
A General Framework and Communication Protocol for the Transmission of
Interactive Media with Real-Time Characteristics1

Martin Mauve, Volker Hilt, Christoph Kuhmünch, Wolfgang Effelsberg
{mauve,hilt,cjk,effelsberg}@pi4.informatik.uni-mannheim.de

University of Mannheim, Germany

1 This work is sponsored by the Siemens Telecollaboration Center, Saarbrücken, by the DFN (Deutsches Forschungsnetz), and by the BMBF
(Bundesministerium für Forschung und Technologie).

Abstract
In this paper we present a general framework for the
transmission of interactive media with real-time
characteristics, i.e. media involving user interaction. By
identifying and supporting the common aspects of
interactive media the framework allows the development of
generic services for distributed, collaborative work
involving the transmission of interactive media. Derived
from the experience gained with audio and video
transmission using the Real-Time Transport Protocol
(RTP), we define a new RTP profile for interactive media.

1. Introduction

The development of application-layer protocols for the
real-time distribution of audio and video has been a focus
of research for several years. Most notable is the success of
the Real-Time Transport Protocol (RTP) [11]. RTP is a pro-
tocol that must be tailored to the specific needs of different
media and media classes. It is therefore accompanied by
documents describing the specific encoding of different
media types within the RTP framework. The current docu-
ments focus mainly on the encoding of various audio and
video formats [10]. While these two basic media classes
can be considered the most common ones, there exist sev-
eral others which are gaining importance rapidly.

This paper presents a general framework for the distri-
bution of interactive media with real-time characteristics,
i.e. media involving user interaction. Examples of interac-
tive media are: shared whiteboard applications [1], mul-
tiuser VRML models [13] and distributed Java animations
[5]. Suitable application layer protocols are thus needed,
which support distributed interactive media. Existing
approaches to define application-layer protocols for the
distribution of some interactive media are mostly propri-
etary [1]. This prevents interoperability as well as sharing

of common tools while requiring re-implementation of
similar functionality for each protocol.

In order to establish a common foundation, we propose
a general, RTP-based, application-layer protocol profile for
the distribution of interactive media with real-time charac-
teristics. For a certain medium the profile can be instanti-
ated by providing medium-specific information, reusing
the infrastructure set up by RTP and the profile. The profile
itself captures the common aspects of the interactive media
class, enabling the reuse of existing code and tools.

A classification of different media types and important
properties of the interactive media class are introduced in
Section Two. Section Three covers the common require-
ments for application-level protocols supporting this media
class. The RTP profile is presented in Section Four. Section
Five gives a brief overview of a generic recording service
for interactive media. Section Six concludes this paper with
a summary and an outlook.

2. Interactive Media

In order to define the scope of our work, we separate
media types by means of two criteria. The first criterion
distinguishes whether the medium is discrete or continu-
ous. The characteristic of adiscrete medium is that its state
is independent of the passage of time. Examples of discrete
media are still images or digital whiteboard presentations.
While discrete media may change their state, they do so
only in response to external events, such as a user drawing
on a digital whiteboard. The state of acontinuous medium,
however, depends on the passage of time and can change
without the occurrence of external events. Video and ani-
mations belong to the class of continuous media. The sec-
ond criterion distinguishes between interactive and non-
interactive media.Non-interactive media change their state
only in response to the passage of time and do not accept
external events. Typical representations of non-interactive



media are video, audio and images.Interactive media are
characterized by the fact that their state can be changed by
external events such as user interactions. Whiteboard pre-
sentations and interactive animations represent interactive
media. Figure 1 depicts how the criteria characterize differ-
ent media types.

Figure 1. Examples of Media Types

A medium which is neither interactive nor continuous
does not require support of a real-time transport protocol
and is therefore not further discussed here. Media types
that are non-interactive and continuous have already been
investigated to a large extent. Several RTP payload types
have been defined for different encodings of video and
audio.

In contrast, proprietary protocols are used by almost all
applications for the distribution of, and cooperation with,
interactive (continuous, as well as discrete) media. The
usage of proprietary protocols prohibits the development of
generalized services for important aspects such as record-
ing or late-join. However, general services like these would
be within reach if all interactive media where required to
make certain assertions about the protocol they use. It is the
aim of this work to define these required assertions, in
order to develop a general framework for interactive media.

