
Location and Movement-Awareness
in Android-based Opportunistic Networks

Bachelor Thesis
by

Justin Marks

born in
Neuss

submitted to

Technology of Social Networks Lab
Jun.-Prof. Dr.-Ing. Kalman Graffi

Heinrich-Heine-Universität Düsseldorf

Juli 2017

Supervisor:
Andre Ippisch, M. Sc.

Abstract

The Smartphones these days are capable of increasing our standard of living in so many
ways. We use them as an alarm clock, camera or navigation system and new technologies
like Augmented Reality are showing, that they are capable of doing so much more. Fur-
thermore existing systems could be optimized or expanded, with the data provided from
Smartphones.

In this thesis we want to make use of these capabilities and extend Smartphone-based Op-
portunistic Networks to be aware of Location and Movement of the device. We lay the foun-
dation for further development. We present an extension for an Android-based Opportunistic
Network that is using the Location and Movement -awareness for GPS-based routing.

We developed an extension that is able to recognize and classify the user’s movement, to
determine the user’s position without the usage of GPS data and to create a data collection
with information about the location the user has been visited.

We evaluated the accuracy of the provided data by this extension and measured the additional
power usage.

We came to the conclusion the Android-based Opportunistic Network greatly benefit from
the developed extension. In some sections further development is required.

iii

Acknowledgments

First of all I would like to thank my girlfriend for supporting me during this thesis and for
helping to set up the various tests.

Then I want to say Thank You to my father for providing me with unfailing support and
continuous encouragement throughout my years of study.

At least I would like thank to my thesis advisor Andre Ippisch, M. Sc. He is a great guy and
his door was always open whenever I ran intro trouble.

v

Contents

List of Figures ix

List of Tables xi

List of Listings xiii

1 Introduction 1

1.1 Motivation . 1
1.2 Related Work . 1
1.3 Outline . 2

2 Fundamentals 3

2.1 Android Smartphone . 3
2.1.1 Operating System . 3
2.1.2 Applications . 3
2.1.3 Built-in Sensors . 4

2.2 Global Positioning System . 5
2.2.1 Geographic Coordinate System . 5

3 Demands and Design 7

3.1 Demands . 7
3.2 Design . 8

3.2.1 GPS-based Routing . 9
3.2.2 User Interaction . 10
3.2.3 User Data . 11

4 Implementation 13

4.1 Development . 13
4.2 User Interaction . 13

vii

Contents

4.2.1 Requirements . 13
4.2.2 Activity . 15

4.3 Collect User Data . 18
4.3.1 MovementTracker . 18

4.4 Database . 22
4.4.1 Structure and Content . 24
4.4.2 LocationDBHelper . 25
4.4.3 PersonalLocationAnalyzer . 27

4.5 Opptain Integration . 28
4.5.1 User Settings . 28
4.5.2 Network Bundle . 29
4.5.3 Device Communication . 30

5 Evaluation 33

5.1 User Data . 33
5.1.1 Movement Recognition . 33
5.1.2 Pedestrian Dead Rocking . 37

5.2 Evaluating the Data Collection . 40
5.2.1 Battery Usage . 42

6 Conclusion and Future Work 45

6.1 Conclusion . 45
6.2 Future Work . 45

Bibliography 47

viii

List of Figures

3.1 Exchange of data between smartphones according to the given protocol in
Opptain. Source: [Ipp15] . 9

4.1 LocationChooserActivity (LCA) . 15
4.2 Option to active/deactivate the MovementTrackingService 28

5.1 Movement Recognition Test Setup . 34
5.2 Pedestrian Dead Rocking accuracy test . 37
5.3 Collected data after three days . 40
5.4 Added additional information to Figure 5.3 41
5.5 Bus Route (Source Google Maps) . 41

ix

List of Tables

5.1 Movement Recognition test result . 35

xi

List of Listings

4.1 Converting OSM data into Mapsforge map 14
4.2 Initialize Mapsforge MapView . 16
4.3 Apply a marked position . 17
4.4 Recognise new step . 21
4.5 Calculating a new location . 23
4.6 Creating the Location Database . 25
4.7 SQLite examle to increase counter value . 25
4.8 Analyse location . 27
4.9 Implementation of new settings . 29
4.10 Add additional information . 30
4.11 Extract GPS data from Additional Information 31

xiii

Chapter 1

Introduction

1.1 Motivation

In this section we want to describe the motivation behind this thesis and want to look at
related work.

The Smartphones these days are capable of increasing our standard of living in so many
ways. We use them as an alarm clock, camera or navigation system and new technologies
like Augmented Reality are showing, that they are capable of doing so much more. Fur-
thermore existing systems could be optimized or expanded, with the data provided from
Smartphones.

In this thesis we want to make use of these capabilities and extend Smartphone-based Op-
portunistic Networks to be aware of Location and Movement of the device. We lay the foun-
dation for further development. We present an extension for an Android-based Opportunistic
Network that is using the Location and Movement -awareness for GPS-based routing.

1.2 Related Work

S. Lu, Y. Liu and M. Kumar published in year 2012 an article with the title LOOP: A location

based routing scheme for opportunistic networks. They presented a routing scheme, that

1

Chapter 1 Introduction

predict the node’s future movement, based on analysed data they received from the previous
behaviour of the node itself.

1.3 Outline

In this chapter we describe our motivation behind this work and also looked at related work.

In Chapter 2 we will introduce the basic fundamentals that are used within this thesis.

In Chapter 3 we will describe the demands for our system and design and each aspect of it.

In Chapter 4 we will show how we implemented the system.

In Chapter 5 we will present test results and an evaluation of the system.

In the Chapter 6 we will review the conclusions of this work and will point out aspects that
could be optimized in future work.

2

Chapter 2

Fundamentals

In this section we want to introduce the basic fundamentals that are required for the thesis.

2.1 Android Smartphone

2.1.1 Operating System

The Android Operating System (Android OS) is an open source Linux-based software stack.
The different stack layer are: Linux Kernel, Hardware Abstraction Layer, Native C/C++ Li-
braries, Android Runtime, Java API Framework and Applications. The Java API Framework
contains a lot of High-Level methods and is used to develop Android applications.

