
REIHE INFORMATIK
13/98

Access to and Encoding of VRML State Information
Martin Mauve

Siemens Telekooperations Zentrum, Saarbrücken
Universität Mannheim

Praktische Informatik IV
L15, 16

D-68131 Mannheim

1

Access to and Encoding of VRML State Information

Martin Mauve
Praktische Informatik IV, University of Mannheim, Germany

Siemens Telecooperation Center, Saarbrücken, Germany
mauve@pi4.informatik.uni-mannheim.de

Abstract. In this paper we propose a concept for transparent access to VRML state
information. Our approach enhances VRML browsers to provide additional
functionality instead of placing the burden for state access on content developers. The
enhanced functionality is realized as an extension to the External Authoring Interface
(EAI). Any application which relies on a VRML browser as the 3D presentation
engine can use the new EAI functionality to get and set the state of arbitrary VRML
content. In order to support diverse applications, the proposed methods allow not only
retrieval of the full state of a complete world, but also of the state of single objects and
state changes. Since the results of state access should be independent of browser
implementations, we also specify an encoding for state information. Data in this form
are either produced or consumed during state access. For the encoding of state
information we use an efficient, easy-to-parse binary encoding.

Keywords: VRML, Binary Encoding, Persistence

 1 Introduction

Within the last two years the Virtual Reality Modeling Language (VRML) [6] has emerged as the prime choice for
describing platform-independent, interactive 3D objects and worlds. Currently various work-groups aim at the
advancement of VRML and VRML-related technology. However, several areas for improvement remain which
have not been adequately addressed so far. Among them is the need for a standardized way to save and restore the
state of arbitrary VRML objects and worlds.

The current specifications of the External Authoring Interface (EAI) and the Script node API do not contain
methods which provide adequate functionality for state access. Existing proposals for VRML state persistence
require that the functionality for getting and setting the state be realized by the VRML content [9] [8]. These
approaches are only viable when the content can be specifically developed to support state persistence. Examples
where this could be the case are specialized multi-user objects or worlds which are dynamically retrieved from
databases. The state of other VRML models is currently not accessible. This is a severe constraint to applications
which embed VRML browsers as presentation and execution engines for VRML content. These applications are
of prime importance to the general success of VRML and range from presentation tools to 3D telecollaboration
applications and multi-user worlds. None of them are currently able to access the state of arbitrary VRML content,
although this is necessary to support fundamental functionality such as saving a certain state or transmitting it to a
communication peer.

To solve this problem we introduce new methods for the External Authoring Interface. These allow content-
independent (transparent) saving and restoring of the VRML state. The new methods produce (save state) and
consume (restore state) state information. This information needs to be encoded in a standardized way. We
therefore define a binary encoding for VRML state information in addition to methods of accessing it.

This paper is structured as follows: In Section 2 we describe the requirements for the state access methods and the
binary encoding of VRML state. The basic rules and a grammar for the encoding of VRML state are presented in
Section 3. Section 4 explains the semantics for encoding prototypes and special nodes such as scripts and sensors.
In section 5 we describe the methods for accessing VRML state as an extension to the External Authoring Interface.
Section 6 concludes this paper with a summary and an outlook.

2

 2 Requirements

Two aspects have to be addressed in order to realize a service for saving and restoring VRML state. The first one
is the definition of access methods. A minimal set of functionality includes methods for saving and methods for
restoring state information. The second aspect is the specification of a binary encoding which enables browser-
independent storage and exchange of VRML state. A number of requirements pertaining to both aspects can be
derived from the areas of application for VRML state access as well as from performance and browser integration
issues.

Requirements pertinent to the access methods are:

• Transparency. As already mentioned the methods should be generally independent of the content presented.
The only exception, where full transparency is not possible, are customized script nodes. As will be shown
later, a default can be specified even for those parts of VRML state. The main reason for demanding
transparency is that the state of all worlds and objects should be accessible, independently of how they where
created.

• Flexible handling of time. Time is an integral component of the VRML state. There are two semantically
different methods to handle the difference between the point in time when the state of the content is saved and
the point in time when the state is restored. Both are shown in Figure1. The first method compensates for the
time that has passed between saving and restoring the state. The content will be presented as if the time
between saving and restoring the state never elapsed. This method adjusts all references to time in the encoded
state by adding the difference between the point in time the state is restored and the point in time the state was
saved. The time values are adjusted when the state is restored. This procedure makes sense if users want to
save a state and restore it at a later point in time to continue interaction with the same VRML world.
However, there are scenarios where this behaviour is not appropriate. If, for example, two users are interacting
with a shared VRML world, it might be desirable for one user to update the other about a state change. If the
time needed to save, transmit, and restore the state where compensated when the receiver decoded the state,
the users would have an inconsistent model. In this model the sender would precede the receiver in time. It is
therefore necessary to provide a second method which accepts that time has passed between saving and
restoring the state. All references to time are kept as they have been saved in the encoded state, no matter when
the state is restored. As is shown, this option is useful in collaborative or streaming applications, where the
passage of time continues synchronously for all communication partners (e.g. sender and receiver of state
information).
Both methods can be enhanced by specifying a time offset, to be added to the time values when the state is
restored. This provides a limited capability for jumping forward and backward in time.

Figure 1: Handling of Time References

real time

decoded with
time difference
compensated

decoded with
time difference
accepted

t1 t2 t3ts tr

ts tr

ts tr

ct1=t1+(tr-ts)+offset

at1=t1+offset

ti = encoded reference to a point of time
it i = decoded time value when the time difference is ignored
kti = decoded time value when the time difference is accepted
ts = point of time the state is saved
tr = point of time the state is restored

ct1 ct2 ct3

at1 at2 at3

of the encoder

3

• Access of sub-components. In the case of large VRML worlds access to the state of sub-components is
desirable, so that their state can be saved and restored independently of the remainder of the VRML world.
Such a sub-component might be an avatar, a house, a car or any other VRML object. Generally sub-
components are encapsulated in grouping nodes. In addition to being able to access the state of whole worlds,
it should therefore also be possible to get and set the state of a single node.

