
REIHE INFORMATIK
9/99

Consistency in Continuous Distributed Interactive Media

Martin Mauve
Universität Mannheim

Praktische Informatik IV
L15, 16

D-68131 Mannheim

1

Consistency in Continuous Distributed Interactive Media

Martin Mauve
mauve@informatik.uni-mannheim.de

Praktische Informatik IV, University of Mannheim, Germany

ABSTRACT

In this paper we investigate how consistency can be ensured for continuous distributed interactive
media, i.e. distributed media which change their state in reaction to user initiated operations as
well as because of the passing of time. Existing approaches to reach consistency in discrete
distributed interactive media are briefly outlined and it is shown that these fail in the continuous
domain. In order to allow a thorough discussion of the problem, a formal definition of the term
consistency in the continuous domain is given. Based on this definition we show that an important
trade off relationship exists between the responsiveness of the medium and the appearance of
short term inconsistencies. Currently this trade off is not taken into consideration for consistency
in the continuous domain, thereby severely limiting the consistency related fidelity for a large
number of applications. We show that for those applications the fidelity can be significantly raised
by voluntarily decreasing the responsiveness of the medium. This concept is called local lag and
it enables the distribution of continuous interactive media which are more vulnerable to short term
inconsistencies than e.g. battlefield simulations. We prove that the concept of local lag is valid by
describing how local lag was successfully used to ensure consistency in a 3D telecooperation
application.

Keywords: Consistency, Continuous Distributed Interactive Media

 1. INTRODUCTION

During the past decade the problem of consistency in synchronous CSCW applications (e.g. shared text editors) has been the
focus of attention for many research groups. Most work in this area has been done on the consistency of discrete distributed
interactive media [11], i.e. distributed media which change their state only in response to user initiated operations. In the last
three to four years, however, a broad variety of applications has evolved which employ continuous distributed interactive
media, e.g. networked computer-games, multi user virtual reality, distributed simulations for training and education, as well
as CSCW applications for jointly working with active objects. In contrast to discrete media, a continuous medium can change
its state not only in response to user initiated operations, but also because of the passing of time. For this class of media the
issue of consistency is still unexplored to a large extend. Only in the area of distributed virtual environments (DVEs) [9]
[10][3] have significant efforts been made to tackle the problem of consistency in continuous distributed interactive media.

As we shall show in this paper, the approaches for discrete media are not usable in the continuous domain. Moreover, the
algorithms used for DVEs focus on optimizing responsiveness at the cost of frequent short term inconsistencies. While this
might be reasonable for e.g. a battlefield scenario, it provides only mediocre results for other continuous media. It is therefore
necessary to investigate the issue of consistency in the continuous domain in a more general way than this has been done
before.

In order to get a broader insight into consistency for the continuous domain, it is necessary to establish a common view on
what consistency comprises for continuous media. Also, restrictions and trade off relationships need to be identified. Only
after this has been done is it possible to evaluate the approach currently used by most DVEs and propose improvements. An
essential part of this work is therefore dedicated to the formal specification of a consistency criterion for the continuous
domain.

With this definition in place, we are then able to identify and to evaluate the trade off between responsiveness and short term
inconsistencies. This leads to the concept of local lag - deliberately decreasing responsiveness to lower the number of short
term inconsistencies. As a proof that local lag can improve the consistency related fidelity of continuous distributed interactive
media, we have successfully applied the concept to an application which is able to share arbitrary active VRML (Virtual

2

Reality Modeling Language) objects between a group of users. Throughout this work we use the terms continuous domain and
continuous media as a shortcut for continuous distributed interactive media, while the terms discrete domain and discrete
media are used as synonyms for discrete distributed interactive media.

In Section Two of this paper we discuss the consistency model for discrete media and show why approaches which implement
this consistency model fail in the continuous domain. The third section is dedicated to the formal definition of the term
consistency for continuous media. It also examines the trade off between responsiveness and short term inconsistencies. With
theses tools in place, the commonly used dead reckoning approach to achieve consistency in DVEs is evaluated in Section
Four. A concept to exploit the trade off between responsiveness and short term inconsistencies is proposed in the fifth section
- it is called local lag. Section Six briefly outlines a 3D telecooperation application which makes use of local lag to achieve
consistency. A summary and an outlook to future work is given in Section Seven.