2.1.2 Applications

Android Applications are mostly capsuled and running independently on their own. There-
fore every Application has its own thread and virtual machine. An Application is made of two
kinds of components: Activities and Services. In order to access system or user information
an Application requires granted permission (eg. Permission to read the file system).

3

Chapter 2 Fundamentals

Manifest

Every Android Application has a structured XML-File that declares each component used by
the Application. It also contains information about each permission that is requested by the
Application.

Activity

An Activity is a graphic user interface and allows the user to interact with the Application.
Normally an Application is made of more than one Activity. Each Activity has its own
purpose. For example a calender application has an activity to show the calender and another
activity to make it possible to add information.

Service

Services perform operations in the background. They do not have a graphic user interface.

Intent

An Intent is a call to start an Activity or a Service. There are two kinds of Intents. Explicit
intents start an Activity by calling its class name and they are used to start Activities that
belong to the application. Implicit intents start an Activity by asking for a specific action.
For example, if you want to take a picture, you can use an implicit intent to request an activity
that is capable of taking pictures. This activity does not has to be provided by the application
you are currently using. Furthermore it is possible to add data to the intent. These data could
be used by the Activity.

2.1.3 Built-in Sensors

Smartphones have a variety of built-in sensors. These sensors are devided into Motion Sen-

sors, Environmental Sensors and Position Sensors [Gooa].

4

2.2 Global Positioning System

2.2 Global Positioning System

The Global Positioning System (GPS) is a satellite based navigation system that uses radio
frequencies of 24 orbiting satellites to find your exact location. It was originally developed
by the U.S. Department of Defence for the military to know the location and movement of
planes, ships and soldiers. The GPS works in any weather conditions, anywhere in the world,
24 hours a day. A GPS is used to tell how far a device has travelled, the device’s current di-
rection, the speed and ETA. Satellite navigation systems all work in the same way. There are
three parts: the network of satellites, a control station somewhere on Earth that manages the
satellites, and the receiving device you carry with you. Each satellite is constantly beaming
out a radio-wave signal toward Earth. The receiver listens out for these signals and if it can
pick up signals from three or four different satellites, it can figure out your precise location.

2.2.1 Geographic Coordinate System

The Geographic Coordinate System is used to describe a specific location on earth. The
system overlays the earth with a grid of horizontal and vertical lines. The Equator and
the Prime Meridian are marking the central point. In this point the values of Latitude and
Longitude are both 0. Moving north or south from this point would change the Latitude value
and moving east or west would change the Longitude value.

5

Chapter 3

Demands and Design

In this chapter we will build a solution with the basic fundamentals of this thesis, as presented
in the previous chapter. The demands of the thesis are declared in the first Section 3.1. In the
second Section 3.2 we will develop a concept which will implement the extension described
in Section 1.1.

3.1 Demands

The idea behind this thesis to take benefit of the movement awareness that goes with Mobile
Opportunistic Networks (Mobile OppNets) to expand the functionality of Opptain. Therefore
is it very important to meet all demands required by Opptain, especially to work without the
Internet and transfer the data fast and securely [Ipp15].

In order to increase the spread of Opptain the extension should minimal increase the Android
Application Package (APK) size of Opptain to ensure a fast pass on from one device to
another device.

Furthermore, this extension should use the power of the device as less as possible. A major
challenge for location aware mobile applications.

7

Chapter 3 Demands and Design

3.2 Design

In this section we want to design a concept for the subsequent implementation of the in Sec-
tion 1.1 described extension of the Android-based Mobile Opportunistic Network Opptain
with the requirements describe in Section 3.1. The extension covers a range of functionali-
ties, therefore the concept is separated into each of them.

At first we design the concept of a possible GPS-Based Routing 3.2.1, which is the main
functionality of this extension and is related to all the other functionalities. In the second
Section 3.2.2 we design the concept of User Interaction and its purpose regarding GPS-
Based Routing. In the last Section 3.2.3 we design the background process which collects
user related information that are required for the routing.

Location

A location could be described in different forms. People usually expressing a location by
naming an address, which holds variants of information like a country, postal code, street
name, house number and to be specific they use all of this information together. This form is
not suitable for the design of the extension, because it requires a lot of information and it is
not comparable.

The first thing that makes this form not suitable is the amount of information. Every location
has nearly completely different values. To be specific an address needs the name of the coun-
try, the street, the postal code and the housing number. All that information need to be saved
and exchanged in each Bundle which would increase the number of meta data. Furthermore
these information are mostly in text form, which increase the number of information that are
need to be handled. For example "Germany", "Deutschland", "De" are the mostly common
ways to address Germany and they mean all the same. A person could know this or could
easily look this information up, but our extension should not carry all kinds of information,
nor could search for this information on the internet regarding to the demands describe in
Section 3.1.

All that information lead to the second, much bigger problem of this form. It is not compa-
rable, because their meaning has no system. Street name are mostly random words and have

8

3.2 Design

Figure 3.1: Exchange of data between smartphones according to the given protocol in Opp-
tain. Source: [Ipp15]

no physical relation, such as coordinates. Therefore it is not possible to calculate or compare
the distance between addresses.

A way more effective form to describe a location within our extension is to use coordinates
2.2.1, because information exchange and storage is only increased by two values (Latitude,
Longitude) and it is metric-based, which enables comparing and calculating. In this thesis a
location ist described by coordinates.

3.2.1 GPS-based Routing

Routing Protocols (RP) are a necessary part of every network. They define how nodes com-
municate among each other. The network properties like the number of nodes, their reliability
or their residence time, have impact to the network. Optimal stability and reliability of a net-
work requires the correct choice of Routing Protocols. Furthermore their number increase
with new technology or scientific findings. In Android-based OppNets we have the possibil-
ity to use information about the movement and location of the nodes to develop or expand
Routing Protocols.