• Delta States. In cases where the states of worlds and objects are saved and restored frequently, it is important
to be able to retrieve only those parts that have changed since the last time the state was saved. We call a state
which describes only the parts of an object or world that have changed since the last state access adelta state.
A delta state can only be interpreted if the preceding full state and interim delta states are also available (see
Figure2). The main advantage of delta states is their smaller size and that they can be calculated faster than
full states.

Figure 2: Decoding Delta States

The encoding has to meet the following requirements:

• Support of access methods. The encoding must support the access methods, in order for them to fulfil the
requirements mentioned above. Specifically it must allow for transparency as well as for the definition of sub-
components and delta states.

• Efficient encoding. It is important that the encoding be efficient with regard to the amount of data needed to
define VRML states. Since state descriptions are generated automatically and are not supposed to be edited by
humans, the usage of a human-readable format is not necessary. Instead a binary format should be used.

• Simple encoding. A relatively simple persistence format is needed to enable browsers to save and restore
VRML state fast and without too much processing. It should be similar to the internal browser representation
of the VRML state. As an example, it should be easy to retrieve the state of a node from the persistence format.
Sophisticated compression might raise the efficiency of the encoding but also would most likely result in an
unacceptable overhead within the browser.

 3 Basic Grammar for the Encoding of the VRML State

The specification of our binary state encoding is influenced by the proposal for a VRML Compressed Binary
Format (CBF) [7]. Besides compression, the CBF proposal specifies a grammar for the binary description of
VRML worlds. This grammar is sematically equivalent to the plain text encoding contained in the VMRL97
international standard. Stripped of the parts which concern compression, and enhanced to support additional state
information, the grammar of the CBF proposal can be used to define an encoding for the VRML state. In the
following sub-sections we describe the grammar for the encoding of complete VRML worlds, sub-components and
delta states. The grammar shown in the main part of this paper is not complete and serves only to demonstrate the
basic ideas of the encoding. A full definition of the grammar can be found in Appendix A.

Elements of VRML state

Figure3 shows the top-level structure of the encoding for the VRML state. Symbols which are printed inboldface
are terminal symbols in regard to this paper. Lines which areitalic describe the encoding of sub-components as
well as delta states and are explained in the appropriate sub-sections.

The description of a VRML state is a sequence of bytes which starts with a header. This header identifies that the
sequence of bytes contains a VRML state and includes the version number of the encoding. In order to be able to
decode a state in the persistence format, a decoder needs to know the type of information encoded (a complete
world vs. a single node and a full state vs. a delta state) and the encoding methods used. This information is
included in aTYPE byte that follows the header.

Full
State

Full
State

Delta
State

Delta
State

Delta
State

AB
A requires B for decoding

time

4

The main part for the state encoding is divided into the VRML browser state and the state of the scene graph.
Information which is needed to define the state of the browser are the user’s point of view, the point of time the
encoding was done, the URL of the current world and the stack order of bindable nodes. The state of the scene
graph contains the description of nodes and routes as well as the declaration and definition ofprototypes (PROTO
and EXTERNPROTO).

VRMLSTATE ::=
HEADER // #VRMLSTATE 1.0\n
TYPE // Information about the encoded content
BROWSER // State of the VRML browser
SCENEGRAPH; // State of the scene graph

TYPE ::=
BIT isCompleteWorld // encoding complete world (1) vs. encoding single node (0)
BIT isFullState // encoding full state (1) vs. encoding delta state (0)
BIT isCompleteList // delta states: lists of nodes are encoded with the
UINT(5); // padding: ignored

BROWSER ::=
DOUBLE currentTime // the point of time where the state was recorded
STRING URL // the current URL
if (isCompleteWorld) {

NODE pointOfView // the user’s point of view is encoded as a Viewpoint node
STACKORDER background // stack order of bindable nodes
STACKORDER fog
STACKORDER navigationInfo
STACKORDER viewPoint

}

SCENEGRAPH ::=
UINT(32) nEXTERNPROTO // number of EXTERNPROTO declarations
UINT(32) nPROTO // number of PROTO definitions
UINT(32) nNODE // number of top-level nodes
UINT(32) nROUTE // number of routes
EXTERNPROTO[nEXTERNPROTO] // declaration of EXTERNPROTOs
PROTO[nPROTO] // definition of PROTOs
NODE[nNODE] // state of nodes
ROUTE[nROUTE]; // state of routes

Figure 3: Top-level Structure of VRML State

While the encoding and semantics of the VRML browser state are straightforward, the description of the scene
graph state needs more detailed consideration. Its fundamental elements are nodes and routes. In the following sub-
sections we will explain how to encodethese elements, whilethe encoding ofprototypes is discussed in Section
Four.

Encoding of Nodes and Routes

As shown in Figure4 the encoding of a node state starts with a unique node ID. A node’s ID may change with each
full-state encoding. However, it is illegal to change the ID for delta states which follow a full or another delta state.
Given these restrictions, delta states can reference nodes which have been defined in previous states. At the same
time, the number space does not fill up with deleted nodes, since each full-state encoding can reuse the IDs of
deleted nodes. Besides their reference purpose in delta states, the IDs are used to define routes and USE nodes.

In order to provide important information to the decoder, the format of a node is encoded as a special byte. This
byte tells the decoder whether or not a USE or a DEF node has been encoded and whether the encoding contains
fields, exposed fields or events (node elements). In addition it includes two bits for the encoding of delta states.