 2. CONSISTENCY IN DISCRETE DISTRIBUTED INTERACTIVE MEDIA

A discrete medium is a medium which changes its state solely because of (user initiated) operations. Generally speaking,
consistency for discrete distributed interactive media is about finding a ’correct’ sequence of all operations issued by the
participants of a session and making sure that, at all participating sites, the state of the medium looks as if all operations had
been issued in the order of that sequence. To be more precise we use the terms causal ordering relation and dependent operation
from Sun/Ellis [11], which are derived from Lamports work on virtual clocks [5]:

“Definition 1: Causal ordering Relation “→”. Given two operations Oa and Ob generated at sites i and j, then
Oa→Ob, iff: (1) i=j and the generation of Oa happened before the generation of Ob, or (2) i≠j and the execution
of Oa at site j happened before the generation of Ob, or (3) there exists an operation Ox, such that Oa→Ox and
Ox→Ob.

Definition 2: Dependent and independent operations. Given any two operations Oa and Ob. (1) Ob is dependent
on Oa iff Oa→Ob. (2) Oa and Ob are independent (or concurrent), expressed as Oa||Ob, iff neither Oa→Ob, nor
Ob→Oa.”

In order to illustrate these terms consider the session depicted in Figure 1: in this session the three operations O1, O2 and O3
take place. The causal ordering relation for this example is O2→O3, since O2 is executed at site 2 before O3 is generated. An
example for the semantics of O2 could be that the user at site 2 marks a certain part of a text in a group text editor. In reaction
to this, the user at site 3 chooses to delete a different section as operation O3 (maybe because the section marked by the user
at site 2 contained all the information of the deleted section). From the ordering relation it can be derived that O3 depends on
O2, while O1 and O2 are independent of each other.

Figure 1: Example of a session with a discrete distributed interactive medium

Based on the definition of the causal ordering relation, Ellis and Gibbs give the following consistency correctness criteria in
the context of the GROVE (GRoup Outline Viewing Editor) system [1]:

(1) Convergence property. After all operations have been executed the state of the discrete interactive medium
is identical at all sites.

O2
O1

O3

Site 0

time

Site 1 Site 2

3

(2) Precedence property. For any two operations Oa and Ob, if Oa→Ob, then at each site Oa will be executed
before Ob.

The first criterion ensures that all users will have the same state of the interactive medium after all operations are resolved, it
is the base consistency criterion. A violation of this criterion would result in different states of the distributed medium and
therefore render it useless.

The second criterion makes sure that dependent operations are executed in order. If (2) where not required, the user at site 0
might see the result of dependent action O3 before the result of the action O2 is visible. This would be confusing for the user,
since the causality of the operations is not preserved.

In order to ensure that the consistency correctness criteria are not violated there exists a number of different approaches,
ranging from a strict single user floor control policy to enforce the same order of events at all sites, to sophisticated algorithms
such as operational transformation [1] which basically ’repair’ ordering problems as they occur. Since at least the convergence
property is also desirable for distributed continuous interactive media, the question arises, whether the approaches which
ensure this criterion for discrete media could be reused in the continuous domain. Unfortunately the answer to this question
is: ’no’.

The reason why the approaches for discrete media fail when they are applied to continuous media is that consistency in
continuous distributed interactive media is not only about finding a correct sequence of operations and making sure that at
each site the result of all operations looks as if the operations had been executed in that sequence. In addition it requires that
the result of all operations looks as if the operations had been executed at thecorrect point in time. The algorithms for
establishing consistency in the discrete domain can therefore be regarded as inappropriate for the continuous domain.

To illustrate this problem let us examine a very simple example. Given is a session involving a discrete distributed interactive
medium. This session is attended by two users Ua and Ub. Now let Ua perform an operation on the medium. This operation
will be executed first on Ua’s copy of the interactive medium and some time later (because of the network transmission delay)
on Ub’s copy of the medium. Since for a discrete interactive medium a single operation can not result in inconsistencies no
consistency algorithms from the discrete domain will take any special actions in this example.

Now let us transfer this example to the continuous domain: in a distributed simulation, attended by two spacially separated
users Ua and Ub, a train is approaching a switch. The switch can be operated by any user participating in the session. Imagine,
that just before the train arrives at the junction, Ua operates the switch. In the copy of Ua’s simulation the operation takes place
immediately. However, the information about Ua operating the switch will arrive at the copy Ub at a later point in time.
Applying the operation at this point in time to Ub’s copy could lead to an inconsistent state because the train might have already
passed the switch in Ub’s copy of the simulation. As explained above, methods for ensuring consistency in discrete media will
take no actions to correct this problem. This reveals the core reason why the mechanisms for consistency used in the discrete
domain are not sufficient for continuous media, namely because they neglect the problem of executing operations at the correct
point in time.