2.1. Model for Interactive Media

An interactive medium is a medium that is well defined
by its current state at any point in time. For example at a
given point in time the medium Java animation is defined
by the internal state of the Java program that is implement-
ing the animation. Thestate of an interactive medium can
change for two reasons, either by passage of time or by
events. The state of an interactive medium between two
successive events is fully deterministic and depends only
on the passage of time. Any state change which is not a
fully deterministic function of time is caused by an event.
A typical example of an event is the interaction of a user
with the medium. An example of a state change caused by
the passage of time might be the animation of an object

moving across the screen. As will be shown later, states
and events play an important role in the transmission of
interactive media and constitute the main part of an interac-
tive media stream.

To display a non-interactive media stream like video or
audio, a receiver needs to have an adequateplayer for a
specific encoding of the medium. If such a player is present
in a system, every media stream that employs this encoding
can be processed. This is not true of interactive media
streams. For example, to process the media stream that is
produced by a shared VRML browser, it is not sufficient
for a receiver to have a VRML browser. The receiver will
also need the VRML world on which the sender acts; oth-
erwise the media stream will not be able to be interpreted
by the receiver. But even if the receiver has loaded the cor-
rect world into its browser, the VRML world may be in a
state completely different from that of the sender. There-
fore, the receiver must synchronize the state of the local
representation of the interactive medium with the state of
the sender before it will be able to interpret the VRML
media stream correctly.

Generally speaking, it is not sufficient to have a player
for an interactive media type. Additionally the player must
be initialized with thecontext of a media stream before the
stream actually can be played. The context is comprised of
two components: (1) the environment of a medium and (2)
the current state of the medium. Theenvironment repre-
sents the static description of an interactive medium that
must initially be loaded into the media player. Examples of
environments are VRML worlds or the code of Java anima-
tions. Thestate is the dynamic part of the context. The
environment within a player must be initialized with the
current state of the interactive medium before the stream
can be played. During transmission of the stream, both
sender and receiver must stay synchronized since each
event refers to a well-defined state of the medium and can-
not be processed if the medium is in a different state. Syn-
chronization can be realized by various means ranging
from reliable transmission with a large reorder buffer to
unreliable transmission combined with frequent insertions
of state information into the media stream.

It can be derived from our explanation that there are
four elements involved in transmitting and playing interac-
tive media streams: the player, the environment, states and
events. The first two elements do not need real-time trans-
mission and therefore do not fall within the scope of this
work. We merely assume that they are present for all send-
ers and receivers of interactive media streams. Collectively
we call these two elements the application. Events and
states, however, are the basis of the actual interactive media
stream. The following section will discuss the requirements
for a protocol for transporting this kind of data.

D
iscrete M

edia

Non-Interactive Media

Interactive Media

C
ontinuous M

edia

Image Video

AnimationDigital Whiteboard



3. Protocol Requirements

A general protocol for interactive media must meet sev-
eral requirements derived from the nature of the medium,
the applications presenting it, and the general services
interacting with the media stream. The first and most
important requirement is the real-time capability of the
protocol. As explained in Section Two, states and events of
an interactive medium are generally only valid at a specific
point in time. The protocol must therefore be able to con-
vey timing information. Furthermore, receivers of an inter-
active media stream should be able to inform the sender
about the transmission quality of the stream received. This
includes loss rates, latency and jitter. The information
allows the sender to react to quality changes in the underly-
ing network, e.g. use a varying amount of forward error
correction redundancy or change the data rate. Both
aspects, real-time capability and quality feedback, are sup-
plied by the Real-Time Transport Protocol (RTP) in combi-
nation with the RTP Control Protocol (RTCP). RTP is
therefore used as the basis for our general interactive media
framework.

RTP is a protocol which was left incomplete on purpose
so that it can be tailored to the specific needs of different
media. This process of adaptation can be done in two steps.
The first step is to define an RTP profile. A profile defines
the common aspects of several related media. The second
step is to specify in detail how a single medium is trans-
ported using the packet types defined by RTP. This specifi-
cation is called a payload type definition. Following this
approach, we define a general protocol for interactive
media as an RTP profile, while each individual interactive
medium is specified as a payload type within the profile.

The proposed RTP profile should identify and support
the common aspects of interactive media streams which are
not already handled by RTP. In detail these aspects are:
• Identification of RTP packet content. For general

services it is important to be able to identify the type of
content transported in an RTP packet. The profile
should specify an identification mechanism for the
different packet types common to all interactive media
(e.g. event and state packets).

• States and Events.The profile should specify how the
basic elements - states and events - of an interactive
media stream are to be transmitted.

• Sub-components. To ensure flexible handling of state
information it is desirable to partition an interactive
medium into several sub-components. Such
partitioning allows participants of a session to track
only the states of those sub-components they are
actually interested in. Examples of sub-components are
VRML objects (a house, a car, a room), or the pages of
a whiteboard presentation. The profile uses sub-

components as the level of granularity for state
transmissions. Events have to identify the sub-
component in which the “target” of the event is located
and must include this information in the event packet.
This allows applications to discard events for sub-
components they are not interested in.