To access a complete world every USE node is encoded by providing theunique IDof the referenced node. All
non-USE nodes have atypeto identify what kind of node is being encoded. The values 1 to 54 indicate a default
node from the VRML97 specification, where the number is derived from the node’s alphabetic order, e.g. Anchor
is encoded as 1 and WorldInfo as 54. Negative numbers are used to indicate instances of prototypes. The size of
the remaining description of a node is given so that it can be skipped by the decoder. For most nodes this description
is a list of node elements. Some nodes (Script nodes, Inline nodes and the instances of prototypes) require a special
encoding, which is described in Section Four.

5

NODE ::=
UINT(32) nodeID // unique ID for this node
NODEFORMAT // what kind of node is encoded?
if ((!isUNMODIFIED and !isDELETED) or isFULLSTATE) {// node skipped for delta encoding?

if (isUSE){ // is this a USE node?
UINT(32) referencedNodeID // DEFed node for this USE node

} else {
if (isDEF) { // is this a DEFed node?

STRING // name of the DEFed node
}
NODETYPE // what type of node is encoded?
UINT(32) nodeSize // how many bytes does this node have?
if (NODETYPE==39) { // is it a Script node?

SCRIPT // special encoding for script nodes
} else if (NODETYPE==24) { // is it an Inline node?

INLINE // special encoding for inline nodes
} else is (NODETYPE<0) { // is it an instance of a prototype?

PROTOINSTANCE // special encoding for prototypes
} else {

NODEFIELDS // regular encoding of node elements
}

}
};

NODEFORMAT ::=
BIT isUSE // a USE node (1)?
BIT isDEF // a DEF node (1)?
BIT hasNODEFIELD // NODEFIELDS contains data (1)?
BIT isUNMODIFIED // delta encoding: is this node unmodified (1)?
BIT isDELETED // delta encoding: has this node been deleted (1)?

UINT(3) // padding: ignored;

NODEFIELDS ::=
if (hasNODEFIELD) { // does this node have node elements?

NODEFIELD | NODEFIELD NODEFIELDS // list of fields, exposed fields and events out
};

NODEFIELD ::=
FIELDNUMBER // this identifies the node element which is encoded
FIELDVALUE;; // the value of the node element

ROUTE ::=
UINT(32) routeID // unique ID for this route
if (!isFullState) { // is this a delta encoding?

ROUTEFORMAT // delta encoding: is this a modified or deleted route?
}
UINT(32) fromNodeID // source node
FIELDNUMBER fromField // source node element
UNIT(32) toNodeID // target node
FIELDNUMBER toField; // target node element

ROUTEFORMAT ::=
BIT bUNMODIFIED // delta encoding: is this route unmodified?
BIT bDELETE // delta encoding: has this route been deleted?
UINT(6); // padding: ignored

Figure 4: Encoding of Nodes and Routes

The basic rule for the encoding of node elements is that any node element which does not contain the default value
of its data type must be included in a NODEFIELDS list. Since each list entry consists of two parts, it is possible
to skip elements or choose a different order for the elements than is shown in the VRML97 standard. The first part
is a number which is defined by the occurrence of the node element in the VRML97 specification and uniquely
identifies it. The second part is the value of the element. Each VRML data type has its own encoding which is not
shown here. In order to allow for streaming of VRML states, it is required that all node elements of the type
SFNode and MFNode be listed after any other node elements, and that children fields be specified as the last

6

encoded node elements. This supports streaming of the VRML state, since node elements can be decoded and
applied as soon as they are received, whereas a different ordering would require the decoder to wait until a node
has been completely received [4].

The encoding of a route starts with a unique ID. Similar to the node ID, the route ID is used to reference the route
within delta states. Thus they have the same requirements as node IDs. In the case of a full-state encoding, the ID
is followed by the description of the route’s source. The source is defined by the ID of the source node and the
number of the source node element. The target of a route is specified by the ID of the target node and the number
of the target node element.

Encoding of Sub-components

The encoding of the state of a single VRML node (sub-component) reuses the grammar presented in Figure3 and
Figure4. The only part of the grammar that is specifically designed to support sub-components is thestate of the
browser. When encoding a single node the browser state does not contain the stack order of bindable nodes or the
user’s viewpoint. This is reasonable since the decoding of a sub-component should affect only the sub-component
but not the global behavior of a VRML world.

Besides the different encoding of the browser state some additional restrictions have to be taken into account when
encoding the state of a sub-component:

• Prototypes. Only the definitions of those prototypes are included which are used by the sub-component.
• Nodes. On the top-level there is exactly one node present - the node that represents the sub-component.
• USE nodes. The first USE nodes that references a node which is not contained in the sub-component is

encoded as a full copy of the referenced DEF node rather then as a USE node. Other USE nodes referencing
the same node are encoded as a reference to the fully encoded node.

• Routes. Routes are only encoded when source and target of a route are part of the sub-component.

Delta States

A delta state describes the difference of the current state from the last encoded delta or full state. The grammar
from Figure3 and Figure4 is also used to encode delta states. While the state of the VRML browser is fully
encoded as for a full state, the state of the scene graph is reduced for a delta-state encoding.

Since prototype declarations and definitions are not expected to be modified or deleted during the lifetime of a
VRML world, theprototypeparts of the scene graph state contain only those elements that have been added since
the last state encoding. Any previously encoded prototypes are expected to remain unchanged.

For the nodes part of the scene graph only those nodes are completely encoded which have been modified or added
since the last delta or full state. Unmodified nodes are included only by giving their ID or they are completely
omitted. Whenever a single node element of the type SFNode is encoded there are two possibilities:

• The node and all of its descendants are unmodified. In this case the node is encoded by supplying its ID and
format with theisUNMODIFIED flag set to one. Nothing else is encoded, since the node has not changed.