 3. CONSISTENCY IN CONTINUOUS DISTRIBUTED INTERACTIVE MEDIA

A continuous interactive medium is a medium which changes its state in response to (user initiated) operations as well as
because of the passage of time. This definition implies that the medium has access to a physical clock which can be used to
measure the progress of time. In the scope of this work we assume that the physical clocks of all participants are reasonably
synchronized - with a deviation of less than about 50ms (achievable using e.g. NTP [8] or GPS clocks).

In continuous distributed interactive media an user initiated operation needs to be executed at a specific point in time, denoted
by its timestamp. Similar to consistency in the discrete domain, consistency for continuous media is about finding a correct
order of all operations. However, in addition it must be guaranteed that, at all sites, the state of the interactive medium after
these operations have been executed is the same as if the operations had been executed in the correct orderat the time identified
by their timestamps.

In order to be able to discuss this in a more formal way we define a partial ordering on the user initiated operations as follows:

Definition 3: Partial physical time ordering relation “<”. Given two operations Oa and Ob with timestamps Ta
and Tb, then Oa is said to happen before Ob, expressed as Oa<Ob, iff Ta<Tb.

Definition 4: Any two operations Oa and Ob with timestamps Ta and Tb are said to be simultaneous, expressed
as Oa≈Ob, iff Ta=Tb.

4

Note, that this definition is based on physical clocks as opposed to logical clock based methods for discrete media. The partial
physical time ordering relation can be extended to become a complete physical time ordering relation by using an arbitrary
tiebreaker for simultaneous operations. An example for such a tiebreaker could be the IP address to break ties for simultaneous
operations from two different participants in combination with a counter to break ties of the same participant.

Definition 5: Complete physical time ordering relation “<<“. Given two operations Oa and Ob with Timestamps
Ta and Tb and tiebreakers Ba and Bb, then Oa<<Ob, iff (1) Ta < Tb, or (2) Ta = Tb and Ba<Bb.

Now we are able to define the consistency criterion for continuous distributed interactive media as follows:

(3) Consistency criterion. A continuous interactive medium is consistent, iff after all operations have been
executed at all sites, the state of the medium at all sites is identical to the state which would have been reached
by executing all operations in the order given by the complete physical time ordering relation at the physical
time denoted by the timestamps of the operations.

The consistency criterion includes the semantics of the precedence property from the discrete domain, provided that the
following reasonable assumption holds true: it is impossible for a user to react to an operation Oa with timestamp Ta by issuing
an operation Ob with a timestamp Tb <= Ta.

The consistency criterion for the continuous domain is illustrated in Figure 2. The physical clocks of all three sites are slightly
out of synchronization, the dashed lines identify the points in time with the same reading of the physical clock at each site.The
small filled circles indicate the time when an action is executed. In the example the following ordering of operations applies:
O1<O2, O1<O2 and O2≈O3 as well as O1<<O2, O1<<O3 and O2<<O3 (if the site number is used as tiebreaker). Figure 2
shows a somewhat unrealistic situation where all operations are always known at all sites at the time denoted by their
timestamp. This situation, however, is important, since the meaning of the consistency criterion is that at some time after the
last site has received all operations (identified as x in the example) the medium will look as if the operations had been executed
as depicted in Figure 2.

Figure 2: A consistent continuous distributed interactive medium

By guaranteeing that the state of the medium will be identical at all sites after all operations have been resolved, the
consistency criterion is the most important prerequisite to make sure that a continuous distributed interactive medium is
actually usable. However, even if the consistency criterion is ensured by a proper algorithm, it is still possible that consistency
related, transient artifacts occur. In addition to the basic consistency criterion we therefore define two additional fidelity
criteria:

(4) Avoidance of short term inconsistencies. If an operation with a timestamp T is not executed at a site i at
the physical time T then this operation is said to have caused a short term inconsistency of the interactive
medium at site i. Ideally, short term inconsistencies should be non-existent.