The Figure 3.1 shows the communication between two devices. After the handshake, the

9

Chapter 3 Demands and Design

Client offers data that could be send to the Server. In the figure, this step is named Pack-
etsSyn (2). In detail, the Client has a bundle or more, that he wants to offer to the Server.
Therefore it sends Meta Information of each bundle to the Server. The Server analyse the
passed information and determines, which bundle he would like to receive. After that, the
Clients start sending the accepted files.

Various factors are helping the Server to make a decision. Either the bundle is accepted or
declined. Our GPS-based routing shall expand these factors with the precondition, that the
meta data contains GPS-based data of the destination. The Server needs an algorithm to
calculate the probability of reaching the destination. This value should help the Server to
make a decision. For this thesis a basic approach of this algorithm should be implemented.

GPS position are very accurate and the probability that a user with a bundle reaches this des-
tination should be very low. To raise the probability and to reduce the priority of an accurate
GPS position, another value should be send along the GPS data in the Meta Information of
each bundle. This value should be a tolerance limit. The higher this value is, the lower should
be the accurate of the GPS position.

3.2.2 User Interaction

GPS-based Routing requires additional information, like the GPS data of the destination.
These information come from the sender and needs to be added manually through a graph-
ical interface. This action represents the User Interaction of this extension. This graphical
user interface (GUI) should be simple to use and should perform a single action, to select
a location 3.2. This Activity should be called LocationChooserActivity (LCA). The LCA
should be highly versatile in use. Especially Third Party Applications should be able to use
the GUI to let their user add a destination. Furthermore it could also be used to set up some
location-based settings.

The tolerance limit mentioned in the previous section should also be set in the LCA as a
radius around the location. It therefore follows that the user should be able to set three values
(Latitude, Longitude and Radius). To apply these values as easy as possible a map should be
displayed where the user is able to interact with like zooming in and out or to navigate. The
GUI should be designed similar to common Map-Applications like Google Maps.

10

3.2 Design

An important aspect that is required and described in section Demands 3.1 is the capability
to be used offline. Therefore the map should be accessible without internet.

3.2.3 User Data

An accuracy collection of data are needed for the GPS-based Routing. Therefore we need to
design a background service that collects geographic related user data. These data should be
periodically read and saved. As in Section Location 3.2 mentioned, the most reliable form
of describing geographic data are Geographic Position Systems. Therefore, and because
Smartphones are able to determine GPS position via the embedded GPS sensor, we are going
to collect GPS data.

Requesting the current GPS position is very consuming, therefore the service should only
request location updates if the user is not at the same position like he was in the period
before. The service has to classify the user’s movement into three possible states.

• While being in the Sleeping state, the service has not detected any movement and
therefore it does not request location updates. This state is the power saving state.

• Walkling is classified as the second state, where the service only requests location
updates if the user has walked away from the last known position.

• The last state is the power consuming Driving state. Being in that state forces the
service to request location updates in every period, because the user is moving very
fast.

11

Chapter 4

Implementation

In this chapter implement the extension, we designed in the previous chapter.

4.1 Development

We are using Android Studio, the official integrated development environment (IDE) for
developing the extension. The IDE is free to use and provided by Google. Our testing
devices are Sony Xperia Z5 and Huwei Y3.

4.2 User Interaction

In this section we will implement the LocationChooserActivity, as possibility to allow the
user to select a geographic location. Therefore the Activity should display an interactive
map.

4.2.1 Requirements

First we need an API to build the map application. Android comes with Google Maps API,
which does not allow to copy, pre-fetch or cache any content [Goo17a]. Therefore the Google

13

Chapter 4 Implementation

Listing 4.1: Converting OSM data into Mapsforge map
$./osmosis --rx file=../duesseldorf.osm

--mapfile-writer file=../duesseldorf.map

Maps API is not permitted in term of the demands of this work. A free to use alternative
is Mapsforge [Map17b] which provides a free, open-source, offline vector map library for
Android and Java-based applications. Furthermore it is capable of creating offline maps as
well as modify map in size or style. In order to create our own map with the Mapsforge
API we need card material. The most known provider of free geographic data is the com-
munity project OpenStreetMap [Ope17b], that collects geographic based information. An
OpenStreetMap file (*.osm) is licence-free and could be modified. The project offers pre
formatted files for nearly every country in the world as well as the opportunity to download
a custom area [Ope17c].

OSM files may vary in two aspects. Firstly they vary in their content and design, because
OSM provides different card material. For example they have card materials especially for
cycling maps or traffic maps. Secondly they vary in coverage, which determines the size of
the map. The file itself is a structured XML file that contains geographic elements and their
relation between each other [Ope17a] and cannot be used by Mapsforge.

Osmosis [Osm17] is a free command line Java Application for processing OSM data. In
combination with the Mapsforge it is capable of compiling an osm file into an usable map
file for Mapsforge.

The output of this compilation is a map in the Mapsforge Binary Map File Format [Map17a].
The header of this file includes various information about the map properties like the spatial
bounds or maximum and minimum Zoom Level. The Zoom Level describes the level of
accuracy of the location information. A map with a very high Zoom Level contains accurate
information about a location, but consequently the size of the map file is also high. The
reason for that is that map files contain layers for each zoom level. Each layer contains a set
of tiles, little pieces of the map. The higher the Zoom Level, the higher the number of tiles
for each layer.

For for the purpose of this thesis we download and compiled a simple map of Düsseldorf that
is delivered with Opptain (See Listing 4.1).

14

4.2 User Interaction

(a) Default View (b) View after selecting a location

Figure 4.1: LocationChooserActivity (LCA)

4.2.2 Activity

In this section we will describe the class LocationChooseActivity. To be an Android Activity
this class extends the class AppCompatActivity. Consequently, the class has the life circle
of an Activity. Firstly the class checks if the Activity was started with additional data 2.1.2.
Additional data could be Latitude, Longitude and Radius value. If these data exist, they
will be the center of the map (Listing 4.2). The idea behind this feature is to simplify the
usage. The user could adjust his location without searching for the old Location. (See code
extract)

Secondly the permission (READ_EXTERNAL_STORAGE) to read the map from the file sys-
tem is checked. If the permission is denied, the Activity does not display the in Figure 4.1
shown layout, instead an information that the Activity needs the permission to work as well
as a button to request the permission, is displayed.