• A node element or any descendant of the node has been modified. In this case the node is completely
encoded withisUNMODIFIED set to zero. The decision whether or not to do a complete encoding must then
be made for each individual descendant of the node.

There are two basic ways to encode a list of nodes such as the nodes on the top level of a scene graph state or
MFNode instances. The method for encoding lists of nodes is chosen at the beginning of the encoding and must be
the same for all lists:

• Complete List. All nodes on the list at the point in time when the delta encoding is done are encoded. Each of
the nodes is encoded according to the rules for single nodes described above. E. g. for unmodified nodes only
their ID and format need to be given, while modified nodes are completely encoded. The encoder can easily
execute this method, since it just needs to traverse the list and take appropriate actions. However, the receiver
needs to do some extra work to see whether nodes have been deleted or remained unmodified. If an encoder
chooses to use the complete list method it sets theisCompleteList flag in theTYPE byte to one.

• Changes Only. The changes only method encodes only the nodes which have been modified, added to or
deleted from the list since the last state encoding. Nodes that have been added or modified are encoded like
single nodes as described above, deleted nodes are encoded by giving their ID and format with the
isDELETED flagset to one. This method requires some overhead in the encoder, since deleted nodes need to
be remembered. On the other hand, the decoder can decode faster since its actions can be taken directly from
the encoded state. An encoder sets theisCompleteList flag in theTYPE byte to zero when choosing this
method.

7

While it would be possible to encode delta states on the fine-grained basis of fields, exposedFields and events, this
would require the browser to manage a large overhead just for delta-state encoding. We view the proposed level
of granularity as a compromise between encoding overhead and encoding efficiency.

The delta encoding of routes is performed in the same way as the encoding of node lists. The encoder must use the
same method (complete list vs. changes only) it used for the encoding of node lists.

 4 Encoding Semantics of Special Nodes and Prototypes

For most node types the semantics of the encoded nodes are completely defined by the encoding grammar in
combination with the VRML97 international standard. For example, the semantics of an encoded Box node is
given through a single node element called size. This field is interpreted according to the VRML97 specification
as the size of the box. The encoding of prototypes and some special nodes, however, have more complex semantics,
which are described in the following sub-sections.

Sensors

Some sensors contain elements that require special handling when included in a state encoding. These elements are
the isActive events out of drag sensors as well as the touchTime and the isActive events out of the touchSensor.
All of these elements are used to signal that user interaction is in progress or is just finished. It is not likely that a
user interaction (like dragging an object) can be simply resumed when the state is restored. For example, a sensor
could wait for the mouse button to be released when its state is saved. If the mouse button is not pressed, once the
state is restored inconsistencies might occur. In order to avoid these inconsistencies, the user has to restart all
ongoing interactions. The isActive events out of drag sensors and TouchSensors are set to false upon restoration
of the state, thereby possibly triggering an event cascade. Also, a touchTime event-out is generated if a
TouchSensor’s isActive event-out is true when restored. This guarantees that all user interactions are finished and
that no inconsistencies remain. Environmental sensors, such as the VisibilitySensor, also have an isActive event-
out. However, these sensors are evaluated for every simulation tick and therefore do not require any specific
handling.

Inline Nodes

Inline nodes have a special semantics, since they import a whole scene graph into a VRML world. They also have
their own name spaces for the visibility of DEF nodes and prototypes. In order to capture the state of an Inline node,
it is encoded as shown in Figure5. In addition to regular node elements, the Inline node contains a complete scene
graph of the referenced VRML file. Note that it is insufficient to reconstruct the scene graph from a given URL,
since the state of the scene graph included might have changed.

INLINE ::=
NODEFIELDS // standard encoding of node elements
SCENEGRAPH; // scene graph of the imported world

Figure 5: Encoding of Inline nodes

Prototypes

Two different aspects must be considered when encoding prototypes. The first is the encoding of the prototype
definition (PROTO) or declaration (EXTERNPROTO). The second aspect is the encoding of prototype instances,
which is a special case of node encoding.

The top-level structure of the encoding for PROTO definitions is shown in Figure6. Each prototype is assigned a
unique ID, which is used by nodes that instantiate this prototype as their node type. Besides the name of the
prototype and the declaration of the interface, it is also necessary to encode the scene graph of the prototype
definition. The declaration of an EXTERNPROTO is similar to the definition of a PROTO, but the scene graph
part is replaced by URL references which describe the location of the definition for the EXTERNPROTO.

Instances of prototypes are encoded as special nodes. As shown in Figure6, the encoding of prototype instances
includes the node elements that have been defined in the prototype’s interface. Since the scene graph of a prototype
instance can change independently of any other instance of the same prototype, the state of the scene graph is
included in each instantiation.

8

PROTO ::=
UINT(7) // unique prototype ID
BIT // padding: ignored
STRING // name of the prototype
INTERFACEDECLARATION // interface of the prototype definition
SCENEGRAPH; // scene graph of the prototype definition

PROTOINSTANCE ::=
NODEFIELDS // the encoded node elements of this instance
SCENEGRAPH; // the scene graph of this instance

Figure 6: Encoding of Prototypes

Script Nodes

Script nodes are the only parts of VRML in which the state cannot be accessed in a fully transparent way. The main
problem is that the state of script nodes is usually kept outside of the VRML browser’s scope. In addition the state
might contain resources (like network connections), which cannot be transparently saved and restored. It is
therefore necessary to extend the script node API by functionality for the management of states. Since it should be
possible to save and restore existing VRML content, a predictable default behavior needs to be defined for those
script nodes which do not use this API.