Short term inconsistencies occur when an operation issued at site j arrives at site i after the time denoted in the timestamp of
the operation. Because we assume that there exists an algorithm to ensure the convergence property, a late arrival means that

t=T(O1)

t=T(O2)=T(O3)

t=x

t=0

Site 0 Site 1 Site 2

O3

O1

O2

time

5

the state of the interactive medium at site i needs to be repaired. In the train example this would mean moving the train from
the wrong position on one branch of the tracks to the right position on the other branch of the tracks.

Short term inconsistencies basically have two implications: (1) they usually result in visual artifacts (the train “jumps” from
one position to a different one) and (2) a user might take actions which are based on an inconsistent state of the medium. An
example for the latter is the following situation: Assume that in the train example Ub pulls the breaks of the train, after it has
passed the switch, but before the operation from Ua has arrived. In this case Ub intends to stop the train because it is going in
the wrong direction. After Ub has issued this operation the operation from Ua arrives (late). In order to satisfy the convergence
property, the train will jump to the correct position. The net result of both operations is that the train will stop while it was
headed in the right direction, which is a clear violation of the intention of the users. This effect is similar to the intention-
violation problem in discrete media, as described in [1].

(5) Low response time. The response time of an interactive medium is the time between the physical time a
user issues an operation and the timestamp of that operation. Ideally the response time should be zero.

If the response time exceeds a certain threshold, the users will notice that there exists a delay between issuing operations and
the time when the operations are executed. This would result in an ‘unnatural’ behavior of the medium. Response time and
responsiveness are referring to the same attribute of a medium.

While it would be desirable to be able to guarantee that no consistency related artifacts occur in a continuous distributed
interactive medium, this is not possible. The reason for this is that the optimization of the response time and the avoidance of
short term inconsistencies are conflicting goals. Part (a) of Figure 3 shows an example where the responsiveness is optimal
(i.e. response time = 0). In this case the operations issued by the users take effect immediately. The points in time when O1
and O2 should take effect are indicated by the dotted line. As can be seen, only the user issuing the operation does not
experience short term inconsistencies. Any other user will have a short term inconsistency for that operation because of the
transmission delay for the remote operation. Part (b) of Figure 3 shows the same situation optimized for the short term
inconsistency criterion. Here short term inconsistencies are avoided at the cost of increasing the response time for each
operation to the maximum transmission delay between any two participants.

Figure 3: Short term inconsistency vs. response time

An observant reader might have noticed two peculiarities: (1) what if the time deviation between sender and receiver happens
to compensate for the transmission delay and (2) in an environment where network packets might get lost, how exactly can
we calculate the maximum transmission delay for an operation?

The answer to the first question is that the time deviation might indeed compensate for the network delay between a given
sender and receiver pair. This makes it possible for the sender to have a response time equal to zero while the receiver does
not experience short term inconsistencies. However, further reflection reveals that this works only in a broadcast environment,

operation is executed in time
operation is late = short term inconsistency

operation is issued
operation is executed

O2

Site 0 Site 1 Site 2

O1

response time

(b)(a)

response time

O2

time

Site 0 Site 1 Site 2

O1

6

with a single sender which never changes. We consider this restriction too limiting for almost all applications involving
continuous distributed interactive media.

The second observation arises from the problem that, in an environment where packet loss occurs, it is impossible to define
an upper bound on the delay which an operation needs to arrive at a remote site. After all, the same packet might get lost over
and over again as it is being retransmitted by the sender. This leads us to the conclusion that, while a reduction of short term
inconsistencies is desirable, a guaranteed prevention is not possible.

With the definition of the convergence property in place and the trade off between the two fidelity criterions discussed we will
now investigate a frequently used algorithm for achieving consistency in continuous distributed interactive media.

 4. DEAD RECKONING

An approach which is commonly used to guarantee that the consistency criterion is satisfied in distributed virtual environments
(e.g. multi-user virtual reality and battlefield simulations) is a combination of state prediction and state transmission. For this
approach the application “knows” how the objects in the virtual environment should behave over time. Examples are a plane
which will fly straight with constant speed or a projectile which will take a course dictated by the physical law of gravity. The
ability to predict the behavior of objects is known as dead reckoning.

Each object for which dead reckoning is performed has a single controlling application, e. g. for a plane this will be the
application of the pilot. The controlling application is responsible to inform peer applications when the state of the object
deviates by more than a certain threshold from the predicted state. In the case of a deviation, the controlling application
transmits the complete state of the affected object to all peers. Upon receiving this information, an applications discards the
outdated state and uses the new state to perform dead reckoning for this object. In order to be able to use this approach over
unreliable transport services, the controller of an object additionally transmits the state of the object in regular intervals as so
called heart-beat messages.

