to be added to the result. This is necessary because the



sender of an operation might be behind in time relative to
the recipient of the operation. If this time deviation were
not accounted for, the time deviation plus the transmission
delay might be larger than the local lag which would result
in a short-term inconsistency. This problem is shown in
Figure 4 where site 0 is ahead in time of site 1. Even though
the operation O1 from the user at site 1 has a local lag
greater than the maximum network delay, a short-term
inconsistency occurs at site 0 due to the deviating clocks.
Typical values for time deviation of computers using NTP
or SNTP are 20-50 ms if the NTP server is reached via
WAN and less than 10 ms if the NTP server is part of the
same LAN.

Figure 4: Problem with deviating clocks

Step 2 . Determining the highest acceptable response time
The maximum local lag is dependent on how much
response time a user can tolerate for a given interactive
medium. In order to determine this value, the work con-
ducted in the area of System Response Time can provide a
good orientation [16,11,1]. Furthermore, for a given spe-
cific medium it may be a good idea to conduct perceptual
psychological experiments. Ideally the experiments will
deliver two values: the first is the amount of local lag for
which a user cannot notice the delay. The second value is
the amount of local lag which can be tolerated by the user,
i.e., the delay can be noticed but it is not disturbing. It
seems to be reasonable to use the second value as the maxi-
mum amount of local lag for an interactive medium.

The literature about System Response Time and first exper-
iments we have conducted for specific replicated continu-
ous interactive media using local lag suggest that a lag
value of 80-100 ms is not noticeable by the user, indepen-
dent of the operation and the medium. The value at which
local lag gets to be disturbing seems to depend heavily on
the operation, ranging from 300-400 ms for simple click
operations to 100-150 ms for drag operations.

Step 3 . Choosing a value for the local lag.
The previous two steps can result in two main cases: either
the minimum value for local lag is smaller than or equal to
the highest acceptable response time, or it is not. In the first
case a value between the minimum value for local lag and
the highest acceptable response time can be chosen. This
choice should be based on additional criteria such as

whether additional time is required to receive forward error
correction packets, etc.

If the highest acceptable response time is lower than the
minimal useful value for local lag, then a true tradeoff situ-
ation occurs. Given the values mentioned above this should
be relatively rare, though it might happen for very demand-
ing media and applications. In this case it is necessary to
lower the fidelity of both criteria in a way which provides
the best overall fidelity to the user. Most likely this will
require another set of perceptual psychological experi-
ments.

Repairing Short-Term Inconsistencies
If the amount of local lag is chosen well, it eliminates a sig-
nificant amount of short-term inconsistencies. However, it
does not completely prevent all inconsistencies since opera-
tions might still arrive late or not at all (e.g., if the network
is congested or a transport packet gets lost). It is therefore
necessary to have a mechanism that will repair the state in
these cases. In the following we summarize three possible
approaches to repairing inconsistent states.

State prediction and Transmission.
An obvious approach is to combine local lag with the
mechanism for state prediction and transmission. Instead of
immediately executing a local operation on an object, the
operation is delayed using the value for local lag: the opera-
tion gets a timestamp equal to the current time plus the
value for the local lag. However, when the user issues the
operation, the new state for the object at the time denoted
by the timestamp of the operation is calculated immedi-
ately. This state includes the operation and bears the same
timestamp as the operation. The calculated state is immedi-
ately transmitted to all participating sites.

When the physical time identified by the timestamp is
reached, the site where the operation was issued will exe-
cute the operation. The remote sites that by then have
received the new state for the object will start using the new
state for dead reckoning without ever encountering short-
term inconsistencies.

A site that receives the new state late, e.g., because of an
unexpected transmission delay, experiences a short-term
inconsistency. This inconsistency is repaired just as for reg-
ular dead reckoning by replacing the local copy of the
object’s state with the state that was transmitted by the con-
troller of the object.