• Delta States. In cases where a complex state is inserted
frequently into the media stream, it is necessary to be
able to send only those parts that have changed since
the last state transmission. We call a state which
contains only the state changes that have occurred since
the last transmitted state adelta state. A delta state can
only be interpreted if the preceding full state and
interim delta states are also available (see Figure 2).
The main advantages of delta states are their smaller
size and that they can be calculated faster than full
states.

Figure 2. Decoding of Delta States

• Active sub-components. For many generic services it
is important that the sub-components necessary to
display the interactive medium are known. The profile
should provide a standardized way for session
participants to announce the sub-components they are
currently interested in.

• Requesting information. On several occasions the
receivers of an interactive media stream need to get
certain information from the sender. This information
might be the state of a specific sub-component or a
general description of all sub-components. The
mechanisms for requesting this information should be
defined within the profile.

4. RTP Profile for Interactive Media

4.1. State, Delta-State, Event

In order to comply with the requirements in Section 3
most of the data for interactive media is carried in three
packet types: state, delta-state and event. These three
packet types are structured as depicted in Figure 3. The
most important fields in these packets are type, sub-compo-

State
Full Full

StateState State
DeltaDelta Delta

State

time

AB

A requires B for decoding



nent ID, sub-component sequence number, and data. The
type field is needed to distinguish the different packet types
defined in the profile. Possible choices for the type field are
state, delta state, event, active sub-components list and
state description list.

In state and delta state packets the sub-component ID
field is used to hold the sub-component ID of the state
included in the data part of the packet. In event packets this
field identifies the sub-component in which the “target” of
an event is located.

A separate sub-component sequence number is present
in state, delta state and event packets. Based on this infor-
mation the receivers can ignore packet loss or request the
repair of appropriate sub-components. The data field of the
packet contains the definition of states, delta-states or
events specific to the payload type.

In addition to the four basic fields, the profile also
defines the meaning of two other fields. The marker bit (M)
is set to one for the last packet describing a single state,
delta-state or event. Since setting the state of a sub-compo-
nent can be costly and might not always be reasonable, a
priority (PRI) field is present in state and delta-state pack-
ets. This priority can be used by the sender of the state to
signal its importance. A packet with high priority should be
examined and applied by all communication peers which
are interested in the specific sub-component. Situations
where high priority is recommended are resynchronization
after errors or packet loss. Basically a state transmission
with high priority forces every participant to discard its
information about the sub-component and requires the
adoption of the new state. A state transmitted with low pri-
ority can be ignored at will by any participant. This is use-
ful if only a subset of communication partners is interested
in the state. An example of this case are late joins where
only applications joining the session might be interested in
certain state transmissions.

Figure 3. RTP Packet Structure for States, Delta
States and Events

4.2. Active Sub-Components

As requested in Section 3 the profile provides a stan-
dardized way to announce the active sub-components of

any application participating in an interactive media ses-
sion. The active sub-components of a single application at
any point in time are those sub-components which are
required by the application to present the interactive
medium at that specific time. The active sub-components
of a session comprising several participants are the active
sub-components of all participants. It is important to note
that declaring a sub-component active does not grant per-
mission to modify anything within that sub-component. It
is perfectly reasonable for a single application to activate
several sub-components just to indicate that these are
needed for the local presentation of the medium. However,
a sub-component must be activated by a session participant
before that participant is allowed to modify (send events
into) the sub-component.

Announcement of active sub-components is made by
means of the active sub-components list packet type. This
packet type is shown in Figure 4 and lists the IDs of the
active subcomponents within the participant. The specifica-
tion of when these packets need to be sent is the responsi-
bility of the application. It is required that this specification
ensures that every participant of a session has sufficient
information to derive an acceptable approximation of
which sub-components are currently active in the session.

Figure 4. Active Sub-Components List RTP Packet

In order to simplify the handling of sub-component
states in the application, the following rule applies: When-
ever a sub-component becomes active in a session, the full
state of that sub-component must be transmitted. This rule
allows local applications to discard any state information
that becomes inactive in a session. Only those applications
interested in reactivating the sub-component at a later point
in time need to remember its state. All other applications
can rely on this rule to receive the state should someone
else reactivate the sub-component.