User initiated operations are immediately applied to the local state of the affected object. The object will therefore be put into
a state which differs significantly from the predicted state, requiring the controlling application to transmit the new state to its
peer applications. Because of this behavior the dead reckoning approach optimizes the response time criterion while each
action will result in a short term inconsistency at each remote site.

While this approach has a number of important advantages, such as robustness and scalability, the disadvantages of this
approach limit its applicability. In detail these disadvantages are:

1. It has a maximum number of short term inconsistencies. This implies that visual artifacts and actions based on an
inconsistent state are common.

2. It requires that the state of each object be transmitted for each operation. This could lead to a massive need of
bandwidth, especially when the state of the object exceeds a couple of bytes.

3. Only one controller for each object is possible. This prevents collaborative actions such as two users moving a single
object.

An example where this approach is used, is the well known battlefield simulation protocol called DIS (Distributed Interactive
Simulations) [10] and general purpose DVEs such as DIVE [3]. In a typical battlefield simulation environment the state to the
relevant objects is small (position and velocity) and relatively easy to predict, while each object will have only one controller
(e.g. the pilot of a plane, the driver of a car, etc.). The visible artifacts can be reduced by using intelligent algorithms for
repairing the state instead of immediately adopting the new state. For example, after a plane has changed its direction a remote
application can calculate a alternate flight path which will eventually bring the plane back into the correct state (instead of
jumping immediately to the correct position). Because of these attributes the state prediction and transmission approach is
adequate for battlefield simulations and some distributed virtual environments.

However, this approach becomes less appropriate to use if an interactive medium has one or more of the following restrictions:

• the state of objects is complex,
• visual artifacts cannot be concealed,
• true collaboration is important, or
• actions based on an inconsistent state are critical.

7

For several applications it might therefore be better to have a closer look at the trade off between responsiveness and short
term inconsistencies before simply maximizing responsiveness. In the following section we will discuss how to exploit the
trade off to improve the consistency related fidelity of continuous distributed interactive media.

 5. LOCAL LAG

The concept of local lag is simple: instead of immediately executing an operation issued by a local user, the operation is
delayed for a certain amount of time before it is executed. To use the terms from section 3, this approach requires that the value
of an operation’s timestamp is greater than the point in time when the operation is issued by a user. The delay which is
introduced for the local user in this way is called local lag. As depicted in Figure 3 (b), if the local lag is sufficiently high, then
it can reduce the number of short term inconsistencies.

5.1. Determining a Value for Local Lag

Clearly, it would not be desirable to move from one extreme where the response time is zero but short inconsistencies are very
frequent to the opposite extreme, where almost no short term inconsistencies occur but the response time is unacceptably high.
Therefore it is important to consider both consistency related fidelity criterions. For a given continuous distributed interactive
medium we propose to do this in three steps: (1) determine a minimum for the local lag which is needed to prevent a significant
amount of short term inconsistencies, then (2) determine the highest acceptable response time, and finally (3) choose a value
for the local lag.

Step 1. Determining a minimal value for local lag.

In order for local lag to be useful it needs to significantly reduce the number of short term inconsistencies for all
participants. Moreover, short term inconsistencies should be reduced for each sender/receiver pair. We therefore propose
to use the maximum average network delay between any two participants as the minimum amount of local lag. Typical
values (assuming an uncongested network) for the network induced delays are: less than 1ms for a LAN, 20ms for an
european country, 40 ms for a continent, and 100 ms for a world wide session. Choosing the maximal average network-
layer delay as minimal value for local lag implies that short term inconsistencies will occur only if packets get lost or the
jitter becomes significant because of network congestions. Even though we consider this to be a reasonable lower bound
for local lag, there might exist applications which could make use of even smaller local lag. The choice of this minimum
is therefore application dependent.

If the clocks of the participants are not completely in synchronization, then the maximum offset between any two clocks
need to be added to the result. This is necessary because the sender of an operation might be behind in time relative to the
recipient of the operation. If this time deviation would not be accounted for, the time deviation plus the network induced
transmission delay might be larger than the local lag, which would result in a short term inconsistency. This problem is
shown in Figure 4, where site 0 is ahead in time of site 1. Even though the operation O1 from the user at site 1 has a local
lag greater than the maximum network delay, a short term inconsistency occurs at site 0 because of the deviating clocks.
Typical values for time deviation of computers using NTP or SNTP are 20-50 ms if the NTP server is reached via WAN
and less than 10ms if the NTP server is part of the same LAN as the NTP client.