The combination of local lag with state prediction and
transmission retains two limitations from the original
approach without local lag: only one controller per object is
possible and the state of an object must be small (since the
state is still transmitted for each operation). In the following
approach we will allow the state of objects to be complex.

Requesting States
In order to allow objects to have a complex state of a size
significantly larger than the 200 - 300 bytes used for states
in the DIS protocol, it is important that the state transmis-
sions be restricted to cases when a short-term inconsistency
needs to be repaired. In all other cases only the operation
itself will be transmitted.
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In this approach a recipient of a transmitted operation
checks the timestamp of the operation. If the operation has
arrived in time, it will be buffered until it is due for execu-
tion. Only if the operation is late will the state be requested
to repair the short-term inconsistency.

An algorithm realizing this approach needs to be able to
identify those participants that have the correct state of the
object. In addition it must be guaranteed that at least one
participant can determine the correct state of the object. A
possible solution to these problems is to allow only a single
controller at a time for each object. Since only the control-
ler is able to issue operations for the object, the controller
of an object will always have the correct state. It is the task
of the controller to reply to requests for the state of the
object. The controller of an object can change, as long as it
is guaranteed that all operations (and the repair of short-
term inconsistencies induced by these operations) of the old
controller have been executed before a different participant
becomes the new controller of the object.

The main limitation to this approach is that no true collabo-
rative operations are possible, i.e., two users are not able to
interact with the same object at the same time (unless some
more sophisticated algorithm is used to determine who will
reply to a state request). Also, the repair of an inconsistent
state requires an additional roundtrip for the state request/
reply. Therefore the requesting states approach is useful
primarily for applications where simultaneous access to a
single object is not required and the likelihood of an incon-
sistent state is rather low.

Time Warp
This method is an adoption of the time warp algorithm used
for optimistic parallel discrete event simulation [4,6]. In
time warp the state of each object does not need to be trans-
mitted, even when a short-term inconsistency occurs.
Instead local information is used to repair the state. Addi-
tionally time warp allows an arbitrary number of users to
interact with the same object at the same time.

The fundamental idea of time warp is that each participant
saves the state of the interactive medium at certain times.
All operations up to a certain point in time in the past are
kept in a log. When a short-term inconsistency occurs, the
interactive medium is rolled back to the last saved state of
the interactive medium before the operation should have
taken place. Then the operation that caused the short-term
inconsistency is inserted into the log. After that the medium
is played in fast forward (“time-warped”) mode, executing
the operations from the log at appropriate times until the
current time for the medium is reached, and operation is
resumed at the normal pace. Only the end result of this
operation should be visible to the user.

Choosing the points at which to save the state depends on
the application and the medium. If the state is saved too fre-
quently, it might effect the visual quality of the presentation
and use a large amount of memory. If the state is not saved
frequently enough, many operations will have to be per-
formed when a short-term inconsistency occurs, extending
the time during which the inconsistency is visible to the
user.

The main drawback to this approach is that it requires a
sophisticated application that is able to handle the process
of time-warping. In addition, if the state is complex, then
the time warp approach might consume a large amount of
memory to save the states, as well as place a heavy load on
the computer when a time warp has to be executed.

In summary it can be said that the choice of the amount of
local lag as well as choosing a repair mechanism for short-
term inconsistency depend heavily on the application and
the medium itself. In the following section we will show
how these decisions have been made for a 3D telecoopera-
tion application.

USING LOCAL LAG IN A 3D TELECOOPERATION
APPLICATION
We have tested the concept of local lag in the context of the
3D telecooperation application TeCo3D - a shared work-
space for dynamic and interactive 3D models [8]. TeCo3D
was developed to allow users to share collaboration-
unaware VRML (Virtual Reality Modeling Language)
models, i.e., models which have not been specifically devel-
oped to be used by more than one user at a time. With this
functionality it is possible to include arbitrary VRML con-
tent, as generated by standard CAD or animation software,
into teleconferencing sessions.