As soon as the user long-tap a position on the map a Bottom Sheet slides up and covers
the lower half of the display (See Figure 4.1 b)). The Bottom Sheet displays the Latitude

15

Chapter 4 Implementation

Listing 4.2: Initialize Mapsforge MapView
o l d L a t = g e t I n t e n t () . g e t D o u b l e E x t r a (OLD_LAT_NAME, −1) ;
oldLong = g e t I n t e n t () . g e t D o u b l e E x t r a (OLD_LONG_NAME, −1) ;
o l d R a d i u s = g e t I n t e n t () . g e t F l o a t E x t r a (OLD_RADIUS_NAME, 0) ;

i f (! (o l d L a t == −1 | | o ldLong == −1)) {
o l d P o s i t i o n = new LatLong (o ldLa t , oldLong) ;
t h i s . o l d R a d i u s = o l d R a d i u s ;
r a d i u s = o l d R a d i u s ;
hasOldData = t rue ;

}
. . .
i f (hasOldData) {
mapView . s e t C e n t e r (o l d P o s i t i o n) ;
m a r k e d P o s t i o n = o l d P o s i t i o n ;
drawMark () ;

} e l s e {
mapView . s e t C e n t e r (MAP_CENTER_POSITION) ;

}

and Longitude of the tapped position. Furthermore the user has the possibility to adjust
the radius by clicking on the number next to the field Radius in KM. The upper half of the
screen displays the map with view on the tapped location. The radius around this location is
coloured red. Therefore the user is able to review his location including the radius. Adjusting
the radius cause the red circle to change his radius.

The LocationChooseActivity performs its task if the user clicks the Apply Position Button4.3.
This action creates a new Intent and pass all the information from the marked position (Lat-

itude, Longitude and Radius) into the Intent.

If the Parent Intent, the Intent which started the LocationChooseActivity used the method
void startActivityForResult (Intent intent, int requestCode)

it will receive a result via the callback method. As soon as callback method is called and
the Integer requestCode matches in both methods, the parent is aware of the end of the
LocationChooseActivity. If the resultCode also matches Activity.RESULT_OK, the
Activity can handle the received data.

A very important part of the design of the LocationChooseactivity was the possibility to be

16

4.2 User Interaction

Listing 4.3: Apply a marked position
p r i v a t e vo id a p p l y P o s t i o n () {

i f (i sMarked) {
I n t e n t d a t a = new I n t e n t () ;
d a t a . p u t E x t r a (LAT_NAME, m a r k e d P o s t i o n . g e t L a t i t u d e ()) ;
d a t a . p u t E x t r a (LONG_NAME, m a r k e d P o s t i o n . g e t L o n g i t u d e ()) ;
d a t a . p u t E x t r a (RADIUS_NAME, r a d i u s) ;
i f (o l d P o s i t i o n != n u l l) {

d a t a . p u t E x t r a (OLD_LAT_NAME, o l d P o s i t i o n . g e t L a t i t u d e ()) ;
d a t a . p u t E x t r a (OLD_LONG_NAME, o l d P o s i t i o n . g e t L o n g i t u d e ()) ;
d a t a . p u t E x t r a (OLD_RADIUS_NAME, o l d R a d i u s) ;

}
i f (g e t P a r e n t () == n u l l) {

s e t R e s u l t (A c t i v i t y . RESULT_OK, d a t a) ;
} e l s e {

g e t P a r e n t () . s e t R e s u l t (A c t i v i t y . RESULT_OK, d a t a) ;
}
f i n i s h () ;

} e l s e {
T o a s t . makeText (t h i s , " Mark a p o s i t i o n by p r e s s i n g on a

l o c a t i o n " ,
T o a s t .LENGTH_LONG

) . show () ;
}

}

17

Chapter 4 Implementation

called by Third Party Application. To do so we set up an Intent Filter called
de.opptain.waitress.intent.action.CHOOSE_LOCATION

4.3 Collect User Data

In this section we describe the implementation of the background services which is collecting
user data. The service has to maintain the ambitious demands described in Section 3.2.3.

4.3.1 MovementTracker

The class MovementTrackingService (MTS) is working in the background and expands the
class Service. Like an Activity, an Intent is able to start and also to stop the service. The
task of the service is to collect GPS-based data and to save them into a database. Therefore
it creates an instance of the class GpsPositionManager. After starting, the MovementTrack-

ingService automatically searchs for an initial GPS position.

Getting GPS data

The GpsPositionManager handles the GPS data request. There are two ways to listen for
GPS data. The first on is the GpsLocationListener that uses the Android framework location
API which is a native way to receive location based data. All Android Smartphones with
GPS sensors are capable of using it. The second one is the GoogleGpsListener and it uses
the LocationServices API provided by the Google API. In order to use it, the device needs the
latest version of Google Play Service installed as well as a minimum Android version (2.2).
According to Google the number of devices with version 4.x or higher is around 98.40%
[Goo17c]. If the latest version of Google Play Service is installed, the GpsPositionManager

will use the GoogleGpsListener or else it will the GpsLocationListener. Google’s Location
Service API is considered the better choice in accuracy or power consuming. [Goo17b].

Both listener are identical structured according methods or field names. As soon as they are
started, they are listening for location updates. After an amount of tries (MAX_TRIES) or af-

18

4.3 Collect User Data

ter receiving an update with an accuracy greater then a pre defined value MIN_ACCURANCY,
the listener stops listening.

The result, a Location object is passed through MovementTrackingService’s callback method
void receiveNewGpsLocation(Location location).

After MovementTrackingService received this first position, the service loop starts. Each loop
pass or cycle starts the MovementListener and has a runtime of one minute, which is set with
delayTimer in the MTS.