4.3. State Query, State List Query, State List

In many cases it is reasonable to let the receivers decide
when the state of sub-components should be transmitted.
For this reason a receiver must be able to request the state
from other participants in the session. Within the profile
this mechanism is realized by means of a special RTCP

X

IV=0

7 8 9
3
0 1

contributing source (CSRC) identifiers

M

data

sub-component ID sub-component sequence number

reservedPRI

synchronization source (SSRC) identifier

CC PT

timestamp

type

62 3 4 5 98761

V=2 P

0
0

sequence number

1
9

2
0 1 543280 1 2 3 7654

synchronization source (SSRC) identifier

X

IV=0

8 9
3
0 1

contributing source (CSRC) identifiers

sub-component ID

sub-component ID padding

PT

timestamp

sub-component ID

CC M

type reserved number of sub-components

72 3 4 5 98761

V=2 P

0
0

sequence number

1 2
0 1 2 654393210 4 8765



packet calledstate query. This packet is an application-
defined RTCP packet; its structure is depicted in Figure 5.
In order to address the requested state, a sub-component ID
field is present.

As the computation of state information may be costly,
the sender must be able to distinguish between different
types of requests. Recovery after an error urgently requires
information on the sub-component state. These requests
will be relatively rare. In contrast to this, a recorder does
need the media states to enable random access for the
recorded media. It does not urgently need the state but will
issue requests frequently. For this reason, the state request
mechanism supports different priorities through the prior-
ity (PRI) field in the state query packet. Senders should sat-
isfy requests with high priority (e.g. for late joiners) very
quickly. Requests with low priority can be delayed or even
ignored, e.g. if the sender currently has no resources to sat-
isfy them. The sender must be aware that the quality of the
service offered by the requesting application will decrease
if requests are ignored.

Figure 5. State Query RTCP Packet

In many situations (e.g. late join) it is desirable for a
receiver to have an overview of all sub-components present
in a session. The overview should include the IDs of all
sub-components (active or inactive) kept by all session par-
ticipants. Besides the raw IDs, it should also be possible to
get application-specific information for each sub-compo-
nent. Examples of this kind of information are the spatial
position of VRML objects or the titles of slides presented
on a shared whiteboard.

A session participant can request the overview by send-
ing a state list query RTCP packet. This packet is struc-
tured like the state query packet, but the sub-component ID
field is missing. If the priority of the state list query packet
warrants a reply, a selected group of session participants
transmits state-list RTP packets containing the information
requested. The state list resembles the active sub-compo-
nents list packet (Figure 4), except that an application-
defined description for each sub-component is appended to
the packet. It is the responsibility of the application to
choose the session participants that will send the state lists.

5. The Recording Service

With the growing number of real-time transmissions on
the Internet, the need arose to record some of the transmis-
sions. Meanwhile a number of RTP recorders exist (e.g. the

MBone VCR [4]) accomplishing this task at least for video
and audio streams. These recorders store media streams
packetized in RTP. The major advantage of this approach is
that the mechanisms implemented in a recorder can build
upon RTP and do not depend on a specific media encoding.
Due to the lack of a common framework for interactive
media, recorders for that category exist only for specific
applications. Examples of recorders for shared whiteboards
are the MASH media board recorder [12] and the recorder
for the digital lecture board [2] [1]. But since there are
many types of interactive media, it is advantageous to
implement the mechanisms needed for the recording of
interactive media streams in a more general fashion. With a
general framework for interactive media streams, all trans-
missions that implement the framework can be recorded.

5.1. Random Access to Interactive Media Streams

When operating in recording mode, an interactive media
RTP recorder receives RTP data packets (which basically
contain states or events) and writes them to a storage
device. The more often the media state is received and
stored within the stream, the finer is the granularity with
which the stream can be accessed at playback time (see
below). Interactive media applications usually send the
media state upon request by another application. Thus, the
recorder must request the state at periodic intervals. The
requests use a low priority because a delayed or missing
response reduces only the access granularity of the stream,
which can be tolerated to some degree.

In contrast to the traditional media types where random
access to any position within a stream is possible interac-
tive media streams do not allow easy random access with-
out restoring the context of the stream at the desired access
position. To restore the context of a recorded stream in a
receiver, two operations have to be performed: first, the
environment has to be loaded into the receiver. Then the
receiver needs the state of the interactive medium at the
access position within the stream.

This state can be recovered from the recorded media
stream. Notice that the recorder is not able to interpret the
media-specific part of the RTP packets and therefore can-
not directly compute the state and send it to the receivers.
But the recorder may send RTP packets which are stored
within the recorded media stream. Thus, if the recorder can
compose a sequence of recorded RTP packets containing
states and events that put a receiver into the desired state,
the state of an interactive media stream at an access posi-
tion can be reconstructed. The task a recorder has to
accomplish before starting a playback is to determine the
sequence of recorded packets that will put the receivers
into the state that is required for the access at the desired

7 8 09
3

51 2 3 4 6

PRI reserved sub-component ID

name="IAMP"

1

subtype length=3

SSRC/CSRC

01 2 3 4 5 60

V=2 P PT=APP=204

0
7 5 6 7 8 9

2
48 9

1
0 1 2 3



position. After this initialization, the recorder switches to
regular playback mode and sequentially reads the recorded
RTP packets from its storage device and sends them to the
multicast group.