As an example of what the extension of the script API looks like, Figure7 lists the additional methods for the Java
Script node API. The first one is thegetState method, which is called by the VRML browser, when it needs to
get the state of the Script node. The authors of scripts implement this method within their extension of theScript
class, just as they do with theinitialize or theshutdown methods. When the browser calls thegetState
method, it expects that the method writes all state information of the Script node to the givenOutputStream.
Format and content of the written data are defined by the author of the script. When an author supplies a
getState method, the method is expected to return the constant valueCUSTOMIZED_STATE. The Script class
has a default implementation that simply returns the valueDEFAULT_STATE without saving anything to the
OutputStream. This method is called when the author of the script does not supply thegetState method for
his sub-class ofScript.

ThesetState method is called by a browser when the state of a script node should be restored. This call replaces
a call to theinitialize method. As a parameter the browser supplies anInputStream containing the data
that was stored by thegetState method when the script state was saved. ThesetState method is only called
when the correspondinggetState method returnedCUSTOMIZED_STATE (e.g. was implemented by the
script’s author), otherwise a standard call to theinitialize method is executed. This ensures that scripts which
do not implement any handling of state will at least be properly initialized once a VRML state is restored.

When encoding delta states it is important that the browser knows whether or not the state of a Script node has
changed. The methodstateChanged of the classScript should be called by the script whenever its state
changes. It marks the Script node as changed for the encoding of delta states.

int getState(OutputStream saveStateTo)
return values: DEFAULT_STATE

CUSTOMIZED_STATE

void setState(InputStream restoreStateFrom)

void stateChanged()

Figure 7: Encoding API for Java Script Nodes

The encoding of Script nodes is shown in Figure8. Node elements that are defined by the script node are stored
like those of regular nodes. If the script does provide handling of state theisCustomizedState flag is set to
1. Following the flag is the data returned by thegetState method, encoded as an array of bytes.

9

SCRIPT ::=
NODEFIELDS // encoding of the node elements
BIT isCustomizedState // does the script use the state API
UINT(7) // padding
UINT(32) length // length of the script state
BYTE[length]; // script state

Figure 8: Encoding of Script nodes

 5 Accessing State Information of VRML worlds

We propose to realize access to the state of VRML worlds by extending the External Authoring Interface (EAI).
In this section we will introduce an extension to the Java language binding of the EAI that consists of six additional
methods for the Browser class. Similar methods can be added to the general EAI or to the Script node API.

The first two methods provide the capability for getting the state of VRML content (see Figure 9). With
getWorldState it is possible to get the state of a complete world. The caller of the method provides the
OutputStream to which the encoded state should be saved. If allowDeltas is true, the browser will
automatically encode a delta state when this is appropriate. If allowDeltas is false, the method will produce
only full states. The return value of the method indicates whether a full or a delta state was encoded. The method
for getting sub-components (nodes) is called getNodeState and has one additional parameter: the node that is
encoded. In all other respects it acts exactly like getWorldState.

int getWorldState (OutputStream os, boolean allowDeltas)
int getNodeState (OutputStream os, boolean allowDeltas, Node subComponent)

return values: FULL_STATE
 DELTA_STATE

short getLevelOfActivity ()
void registerActivityCallback (Callback callMe, short levelOfActivity)

void setWorldState (InputStream is, boolean keepTimeDifference, double timeOffset)
void setNodeState (InputStream is, boolean keepTimeDifference, double timeOffset,

 boolean replace, Node target)

Figure 9: Additional Methods for the Browser Class

Getting the state of VRML content is likely to be both time- and CPU-cycle-consuming. In addition, any ongoing
activity has to be halted while the state is saved, otherwise inconsistencies might occur. It is therefore important to
choose the right time to access VRML state. Specifically, this should be a time when the general activity of the
browser is low. It is difficult to judge the level of activity with the methods that are currently offered by the EAI.
The only information available on performance is the frame rate. However, the frame rate is not an adequate
indication of the amount of activity going on in a VRML world. It might be low because of slow rendering
hardware or because other applications are running on the same computer. In addition, the frame rate is calculated
for each simulation tick and does not provide information about the development of the performance over a period
of time. Furthermore, there is no means of notification when the frame rate reaches a threshold where state access
would be acceptable. Because of this we propose two additional methods: getLevelOfActivity and
registerActivityCallback. The first method returns a value between 1 and 10, indicating the current level
of activity of the browser. A return value of 1 is generated when there has been no activity (user interaction,
animations) for a period of time. On this activity level, it is reasonably safe to access the state of the VRML content
without there being an impact on the perception of the user. An activity value of 10 indicates that the activity of
the browser has reached a level where it can hardly keep up with processing all user interactions and animations.
On this level access to the VRML state is impossible without heavily influencing the quality of the VRML
presentation. Values between 1 and 10 will be assigned as soon as we gain more experience with VRML state
access. With the described functionality, the getLevelOfActivity method is useful to decide whether or not
it is acceptable to access the VRML state. A second method, registerActivityCallback, allows a
customized method to be called when the browser activity reaches a level equal to or below the given threshold.
This method allows state access to be deferred until it is acceptable for the user.

The state of VRML content can be restored by using either the setWorldState or the setNodeState
method. The first method accepts an InputStream, which should contain the state of a VRML world (full state
or delta state). Two parameters are used to control how SFTime node elements are restored. If
keepTimeDifference is false, the difference between the point in time the state is restored and the point in

10

time the state was saved is added to the appropriate SFTime fields. IfkeepTimeDifference is true, the
difference is not added. In both cases the appropriate SFTime fields are modified by adding thetimeOffset
value. Note that it is only legal to decode a delta state if the preceding full state and all delta states between this full
state and the current delta state have already been decoded. If this is not the case, the results are undefined.