Analyse the Movement

To be accuracy in tracking, the user location should be known in each circle. Listening
for location updates via GPS sensors is very power consuming. Furthermore it is often not
necessary to request location updates, like if the user is staying in a location that is already
known. Therefore we implemented a system with different states. The three possibilities of
movement are SLEEPING_STATE, WALKING_STATE or DRIVING_STATE. Each state
has it own behaviour regarding to location updates. The different states are described in
Section 3.2.3.

The class MovementListener analyses the user’s movement. It is called in the beginning of
each circle by the MovementTrackerService. It has a callback function to return the result
when a specific movement is determined. Likely every other Listener it has methods to be
started and stopped. It implements the interface ConnectionCallback, a service provided by
Google’s ActivityRecognitionApi. The API recognizes the user’s movement activity by peri-
odically reading short burts of sensor data. The used sensors are all low powered sensors.

Behaviour while being in the Sleeping state

While being in the SLEEPING_STATE the MovementTrackingService does not request lo-
cation updates, but it starts the SignificantMotionDetector. This class is designed to de-
tect suddenly significant motion changes, like start walk. The class uses the motion sensor
TYPE_SIGNIFICANT_MOTION.

19

Chapter 4 Implementation

The sensor TYPE_SIGNIFICANT_MOTION does the work of analysing the values of the
sensor TYPE_LINEAR_ACCELERATION, which reads accelerations in x

m2 on each axis.
It works as a wake up sensor, which triggers an event after detecting a significant motion.
Furthermore it has a very high accuracy of determining whenever the user made a significant
motion. For example, moving the device very fast forward and back does not trigger the
sensor. TYPE_SIGNIFICANT_MOTION also is one of the least power consuming sensors
and therefore it is suitable for the power saving SLEEPING_STATE.

After the significant motion event was triggered, the current state changes to
WALKING_STATE.

Behaviour while being in the Driving state

If the MovementListener recognizes a driving movement, the state is set to DRIVING_STATE.
On each circle, while being in this state, the MovementTrackingService starts the GpsPosi-

tionManager to request the current GPS location, because it means that the user is moving
fast and to be accuracy a new location is requested in each loop pass. That is why it is the
most power consuming state compared to the other states.

Behaviour while being in the Walking state

In the walking state, the MTS has to decide whenever the user is walking away, for exam-
ple walking down the street or if the user is walking around, for example walking around
in a room. In the second case, no GPS location update is necessary, because technically the
person is on the same position. To measure if a person is still in the same place we im-
plemented the PdrPositionManager. In the second case, where the user walked away, the
GpsPositionManager starts to request a new position.

Implementation of PdrPositionManager

The class PdrPositionManager calculates the user’s position without using the power con-
suming GPS sensor. The MovementTrackingService is calculating the distance between this

20

4.3 Collect User Data

Listing 4.4: Recognise new step
p r i v a t e vo id newStep (f l o a t s t e p S i z e) {

l a s t L o c a t i o n = l o c a t i o n C a l c u l a t o r . c a l c u l a t e N e x t L o c a t i o n (
l a s t L o c a t i o n ,
s t e p S i z e ,
d i r e c t i o n L i s t e n e r . g e t D i r e c t i o n ()

) ;
p a r e n t . r e c e i v e N e w C a l c L o c a t i o n (l a s t L o c a t i o n) ;

}

position and the last known GPS position. This distance is used to decide whenever a per-
son is walking away or is walking around the last known position, within the period time of
one circle. Each calculated location is passed to the MovementTrackingService. In order to
calculate a new position we need:

1. Step Recognition, which recognizes whenever a step has been taken.

2. Starting Point is the location where a user was before he took a step.

3. Direction Recognition is needed to determine in which direction the step is taken.

4. Step Length is setting the distance a person moved after taking one step.

5. Location Calculator, calculates the new location with the parameter from above.

Regarding to James Oat Judge [JDO96] an average step length of a young person is about
0.74m and of an old person about 0.65m. We used the arithmetical average of 0.7m for step
length. This value is saved in field STEP_LENGTH.

The PdrPositionManager reads sensor data from TYPE_LINEAR_ACCELERATION, to de-
tect whenever a new step was taken. Therefore it implements the SensorEventListener,
an interface for receiving sensor data. If a value is higher than 1

m2 , the PdrPositionManager

recognizes a step and calls the function void newStep(float stepSize)4.4 with
STEP_LENGTH as parameter. The function calculates the new location and passes it to the
MovementTrackingService.

21

Chapter 4 Implementation

The class DirectionListener also implements the SensorEventListener, but it reads
data from the sensor type TYPE_ROTATION_VECTOR, which delivers the orientation of
the device. This information is used to determine in which direction the device is moving.

The class LocationCalculator is doing the mathematical part. The Haversine Formula is used
to calculate geographic distance between two points on earth [Ltd]. If the distance is given,
it can be transformed to calculate a new location.

ϕ2 = arcsin(sinϕ1 · cosϕ1 + cosϕ1 · sinδ · cosθ) (4.1)

λ2 = λ1 + arctan2(sinθ · sinδ · cosϕ1,cosδ − sinϕ1 · sinϕ1) (4.2)

Where ϕ is latitude, λ is longitude, θ is the bearing (clockwise from north), δ is the angular
distance d/R; d being the distance travelled, R the earth’s radius [Ltd].

The LocationCalculator implemented the Haversine Formula 4.5 and returns a new Loca-

tion.

4.4 Database

We start this section with a short introduction of databases. After that we will introduce
the structure of the implemented database and implement a class called LocationDBHelper,
which helps to interact with the database. In the end of this section we will implement the
class PersonalLocationAanalyzer that analyses the collected data.

A Database is a structured collection of persistence data and is used to save information
outside of the runtime of an application. Database Management System (DBMS) is a
computer software and the interface between the application and the database. Statements
are commands to interact with databases. They are used to add, delete, filter or read data
from the database.