TeCo3D was developed by reusing the Java3D VRML
loader [17] as 3D presentation and execution engine and
employs a completely replicated distribution architecture
with reliable multicast as means of communication. When a
user imports a local VRML object, the VRML code is
parsed and the parts which are responsible for user interac-
tions are replaced with custom components turning the col-
laboration-unaware object into a collaboration-aware
model. User initiated operations are captured by the custom
components and are transmitted to peer instances in the ses-
sion, where they are injected into the local model. In order
to provide remote users with the initial state of the imported
objects and to repair short-term inconsistencies we have
enhanced the VRML loader by a method to get and set the
state of arbitrary VRML objects [9].

The algorithm which provides consistency for TeCo3D had
to take into consideration that the state of VRML objects
can be complex, ranging from 200 bytes for a simple mov-
ing sphere to 50,000+ bytes for an interactive cartoon.
Extracting and setting the state of objects is costly, both in
terms of visual artifacts (the animation freezes for 100-200
ms) and computational overhead. It was therefore of critical
importance to minimize the number of short-term inconsis-
tencies. The minimal useful amount of local lag (step 1)
was therefore determined as 200 ms = 150 ms (world-wide
conferences) + 50 ms (maximum time deviation).

First tests with increasing the response time from zero up to
a value of 300 ms have shown that a delay of 100 ms is
barely noticeable and 200 ms is still very acceptable for
most interactive 3D objects. In addition users seem to be
able to adapt to a constant delay rather fast, making a
response time of up to 300 ms feasible for most types of
interaction. The maximum acceptable response time (step
2) was therefore estimated to be between 200 and 300ms.



With a minimum value for the local lag at 200ms and the
maximum value between 200 and 300 ms we have chosen
to set the local lag to 250ms, adding 50 ms to the minimum
value for some additional protection against network jitter.

The next decision which had to be made was the choice of
the repair mechanism. The state prediction approach was
not taken into consideration because of the complexity of
the state information for VRML objects. While it was
tempting to use time warp, we did not want to burden our
prototype with the complex mechanisms necessary for this
approach. We therefore chose the requesting states method
to repair short-term inconsistencies. The implementation of
both local lag and repair mechanism were straight forward
and needed less than 500 lines of code.

First experiments with TeCo3D show that, as expected, no
short-term inconsistencies occur as long as all network
packets arrive at their destination. When packet loss
increases (and therefore retransmitted operations arrive
late), short-term inconsistencies start to appear. In our test
sessions with loss rates between 0% and 5% these cases
where sufficiently rare to not significantly affect the consis-
tency related fidelity of the application.

In the future we will use forward error correction to protect
user initiated operations from packet loss, effectively giving
the transmission of operations a higher priority than the
transmission of states for repairing short-term inconsisten-
cies. This should significantly increase the maximum toler-
able packet loss rate.

CONCLUSION AND OUTLOOK
In this paper we investigated the problem of consistency in
replicated continuous interactive media. It was shown that
algorithms for consistency in the continuous domain differ
significantly from those used for discrete media. In order to
systematically approach the problem, a formal definition of
the term consistency in the continuous domain was deduced
from the special characteristics of the continuous media
class. Based on this definition an important tradeoff rela-
tionship between responsiveness and the occurrence of
short-term inconsistencies was examined. We proposed to
make use of the knowledge of this tradeoff relationship in
order to increase the consistency related fidelity of the
medium. This can be done by deliberately increasing the
response time in order to decrease the number of short-term
inconsistencies, leading to the concept of local lag. The
local lag approach for consistency in the continuous
domain was proven to be usable by integrating it into a 3D
telecooperation application.

Currently we focus our work on a more thorough investiga-
tion of the repair mechanisms used in combination with
local lag. It is especially tempting to employ the time warp
approach for our 3D telecooperation application. However,
before we are able to use time warp as an alternative to
requesting states, we need to make sure that the complex
algorithm of time warping and the overhead for regular
state saves does not limit the fidelity of the application.
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