Decoding the state of a single node requires additional information about the placement of this node. In the case of
a full encoding, the node can overwrite an existing node (replace set to true,target is the node to replace) or
be inserted as a child of an existing node (replace set to false,target is the parent node). When restoring delta
states the new node must replace an existing node. In order to be able to decode the delta state, the preceding full
state and all delta states between the full state and the current delta state have to have been already decoded.
Otherwise the result of the operation is undefined.

Unlike support for the decoding of full states, the decoding of delta states is likely to require significant additions
to the VRML browser. The reason for this is that it cannot be guaranteed that the state of VRML content will remain
unchanged after a full or delta state has been restored but before a new delta has state arrived. Since a delta state
refers to the state of the VRML content right after the last state has been applied, it could lead to inconsistencies if
the browser were to use the current state of the VRML content as a basis for the delta state. The solution to this
problem is to keep a separate copy of the of the VRML state after a state has been restored. Once a new delta state
has arrived, this copy would be updated and then replace the current VRML content. It is not desirable to force
every browser that wants to conform to the proposed API to implement this mechanism. Therefore a browser is
allowed to throw an exception when thesetWorldState or setNodeState methods are called for a delta
state. This exception indicates that the browser cannot decode delta states.

 6 Conclusion and Outlook

In this paper we proposed a concept for transparent access to and encoding of VRML state information. Our
approach differs significantly from existing concepts which require that the content handles the saving and
restoring of the VRML state. The methods described in this paper enhance the browser so that the state of VRML
content can be accessed independently of how the content was developed. In order to be able to exchange and save
the state we specified a binary format which allows for the encoding of full worlds as well as of single nodes and
state changes.

The next major step is to provide a sample implementation of the access methods described in this paper. We intend
to make a prototype publicly available by February 1999. This prototype will be based on the Java3D VRML97
browser and will support the access method defined above. We anticipate that there will be a fair amount of
feedback on this work as well as on the sample implementation. This feedback will be evaluated and could possibly
lead to a revised version of the state encoding and the access methods.

Parallel to the work described here we are defining a Real Time Transport Protocol (RTP) [5] profile for interactive
media [3]. The main purpose of this profile is the ability to develop generalized services such as recording and late
joins for conferencing applications which use interactive media. One instantiation of the profile will be a payload
type for VRML states and events. This payload will use the VRML state encoding described in this paper as a basis
for the specification of the payload type.

The work described here is done in the context of the TeCo3D project [2], which aims at the development of 3D
telecollaboration applications for collaboration-unaware VRML content. The capability to transparently access
VRML state and to transport it as an RTP payload is expected to significantly enhance the functionality of TeCo3D
applications.

 7 Acknowledgements

This work is funded by the Siemens Telecooperation Center, Saarbrücken, Germany.

11

 8 References

[1] Couch, J.: Proposal for a VRML97 Spec Addition - External Authoring Interface Reference,
August1998, on-line: http://www.vrml.org/WorkingGroups/vrml-eai/proposals/justin/proposal.html.

[2] Mauve, M.: TeCo3D - A 3D Telecooperation Application based on VRML and Java, accepted at
Multimedia Computing and Networking 1999 (MMCN99) / SPIE99, San Jose, February 1999.

[3] Mauve, M.; Hilt, V.; Kuhmünch, C.; Effelsberg, W.: A General Framework and Communication
Protocol for the Real-Time Transmission of Interactive Media, Technical Report TR 16-98,
University of Mannheim, Germany, October 1998.

[4] Roehl, B.: Draft Pr oposal for the VRML Str eaming Working Gr oup - (DRAFT) Version 0.1, June
1998, on-line available: http://ece.uwaterloo.ca/~broehl/streams/proposal.html.

[5] Schulzrinne, H.; Casner, S.; Frederick, R.; Jacobson, V.: RTP: A Transport Protocol for Real-Time
Applications, Internet Draft, Audio/Video Transport Working Group, IETF, draft-ietf-avt-rtp-new-
01.txt, August 1998.

[6] VRML Consortium: Inf ormation technology -- Computer graphics and image processing -- The
Virtual Reality Modeling Language (VRML) -- Part 1: Functional specification and UTF-8
encoding, ISO/IEC 14772-1:1997 International Standard, December 1997, on-line:
http://www.vrml.org/Specifications/.

[7] VRML Consortium - Compressed Binary Format Working Group: The Virtual Reality Modeling
Language Compressed Binary Format Specification , ISO/IEC 14772-3 Editor’s Draft, October
1997, on-line: http://www.research.ibm.com/vrml/binary/specification/draft5/VRMLB-ED5/spec.DIS/

[8] VRML Consortium - Database Working Group: Database Working Gr oup Charter, February 1997,
on-line: http://www.vrml.org/WorkingGroups/dbwork/charter.html.

[9] VRML Consortium - Database Working Group: VRML Data Repository API - Oracle Proposal, 1997,
on-line: http://www.vrml.org/WorkingGroups/dbwork/oracle/overview.html.

12

Appendix A - Complete Grammar for VRML State Encoding

As mentioned in the main part of this paper, the grammar is based on the proposal for a VRML Compressed Binary
Format (CBF) [7]. The compression parts of the CBF proposal have been removed for VRML state encoding. This
was done to enable fast encoding and decoding. There are several additions to the CBF for the capturing of state
information. Many examples and explanations in the following grammar are directly taken from the CBF proposal.

__
VRMLSTATE ::=

HEADER // #VRMLSTATE 1.0\n
TYPE // Information about the encoded content
BROWSER // State of the VRML browser
SCENEGRAPH; // State of the scene graph

__
HEADER

The header consists of the following sequence of ASCII bytes: “#VRMLSTATE 1.0 binary\n”

__
TYPE ::=

BIT isCompleteWorld // encoding complete world (1) vs. encoding single node (0)
BIT isFullState // encoding full state (1) vs. encoding delta state (0)
BIT isCompleteList // delta states: lists of nodes are encoded with the

// Complete List (1) or the Changes Only (0) method
UINT(5); // padding: ignored

__
BIT ::=

UINT(1) // encoding a boolean value: 1=true 0=false

__
UINT(n)

A binary encoded n bit unsigned integer.