In this section we will implement a DBMS called SQLite and use it to save the collected
Location-based data. SQLite is a lightweight DBMS and is able to interact with databases
without using a server software. It is also recommended by Android to be used for Android

22

4.4 Database

Listing 4.5: Calculating a new location
p r i v a t e s t a t i c f i n a l i n t EARTH_RADIUS = 6371000;

p u b l i c L o c a t i o n c a l c u l a t e N e x t L o c a t i o n (
L o c a t i o n c u r r e n t L o c a t i o n , f l o a t s t e p S i z e , f l o a t d i r e c t i o n

) {

L o c a t i o n n e x t L o c a t i o n = new L o c a t i o n (c u r r e n t L o c a t i o n) ;
f l o a t d i s t a n c e = s t e p S i z e / EARTH_RADIUS ;
double o l d L a t = c u r r e n t L o c a t i o n . g e t L a t i t u d e () ;
double oldLng = c u r r e n t L o c a t i o n . g e t L o n g i t u d e () ;
double newLat = Math . a s i n (

Math . s i n (Math . t o R a d i a n s (o l d L a t)) * Math . cos (d i s t a n c e) +
Math . cos (Math . t o R a d i a n s (o l d L a t)) * Math . s i n (d i s t a n c e) *

Math . cos (d i r e c t i o n)
) ;
double newLon = Math . t o R a d i a n s (oldLng) +

Math . a t a n 2 (
Math . s i n (d i r e c t i o n) * Math . s i n (d i s t a n c e) *

Math . cos (Math . t o R a d i a n s (o l d L a t)) ,
Math . cos (d i s t a n c e) − Math . s i n (Math . t o R a d i a n s (o l d L a t)) *

Math . s i n (newLat)
) ;

n e x t L o c a t i o n . s e t L a t i t u d e (Math . t o D e g r e e s (newLat)) ;
n e x t L o c a t i o n . s e t L o n g i t u d e (Math . t o D e g r e e s (newLon)) ;
re turn n e x t L o c a t i o n ;
}

23

Chapter 4 Implementation

Applications, because Android provides full support for SQLite databases [Goob]. These
databases are not accessible by Android’s file system, only by the application.

4.4.1 Structure and Content

In this section we will show the structure of the database and which data are saved. First of
all, each database entry represents only one location. Therefore we save the Latitude value
and the Longitude value of this location. Together they form a location. The value Counter

represents the time the user stayed in this location. Therefore it is 1 when the entry is created
and will be incremented each time the user is staying at the location.

SQLite statements are not capable of using cosine or sinus functions, but the latitude and
longitude values of these functions are required for several calculations, like calculating the
distance (See Haversine Formula 4.1). Therefore these values are pre calculated and saved
into the database.

The location database contains following columns:

• id, an unique number to clearly identify each database entry

• lat, the Latitude value of the location

• long, the Longitude value of the location

• accuracy, shows how precise the location determination was

• timestamp, the Time of the location determination

• counter, Duration, in circles, the user stayed at the location

• cos_lat_rad, cos(Latitude ·π ÷180) , calculated cosine value of Latitude

• sin_lat_rad, sin(Latitude ·π ÷180) , calculated sinus value of Latitude

• cos_long_rad, cos(Longitude ·π ÷180) , calculated cosine value of Longitude

24

4.4 Database

Listing 4.6: Creating the Location Database
p r i v a t e s t a t i c f i n a l S t r i n g SQL_CREATE_ENTRIES =

"CREATE TABLE " + L o c a t i o n E n t r y .TABLE_NAME + " (" +
L o c a t i o n E n t r y . _ID + " INTEGER PRIMARY KEY, " +
L o c a t i o n E n t r y .COLUMN_NAME_LAT + " FLOAT, " +
L o c a t i o n E n t r y .COLUMN_NAME_LONG + " FLOAT, " +
L o c a t i o n E n t r y .COLUMN_NAME_ACCURACY + " FLOAT, " +
L o c a t i o n E n t r y .COLUMN_NAME_TIMESTAMP + " TIMESTAMP, " +
L o c a t i o n E n t r y .COLUMN_NAME_COUNTER + " INTEGER , " +
L o c a t i o n E n t r y .COLUMN_NAME_COS_LAT_RAD + " FLOAT, " +
L o c a t i o n E n t r y . COLUMN_NAME_SIN_LAT_RAD + " FLOAT, " +
L o c a t i o n E n t r y .COLUMN_NAME_COS_LONG_RAD + " FLOAT, " +
L o c a t i o n E n t r y .COLUMN_NAME_SIN_LONG_RAD + " FLOAT) " ;

@Override
p u b l i c vo id o n C r e a t e (SQLi t eDa tabase db) {

db . execSQL (SQL_CREATE_ENTRIES) ;
}

Listing 4.7: SQLite examle to increase counter value
UPDATE ’ c o u n t e r ’ SET ’ c o u n t e r ’ = ’ c o u n t e r ’ + 1 WHERE _ i d = 5

• sin_long_rad, sin(Longitude ·π ÷180) , calculated sinus value of Longitude

The accuracy of the location and the time, when the location was determined, are both values
that are also saved into the database. These values are not used in the implementation of this
thesis, but these are values that will be used in future work.

4.4.2 LocationDBHelper

The class LocationDBHelper extends the android class SQLiteOpenHelper. It is used by the
MovementTrackingServie to write data into the database. It overrides the inherited void

onCreate() method, which is shown in Listing 4.6. This method is only called, if the
application initialized LocationDBHelper and no database for the application was found.
The class LocationEntry contains fields for the column names.

25

Chapter 4 Implementation

The class provides two methods that are used by the MovementTrackingService. The first
method creates a new database entry. It requires a Location as parameter and returns the id

of the new created database entry, which is saved to the field lastDatabaseRow.
long addNewEntry(Location location)

The second method is used to increment the counter value of the last database entry and is
called, whenever the user stayed in range of the last known location.
void incrementLastEntry(long lastDatabaseRow)

The value of lastDatabaseRow is passed as a parameter. The Listing 4.7 shows an
example of the SQLite statement, which increments the counter value of the database entry
with the id of 5.