Figure 4: Problem with deviating clocks

inconsistency
short term

response time >=
maximum network delay

Site 0 Site 1

T1=0

time

O1

T1=8T0=10

T0=8

T0=0

clock deviation

8

Step 2. Determining the highest acceptable response time

The maximum local lag is dependent on how much response time a user can tolerate for a given interactive medium. In
order to determine this value, it is necessary to conduct perceptional psychological experiments. Ideally the experiments
will deliver two values: the first is the amount of local lag for which a user can not notice the delay. The second value is
the amount of local lag which can be tolerated by the user, i.e. the delay can be noticed but is not disturbing. It seems to
be reasonable to use the second value as the maximum amount of local lag for an interactive medium.

We are currently in the process of evaluating different operations for interactive media in order to determine these values.
First experiments suggest that local lag of up to 50ms is not noticeable by the user independent of the operation and the
medium. The value where local lag gets disturbing seems to depend heavily on the operation, ranging from 300-400ms for
simple click operations to 100-150ms for drag operations.

Step 3. Choosing a value for the local lag.

The previous two steps can result in two main cases: either the minimum for local lag is smaller than or equal to the highest
acceptable response time, or it is not. In the first case a value between the minimum for local lag and the highest acceptable
response time can be chosen. This choice should be based on additional criterions such as the question whether additional
time is required to receive forward error correction packets.

If the highest acceptable response time is lower than the minimal useful value for local lag, then a true trade off situation
occurs. Given the values mentioned above this should be relatively rare, though it might happen for very demanding media
and applications. In this case it is necessary to lower the fidelity of both criterions in a way which provides the best
consistency based overall fidelity to the user. Most likely this will require another set of perceptional psychological
experiments to find the amount of local lag which is considered to provide the highest fidelity to the user.

5.2. Repairing Short Term Inconsistencies

If the amount of local lag is chosen well, it eliminates a significant amount of inconsistencies. However, it does not completely
prevent all inconsistencies, since operations might still arrive late or not at all (e.g. if the network is congested or a transport
packet gets lost). It is therefore necessary to have a mechanism which will repair the state in these cases. In the following we
will summarize three possible approaches to repair inconsistent states.

State prediction and Transmission.

An obvious approach is to combine local lag with the mechanism for state prediction and transmission. Instead of
immediately executing a local operation on an object, the operation is delayed using the value for local lag: the operation
gets a timestamp equal to the current time plus the value of the local lag. Immediately as the user issues the operation
however, the new state for the object, at the time denoted by the timestamp of the operation, is calculated. This state
includes the operation and bears the same timestamp as the operation. The calculated state is immediately transmitted to
all participating sites.

When the physical time identified by the timestamp is reached, the site where the operation was issued will execute the
operation. The remote sites which have received the new state for the object by then will start using the new state for dead
reckoning without encountering any short term inconsistencies. Only those sites which receive the state late (because of
an unexpected transmission delay or because they missed a packet completely) will experience short term inconsistencies
while the state of the object is being repaired.

The combination of local lag with the state prediction and transmission approach retains two limitations from the original
approach without local lag: only one controller per object is possible and the state of an object needs to be small (since the
state is still transmitted for each operation). In the following approach we will allow the state of objects to be complex.

Requesting States

In order to allow objects to have a complex state of a size significantly larger than the 200 - 300 bytes used for states in the
DIS protocol, it is important that the state of an object is only transmitted if it is really needed to repair a short term
inconsistency. This aim can be reached by explicitly requesting the state in the case of a short term inconsistency, rather
than transmitting the state for each operation.

An algorithm realizing this approach needs to solve two problems: (1) it must be possible to identify those participants with
a correct state of the object and (2) it must be guaranteed that at least one participant can determine the correct state of the

9

object. These problems can be solved by allowing only a single controller at a time for each object. Since only one user is
able to issue operations for the object, that user will always have the correct state and it should be the task of the application
of that user to reply to state requests for the object. The controller of an object can change, as long as it is guaranteed that
all operations (and the repair of short term inconsistencies induced by these operations) of the old controller have been
executed before a different participant becomes the new controller of the object.