__
BROWSER ::=

DOUBLE currentTime // the point of time where the state was recorded
STRING URL // the current URL
if (isCompleteWorld) {

NODE pointOfView // the user’s point of view is encoded as a Viewpoint node
STACKORDER background // stack order of bindable nodes
STACKORDER fog
STACKORDER navigationInfo
STACKORDER viewPoint

}

__
DOUBLE

A double is represented using the IEEE 64bit format

__
STRING ::=

UINT(32) nUTF8 // Then length of the string
UTF8[nUTF8];

__
UTF8

A UTF8-encoded character.

__
NODE ::=

UINT(32) nodeID // unique ID for this node
NODEFORMAT // what kind of node is encoded?
if ((!isUNMODIFIED and !isDELETED) or isFULLSTATE) { // node skipped for delta encoding?

if (isUSE){ // is this a USE node?
UINT(32) referencedNodeID // DEFed node for this USE node

13

} else {
if (isDEF) { // is this a DEFed node?

STRING // name of the DEFed node
}
NODETYPE // what type of node is encoded
UINT(32) nodeSize // how many bytes does this node have?
if (NODETYPE==39) { // is it a Script node?

SCRIPT // special encoding for script nodes
} else if (NODETYPE==24) { // is it an Inline node?

INLINE // special encoding for inline nodes
} else is (NODETYPE<0) { // is it an instance of a prototype?

PROTOINSTANCE // special encoding for prototypes
} else {

NODEFIELDS // regular encoding of node elements
}

}
};

__
NODEFORMAT ::=

BIT isUSE // a USE node?
BIT isDEF // a DEF node?
BIT hasNODEFIELD // NODEFIELDS contains data?
BIT hasIS // if this node is in a PROTO definition, does it have IS statements?
BIT isUNMODIFIED // delta-encoding: is this node unmodified?
BIT isDELETED // delta-encoding: has this node been deleted?
UINT(2); // padding: ignored

__
NODETYPE ::=

SIGNEDINT; // 1=Anchor, 2=Appearance, ..., negative numbers=prototype instances

__
SIGNEDINT ::=

BIT sign // 1=negative 0=positive
UINT(31); // the absolut value

__
SCRIPT ::=

SCRIPTINTERFACEDELARATION // interface declarartion of the Script node
NODEFIELDS // encoding of the node elements
BIT isCustomizedState // does the script use the state API
UINT(7) // padding
UINT(32) length // length of the script state
BYTE[length]; // script state

__
SCRIPTINTERFACEDECLARATION ::=

UINT(32) nInEvent // number of eventIn EVENTs
UINT(32) nOutEvent // number of eventOut EVENTs
UINT(32) nField // number of INTERFACEFIELDs
FIELD[nInEvent] // eventIn
FIELD[nOutEvent] // eventOut
FIELD[nField]; // fields

__
FIELD ::=

STRING // field/event name
FIELDTYPE; // field/event type

__
FIELDTYPE ::=

SIGNEDINT;

The value of the SIGNEDINT is calculated by ordering (starting with 1) the field types in the
VRML field reference (in current specification Bool=1, Color=2, ...). If the field type is a
single-valued field use the positive value of the ordering (SFBool=1), if the field is multiple-
value field negate the value (MFColor=-2).

__

14

NODEFIELDS ::=
if (hasNODEFIELD) { // does this node have node elements?

NODEFIELD | NODEFIELDLIST // list of fields, exposed fields and events out
}
if(isPROTO && hasIS) // isPROTO is set if NODEFIELDS is contained within a PROTO

 {
 IS | ISLIST // up to and including terminating IS
 };

__
NODEFIELD ::=

FIELDNUMBER // this identifies the node element which is encoded
FIELDVALUE; // the value of the node element

A NODEFIELD is considered to be a terminating NODEFIELD if it contains a terminating FIELDNUMBER.
When specifying values for an exposedField use the FIELDNUMBER of the field (as opposed to the
set_ and _changed FIELDNUMBERs).

__
FIELDNUMBER ::=
 SIGNEDINT;

The absolute value of FIELDNUMBER identifies a field within a node. If the value of FIELDNUMBER
is negative then it is considered to be a terminating FIELDNUMBER. The absolute value of the
SIGNEDINT is assigned according to context.

For a NODE the value indicates the specification order in VRML ASCII node reference. For a PROTO
the value indicates the specification order in the PROTO definition in the PROTO section of the
binary file. For a EXTERNPROTO the value indicates the specification order in the EXTERNPROTO
definition in the EXTERNPROTO section of the binary file. For a SCRIPT the value for the built-
in specifications is calculated as in the case of a NODE. The value for a specification defined
in the file is equal to the specification order in SCRIPTINTERFACEDECLARATION section of the
binary file plus the number of Script Node built-in specifications. The FieldNumber is
incremented once for each field, eventIn or eventOut. For the ASCII data:

 SCRIPT{
 field SFInt32 _currentState 0
 url “http://foo.com/bar.class”
 eventIn SFString _name
 eventIn _selected
 eventOut SFString _lookto
 field SFBool mustEvaluate TRUE
 }

So assuming that _selected was defined before _name in the SCRIPTINTERFACEDECLARATION section,
the FIELDNUMBERS would be as follows.