Furthermore the class contains a method to read data from the database. This method is used
by the PersonalLocationAnalyzer and returns a HashMap of Location objects. The coor-
dinates of these locations lay within a radius of a location. The radius and the location are
passed as parameter.
HashMap<Location, Integer> getNearLocations(Location location,

double distance)

The following equation shows the used mathematical function to calculate the distance be-
tween two locations Location1 and Location2. The function is a transformed version of the
Haversine Formula 4.1.

cosDistance = sinLat1 · sinLat2 + cosLat1 · cosLat2 · sinLat1 · sinLat2 + cosLat1 · cosLat2
(4.3)

If we multiply the result by 6380, the earth radius in kilometres, we get the distance between
the locations in kilometres.

Distance in km = arccos(cosDistance) ·6380 (4.4)

We added a condition to determine if Location2 is in the Radius of Location1:

cos(Radius÷6380)> cos(Distance) => Location2 is in Radius o f Location1 (4.5)

The method uses Condition 4.5 to get all the location we are searching for. In the next section
we implemented a class to analyse the locations.

26

4.4 Database

Listing 4.8: Analyse location
p r i v a t e s t a t i c f i n a l double WEIGHT_NODES = 0 . 3 ;
p r i v a t e s t a t i c f i n a l double WEIGHT_COUNTER = 0 . 7 ;
p r i v a t e s t a t i c f i n a l i n t MIN_REQUIREMENT = 1 ;

p u b l i c s t a t i c boolean a n a l y z e (L o c a t i o n l o c a t i o n , double
r a d i u s) {

Loca t ionDBHelper dbHe lpe r = new Loca t ionDBHelper (mContext) ;
HashMap< Loca t i on , I n t e g e r > l o c a t i o n I n t e g e r H a s h M a p = dbHelpe r

. g e t N e a r L o c a t i o n s (l o c a t i o n , r a d i u s) ;

i f (l o c a t i o n I n t e g e r H a s h M a p . isEmpty ()) {
re turn f a l s e ;

}
i n t c o u n t e r = 0 ;

f o r (L o c a t i o n l o c : l o c a t i o n I n t e g e r H a s h M a p . k eyS e t ()) {
c o u n t e r += l o c a t i o n I n t e g e r H a s h M a p . g e t (l o c) ;

}
re turn WEIGHT_NODES * l o c a t i o n I n t e g e r H a s h M a p . s i z e () +

WEIGHT_COUNTER * c o u n t e r
> MIN_REQUIREMENT;

}

4.4.3 PersonalLocationAnalyzer

The class PersonalLocationAnalyzer has the task to analyse a set of locations and convert the
result into a value. This value represents the possibility that the user is entering the radius of a
location. The method in Listing 4.8 takes the part of analysing. It takes two parameters. The
first one is a location and the second one is a radius. In the beginning, the method requests
all locations that are within the radius of location.

This implementation is a basic analysing of the locations within the database. We used a
possible approach of analysing the data. The approach used the number of locations as well
as the sum of all counter values. Both numbers are multiplied with a possible weight, which
could represent the significance of each number, but if one database entry is within the radius,
the PersonalLocationAnalyzer already returns true.

In the future, the algorithm should be enhanced to use more collected data. For example it

27

Chapter 4 Implementation

Figure 4.2: Option to active/deactivate the MovementTrackingService

should also include information like the Timestamp, to include the possibility to calculate
when the user could reach the destination.

4.5 Opptain Integration

In this section we will integrate all the implementations, we worked on in the previous sec-
tions, into the main application Opptain.

4.5.1 User Settings

The user should be able to active/deactivate the MovementTrackingService. Therefore we
expanded the settings of Opptain and add a new check box. Figure 4.2 shows the new added
option.

If the check box is selected, the MovementTrackingService starts and stops if the check box
is deselected. Figure 4.9 shows the implementation of the OnChangeListener that was added
to the check box. This listener is triggered whenever the user clicks on the option.

28

4.5 Opptain Integration

Listing 4.9: Implementation of new settings
p r i v a t e c l a s s

B u t t o n A l l o w M o v e m e n t T r a c k e r C o n f i g u r a t i o n O n P r e f e r e n c e−
C h a n g e L i s t e n e r

implements P r e f e r e n c e . O n P r e f e r e n c e C h a n g e L i s t e n e r
{

@Override
p u b l i c boolean o n P r e f e r e n c e C h a n g e (P r e f e r e n c e p r e f e r e n c e ,

O b j e c t newValue) {
boolean v a l u e = (Boolean) newValue ;
i f (v a l u e) {

g e t A c t i v i t y () . s t a r t S e r v i c e (new I n t e n t (g e t A c t i v i t y () ,
MovementTrack ingServ ice . c l a s s)) ;

} e l s e {
g e t A c t i v i t y () . s t o p S e r v i c e (new I n t e n t (g e t A c t i v i t y () ,

MovementTrack ingServ ice . c l a s s)) ;
}
re turn true ;

}
}

An Intent is used to stop and start the service. If the MovementTrackingService is enabled,
it automatically starts with Opptain.

4.5.2 Network Bundle

The following implementation was made in the Third Party Application Ping. This appli-
cation is able to send a ping to a device within the Opptain Network. We expanded this
application to add a destination and a radius into Optain’s network bundle. Listing 4.10
shows how the data are added into the AdditionalInformation object. This object is part of
the Meta Data described in Section 3.2.1.

After the user clicks the Send Button in Ping, a dialogue opens, where the user can decide,
if he wants to add a destination. Clicking Yes starts the LocationChooserActivity. The values
of lat, lng and rad were set by the user via the LocationChooserActivity. This action is only
performed by the creator of the Network Bundle.

29

Chapter 4 Implementation

Listing 4.10: Add additional information
A d d i t i o n a l I n f o r m a t i o n a d d i t i o n a l I n f o r m a t i o n = new

A d d i t i o n a l I n f o r m a t i o n () ;
i f (l a t != n u l l && l n g != n u l l && r a d != n u l l) {

a d d i t i o n a l I n f o r m a t i o n . p u t ("LOCATION_ROUTING_LAT" , l a t) ;
a d d i t i o n a l I n f o r m a t i o n . p u t ("LOCATION_ROUTING_LNG" , l n g) ;
a d d i t i o n a l I n f o r m a t i o n . p u t ("LOCATION_ROUTING_RAD" , r a d) ;

}

4.5.3 Device Communication

In this section we will integrate the PersonalLocationAnalyzer into the Device Communica-

tion, described in Section 3.2.1. Listing 4.11 shows how the Latitude, Longitude and the
Radius are extracted from the Additional Information.