The main limitation of this approach is that no true collaborative operations are possible, i.e. two users are not able to
interact with the same object at the same time (unless some more sophisticated algorithm is used to determine who will
reply to a state request). Also, repairing an inconsistent state now requires an additional round trip for the state
request/reply. Therefore the requesting states approach is useful primarily for applications where simultaneous access to a
single object is not required and the likeliness of an inconsistent state is rather low (high value for local lag).

Time Warp

This method is an adoption of the time warp algorithm used for optimistic parallel discrete event simulation [2] [4]. In time
warp the state of each object does not need to be transmitted, even when a short term inexistence occurs. Instead local
information is used to repair the state. Additionally time warp allows an arbitrary number of users to interact with the same
object at the same time.

The fundamental idea of time warp is that each participant saves the state of the interactive medium at certain times. All
operations up to a certain point in time in the past are kept in a log. When a short term inconsistency occurs, then the
interactive medium is rolled back to the last saved state of the interactive medium before the operation should have taken
place. Then the operation which caused the short term inconsistency is inserted into the log. After that the medium is played
in fast forward mode, executing the operations from the log at appropriate times until the current time for the medium is
reached and operation is resumed at normal pace. Only the end result of this operation should be visible to the user.

Choosing the points when to save the state is dependent of the application and the medium. If the state is saved to
frequently, it might effect the visual quality of the presentation and use a large amount of memory. If the state is saved not
frequently enough, a lot of operations have to be performed when a short term inconsistency occurs, extending the time
the inconsistency is visible to the user.

The main drawback for this approach is that it requires a sophisticated application which is able to handle the process of
time warping the state of a medium. In addition, if the state is complex, then the time warp approach might consume a large
amount of memory for saving the states as well as placing a heavy load on the computer at the time a time warp has to be
executed.

As a summary it can be said that choosing the amount of local lag as well as choosing a repair mechanism for short term
inconsistency is heavily dependent on the application and the medium itself. In the following section we will show how these
decisions have been made for a 3D telecooperation application.

 6. USING LOCAL LAG IN A 3D TELECOOPERATION APPLICATION

We have tested the concept of local lag in the context of the 3D telecooperation application TeCo3D - a shared workspace for
dynamic and interactive 3D models [6]. TeCo3D was developed to allow users to share collaboration-unaware VRML (Virtual
Reality Modeling Language) models, i.e. models which have not been specifically developed to be used by more than one user
at a time. With this functionality it is possible to include arbitrary VRML content, as generated by standard CAD or animation
software, into teleconferencing sessions.

TeCo3D was developed by reusing the Java3D VRML loader [12] as 3D presentation and execution engine and employs a
completely replicated distribution architecture with reliable multicast as means of communication. When a user imports a local
VRML object, the VRML code is parsed and the parts which are responsible for user interactions are replaced with custom
components turning the collaboration-unaware object into a collaboration-aware model. User initiated operations are captured
by the custom components and are transmitted to all peer instance in the session, where they are injected into the local model.
In order to provide remote users with the initial state of the imported objects and to repair short term inconsistencies we have
enhanced the VRML loader by a method to get and set the state of arbitrary VRML objects [7].

The algorithm which provides consistency for TeCo3D had to take into consideration that the state of VRML objects can be
complex, ranging from 200 bytes for a simple moving sphere to 50 000+ bytes for an interactive cartoon. Extracting and setting
the state of objects is costly, both in terms of visual artifacts (the animation freezes for 100-200 ms) and computational

10

overhead. It was therefore of critical importance to minimize the number of short term inconsistencies. The minimal useful
amount of local lag (step 1) was therefore determined as 150 ms = 100 ms (world-wide conferences) + 50 ms (maximum time
deviation).

First tests with increasing the response time from zero up to a value of 300 ms have shown that a delay of 100 ms is barely
noticeable and 200 ms is still very acceptable for most interactive 3D objects. In addition users seem to be able to adapt to a
constant delay rather fast, making a response time of up to 300 ms feasible for most types of interaction. The maximum
acceptable response time (step 2) was therefore estimated to be between 200 and 300ms. With a minimum value for the local
lag at 150ms and the maximum value between 200 and 300 ms we have chosen to set the local lag to 200ms, adding 50 ms to
the minimum value for some additional protection against network jitter.

The next decision which had to be made was the choice of the repair mechanism. The state prediction approach was not taken
into consideration because of the complexity of the state information for VRML objects. While it was tempting to use time
warp, we did not want to burden our prototype with the complex mechanisms necessary for this approach. We therefore chose
the requesting states method to repair short term inconsistencies. The implementation of both local lag and repair mechanism
where straight forward and needed less than 500 lines of code.