In this example the names for user-defined events and fields and have been prefixed with a ‘_’
to emphasize the effect of the numbering scheme.
In all cases, an exposedField corresponds to three consecutive field numbers. The first number
for the field, the second for the ‘set_’ eventIn, and the third for the ‘_changed’ eventOut. So
for example:

Inline {
 exposedField MFString url []
 field SFVec3f bboxCenter 0 0 0
 field SFVec3f bboxSize -1 -1 -1
}

field/event FIELDNUMBER

url 0

mustEvaluate 1

directOutput 2

_selected 3

_name 4

_lookto 5

_currentState 6

15

would have

__
FIELDVALUE ::= // fieldType is known by context

select fieldType
case SFBool:

BIT[7] // padding, ignored
BIT // 0=False, 1=True

 case SFColor:
FLOAT[3]

 case MFColor:
UINT(32) nColor // number of elements in array
FLOAT[3*nColor]; // color values

case SFFloat:
FLOAT

case MFFloat:
UINT(32) nFloat // number of elements in array
FLOAT[nFloat]; // float values

case SFImage:
UINT(32) width // width
UINT(32) height // height
UINT(32) nCompon // number of components in the image
BYTE[width*height*nCompon] // image-data

case SFInt32:
SIGNEDINT // see notes

case MFInt32:
UINT(32) nInt // number of elements in arry
SIGNEDINT[nInt]; // integer values

case SFNode:
NODE

case MFNode:
UINT(32) nNode // number of elements in array
NODE[nNode] // nodes

case SFRotation: // see notes
FLOAT[4]

case MFRotation:
UINT(32) nRotation // number of elements in array
FLOAT[4*nRotation] // rotation values

case SFString :
 STRING
case MFString:

UINT(32) nString // number of elements in array
STRING[nString] // string values

case SFTime:
DOUBLE

case MFTime:
UINT(32) nTime // number of elements in array
DOUBLE[nTime] // time values

case SFVec2f:
FLOAT[2]

case MFVec2f:
UINT(32) nVec2f // number of elements in array
FLOAT[nVec2f] // vector values

case SFVec3f:
FLOAT[3]

case MFVec3f
UINT(32) nVec3f // number of elements in array
FLOAT[nVec3f] // vector values

field/event FIELDNUMBER

url 0

set_url 1

url_changed 2

bboxCenter 3

bboxSize 4

16

__
FLOAT

A float is represented using the IEEE 32 bit format.

__
BYTE ::=
 BIT[8];

__
NODEFIELDLIST ::=

NODEFIELD | NODEFIELD NODEFIELDLIST // list of fields, exposed fields and events out

__
IS ::= // (x IS y)

FIELDNUMBER // xFieldNumber (from current NODE)
FIELDNUMBER; // yFieldNumber (from current PROTO)

An IS is considered to be a terminating IS if xFieldNumber is a terminating FIELDNUMBER.

__
ISLIST ::=

IS | IS ISLIST // List of IS definitions

__
INLINE ::=

NODEFIELDS // standard encoding of node elements
SCENEGRAPH; // scene graph of the imported world

__
SCENEGRAPH ::=

UINT(32) nEXTERNPROTO // number of EXTERNPROTO declarations
UINT(32) nPROTO // number of PROTO definitions
UINT(32) nNODE // number of top-level nodes
UINT(32) nROUTE // number of routes
EXTERNPROTO[nEXTERNPROTO] // declaration of EXTERNPROTOs
PROTO[nPROTO] // definition of PROTOs
NODE[nNODE] // state of nodes
ROUTE[nROUTE]; // state of routes

__
EXTERNPROTO ::=

BIT hasMULTIPLEURLS // has multiple URLs ?
UINT(31) // unique “NODETYPE” number of the prototype
STRING // prototypename
EXTERNINTERFACEDECLARATION // the interface
if(bHASMULTIPLEURLS) {

UINT(32) nURL // number of URLS
STRING[nURL] // multiple URLs

} else {
STRING // single URL

};

__
EXTERNINTERFACEDECLARATION ::=

UINT(32) nEventInt // number of eventIn EVENTs
UINT(32) nEventOut // number of eventOut EVENTs
UINT(32) nField // number of field FIELDSPECs
UINT(32) nExposedField // number of exposed field FIELDSPECs
FIELD[nEventIn] // eventIn
FIELD[nEventOur] // eventOut
FIELD[nField] // fields
FIELD[nExposedField]; // exposed fields

__
PROTO ::=

BIT // ignored
UINT(31) // unique “NODETYPE” number
STRING // prototypename
INTERFACEDECLARATION

17

SCENEGRAPH;

__
INTERFACEDECLARATION ::=

UINT(32) nEventIn // number of eventIn EVENTs
UINT(32) nEventOut // number of eventOut EVENTs
UINT(32) nField // number of field FIELDSPECs
UINT(32) nExposedField // number of exposed field FIELDSPEC
FIELD[nEventIn] // eventIn
FIELD[nEventOur] // eventOut
INTERFACEFIELD[nField] // fields
INTERFACEFIELD[nExposedField]; // exposed fields

__
INTERFACEFIELD ::=

FIELD // definition of the field
FIELDVALUE; // specification of a default value

__
ROUTE ::=

UINT(32) routeID // unique ID for this route
if (!isFullState) { // is this a delta-encoding?

ROUTEFORMAT // delta-encoding: is this a modified or deleted route?
}
UINT(32) fromNodeID // source node
FIELDNUMBER fromField // source node element
UNIT(32) toNodeID // target node
FIELDNUMBER toField; // target node element

__
ROUTEFORMAT ::=

BIT bUNMODIFIED // delta-encoding: is this route unmodified?
BIT bDELETE // delta-encoding: has this route been deleted?
UINT(6); // padding: ignored

__
PROTOINSTANCE ::=

NODEFIELDS // the encoded node elements of this instance
SCENEGRAPH; // the scene graph of this instance

__
STACKORDER ::=

nStackSize // number of elements on the stack
UINT(32)[nStackSize] // the stack od node IDs

__