A detailed description of mechanisms that enable the
recovery of the state of an interactive medium out of a
recorded stream can be found in [3].

6. Conclusion and Outlook

In this paper we presented a first survey of our general
framework for the transmission ofinteractive media with
real-time characteristics. The most important aspect of this
RTP-based framework is the introduction of a protocol pro-
file which captures the common attributes of the distributed
interactive media class. In particular we identified common
requirements of interactive media, e.g. the necessity for the
transmission of state information and events. Based on
these common requirements we defined the structure of the
profile so that it fulfills the specific needs of interactive
media.

Relying on the profile it is possible to develop media-
independent, generic services. As a proof of concept, one
of those services - recording and playback of interactive
media streams - was briefly summarized within this work.
A more detailed version of this paper can be found in [9]

There are a number of items we will be working on in
the near future:
• The development of a sample implementation of the

proposed profile.
• Based on the sample implementation the payload type-

specific functionality for distributed interactive Java
animations [6] and multi-user VRML [7] [8] will be
realized.

• We are working on two generic services for interactive
media: late join and recording of sessions. Both will be
tested with the Java animation and the VRML payload.

During the implementation and testing of the sample
library, the payload types and the generic services we
expect to get enough feedback for a full specification of the
profile and the payload types. We intend to publish those
specifications as Internet drafts.

7. References

[1] W. Geyer, W. Effelsberg. The Digital Lecture Board
- A Teaching and Learning Tool for Remote Instruction in
Higher Education. In:Proc. of ED-MEDIA’98, Freiburg,
Germany, AACE, 1998. Available on CD-ROM.

[2] O. Graß.Realisierung eines Whiteboard-Recorder
Moduls. Master’s Thesis (in German), LS Praktische
Informatik IV, University of Mannheim, Germany, 1998.

[3] V. Hilt. The Recording of Interactive Media Streams
Using a General Framework. Technical Report TR 14-98,
University of Mannheim, Germany, 1998.

[4] W. Holfelder. Interactive Remote Recording and
Playback of Multicast Videoconferences. In:Proc. of
Interactive Distributed Multimedia Systems and
Telecommunication Services (IDMS’97), Darmstadt, pp.
450-463. Springer Verlag, Berlin, 1997.

[5] C. Kuhmünch, T. Fuhrmann, and G. Schöppe. Java
Teachware - The Java Remote Control Tool and its
Applications. InProc. of ED-MEDIA/ED’98, Freiburg,
Germany, AACE, 1998. Available on CD-ROM.

[6] C. Kuhmünch.Collaborative Animations in Java.
Technical Report TR 15-98, University of Mannheim,
1998.

[7] M. Mauve. TeCo3D - A 3D Telecollaboration
Application Based on VRML and Java. In: Proc. of
MMCN’99 / SPIE’99, San Jose, 1999.

[8] M. Mauve. Transparent Access to and Encoding of
VRML State Information. In: Proc. of VRML’99,
Paderborn, 1999.

[9] M. Mauve, V. Hilt, C. Kuhmünch and W.
Effelsberg.A General Framework and Communication
Protocol for the Real-Time Transmission of Interactive
Media, Technical Report TR 16-98, University of
Mannheim, Germany, 1998.

[10] H. Schulzrinne.RTP Profile for Audio and Video
Conferences with Minimal Control, Internet Draft,
Audio/Video Transport Working Group, IETF, draft-ietf-
avt-profile-new-03.txt, 1998.

[11] H. Schulzrinne, S. Casner, R. Frederick, V.
Jacobson.RTP: A Transport Protocol for Real-Time
Applications. Internet Draft, Audio/Video Transport
Working Group, IETF, draft-ietf-avt-rtp-new-01.txt, 1998.

[12] T. Tung.MediaBoard: A Shared Whiteboard
Application for the MBone. Master’s Thesis, Computer
Science Division (EECS), University of California,
Berkeley, 1998.

[13] VRML Consortium.Information technology --
Computer graphics and image processing -- The Virtual
Reality Modeling Language (VRML) -- Part 1: Functional
specification and UTF-8 encoding. ISO/IEC 14772-1:1997
International Standard, 1997.