First experiments with TeCo3D show that, as expected, no short term inconsistencies occur as long as all network packets
arrive at their destination. When packet loss increases (and therefore retransmitted operations arrive late), short term
inconsistencies start to appear. In our test sessions with loss rates between 0% and 5% these cases where sufficiently rare to
not significantly affect the consistency related fidelity of the application.

In the future we will use forward error correction to protect user initiated operations from packets loss, effectively giving the
transmission of operations a higher priority than the transmission of states for repairing short term inconsistencies. This should
significantly increase the maximum tolerable packet loss rate.

 7. CONCLUSION AND OUTLOOK

In this paper we investigated the problem of consistency in continuous distributed interactive media. It was shown that
algorithms for consistency in the continuous domain differ significantly from those used for discrete media. In order to
systematically approach the problem, a formal definition of the term consistency in the continuous domain was deduced from
the special characteristics of the continuous media class. Based on this definition an important trade off relationship between
responsiveness and the occurrence of short term inconsistencies was examined. We proposed to make use of the knowledge
of this trade off relationship in order to increase the consistency related fidelity of the medium. This can be done by
deliberately increasing the response time in order to decrease the number of short term inconsistencies, leading to the concept
of local lag. The local lag approach for consistency in the continuous domain was proven to be usable by integrating it into a
3D telecooperation application.

Currently we focus our work on getting a deeper insight into how much local lag can be tolerated for different combinations
of media and interaction types. In order to reach this goal a series of wharnehmungspsychologischer experiments is conducted
at the University of Mannheim, on which we will report as soon as they have been properly evaluated.

Another area where future work is planned is a more thorough investigation of the repair mechanisms used in combination
with local lag. It is especially tempting to employ the time warp approach for our 3D telecooperation application. However,
before we are able to use time warp as an alternative to requesting states, we need to make sure that the complex algorithm of
time warping and the overhead for regular state saves does not limit the fidelity of the application.

REFERENCES

[1] C. A. Ellis and S. J. Gibbs: “Concurrency control in groupware systems,” in: Proceedings of the 1989 ACM SIGMOD
Conference on Managements of Data, Portland, OR, USA, 1989, pp. 399-407.

[2] R. M. Fujimoto: “Parallel Discrete Event Simulation,” Communications of the ACM, Volume 33, Number 10, pp. 30-
53, 1990.

[3] E. Frécon and M. Stenius: “DIVE: A Scalable network architecture for distributed virutal environments,” Distributed
Systems Engineering Journal, Volume 5, Number 3, pp. 91-100, 1998.

[4] D. R. Jefferson: “Virtual Time,” ACM Transactions on Programming Languages and Systems, Volume 7, Number 3,
pp. 404-425, 1989.

[5] L. Lamport: “Time, Clocks, and the Ordering of Events in a Distributed System,” Communications of the ACM,

11

Volume 21, Number 7, pp. 558-565, 1978.
[6] M. Mauve: “TeCo3D - A 3D Telecooperation Application based on VRML and Java,” in: Proceedings of Multimedia

Computing and Networking MMCN/SPIE’99, pp. 240-251, 1999.
[7] M. Mauve: “Transparent Access To And Encoding Of VRML State Information,” in: Proceedings of the Fourth

Symposium on the Virtual Reality Modeling Language VRML’99, pp. 29-38, 1999.
[8] D. L. Mills: “Network Time Protocol (Version 3) specification, implementation and analysis”,DARPA Network

Working Group Report RFC-1305, University of Delaware, 1992.
[9] S. K. Singhal, “Effective Remote Modeling in Large Scale Distributed Simulation and Visualization Environments,”

Ph.D Dissertation, Department of computerscience, Stanford University, 1996.
[10] S. Srinivasan: “Efficient Data Consistency in HLA/DIS++,” in: Proceedings of the 1996 Winter Simulation

Conference, pp. 946-951, 1996.
[11] C. Sun and C. Ellis: “Operational Transformation in Real-Time Group Editors: Issues, Algorithms, and

Achievements,” in: Proceedings of the ACM 1998 conference on Computer Supported Cooperative Work
(CSCW’98), pp. 59-68, 1998.

[12] VRML Consortium: “The Java3D and VRML Working Group,” web page:
www.vrml.org/WorkingGroups/vrml-java3d/.