These values are passed into the PersonalLocationAnalyzer which returns a boolean value. If
this value is false or the Additional Information object does not contain GPS-based data, the
Device Communication ignores the GPS-based Routing extension.

30

4.5 Opptain Integration

Listing 4.11: Extract GPS data from Additional Information
boolean gpsWanted = f a l s e ;

/ / check i f a d d i t i o n a l i n f o r m a t i o n c o n t a i n s GPS−based da ta
i f ((peerCopyOfOppta inBundle . g e t A d d i t i o n a l I n f o r m a t i o n ()

. g e t ("LOCATION_ROUTING_LAT") != n u l l)
&& (peerCopyOfOppta inBundle . g e t A d d i t i o n a l I n f o r m a t i o n ()
. g e t ("LOCATION_ROUTING_LNG") != n u l l))

{
L o c a t i o n d e s t i n a t i o n = new L o c a t i o n (" ") ;
d e s t i n a t i o n . s e t L a t i t u d e ((double) peerCopyOfOppta inBundle

. g e t A d d i t i o n a l I n f o r m a t i o n ()

. g e t ("LOCATION_ROUTING_LAT")) ;
d e s t i n a t i o n . s e t L o n g i t u d e ((double) peerCopyOfOppta inBundle

. g e t A d d i t i o n a l I n f o r m a t i o n ()

. g e t ("LOCATION_ROUTING_LNG")) ;
Double r a d i u s = (Double) peerCopyOfOppta inBundle

. g e t A d d i t i o n a l I n f o r m a t i o n ()

. g e t ("LOCATION_ROUTING_RAD") ;
gpsWanted = P e r s o n a l L o c a t i o n A n a l y z e r

. a n a l y z e (d e s t i n a t i o n , r a d i u s) ;
}

31

Chapter 5

Evaluation

In this chapter we want to present the results of testing the developed extension. In the first
part we will evaluate the MovementTrackingService which has the task to collect the User
Data. After that we will evaluate the implementation of the GPS-based Routing. In the end
we will analyse the power consuming.

5.1 User Data

In this section we want to evaluate the tracking of User Data. We begin with analysing the
different parts of the MovementTrackingService and end with the evaluating the collected
data.

5.1.1 Movement Recognition

First we want to show the results of evaluating the movement recognition implemented in sec-
tion 4.3.1. This service provides information about the user’s current movement. Therefore
we prepared a test. The test should show how accuracy the movement recognition works.

33

Chapter 5 Evaluation

Figure 5.1: Movement Recognition Test Setup

Test Setup

In order to test the movement recognition we modified the extension to log the calculated
state together with a timestamp. Following movements were tested:

• standing still, should be recognized as SLEEPING_STATE

• walking, should be recognized as WALKING_STATE

• driving by bus, should be recognized as DRIVING_STATE

• driving by bicycle, should also be recognized as DRIVING_STATE

We planned a scenario to cover all the the movements in one run. So we were able to analyse
the recognition of a change in the movement, too. In this test were two people involved. The
first person was the tester. He used to carry the test device. To be realistic the person used the
device for various actions, like listening music, texting or carrying the device in the pocket.
The other person documented each part of the test and prepared the different stages.

In the first stage we tested the SLEEPING_STATE. The person was sitting with the device in
his hand for 20 cycles. Each cycle takes one minute. The user stood up and started walking.
There the second stage started. The tester walked down a street without stopping to test the
recognition of WALKING_STATE. The possibility to recognise that the person is walking
around a location, without leaving the location will be tested in the next section and was not

34

5.1 User Data

Table 5.1: Movement Recognition test result
Movement Time

in Minutes
correct incorrect Success Rate

in %
no movement 28 26 2 92.85

walking 24 20 3 83.33
driving by bus 23 19 4 82.60

driving by bicycle 20 20 0 100

part of this test.

The tester carried the device in his hand as well as in his pocket. He also varied in his walking
speed. After walking for 20 cycles he arrived at a bus station and waited there for another 8
cycles before he got in the bus to test the recognition of DRIVING_STATE. While sitting in
the bus the tester conventional used the device. This stage took 23 cycles.

In the last stage we also tested the DRIVING_STATE, but we used a bicycle instead of the
bus. Therefore the person who documented the test prepared a bicycle at the bus station. The
tester walked 4 cycles between the two stages.

While riding the bike, the device was carried in the pocket of the tester. After 20 cycles of
the stage and the test ended. All in all the tester was standing still for 28 minutes, walking for
24 minutes, driving with the bus for 23 minutes and riding the bike for another 20 minutes.
In total he changed his movement six times and the test took 95 minutes.

Test Results

In this section we will present the result of the previous test and evaluate it. The Table 5.1
shows the result. The different stages are generalized into the different movements and not
shown in the table. Furthermore the table shows each movement in minutes, parted into
correct identified and incorrect identified movements. In the following we will analyse the
result of each movement. The tester was not moving in two stages. In the first stage he
was sitting 20 minutes. Each minute was correctly recognised as SLEEPING_STATE. The
second time, when the device was not moving was as the tester was waiting for the bus
in stage 3. In the first cycle, while waiting, the MovementTrackingService wrongly identi-
fied the movement as WALKING_STATE, which was the first mistake caused by the class

35

Chapter 5 Evaluation

MovementListener. While waiting for the bus, the tester was using the device and holding it
without walking around, but for one circle the MovementTrackingService was falsely set into
WALKING_STATE.

The second row of the table shows the result for Walking. The state immediately changed
from SLEEPING_STATE to WALKING_STATE after the tester started walking in stage
two. While walking in stage two the MovementListener correctly identified the state as
WALKING_STATE, except for one minute. In one cycle the state was set to DRIVING_STATE.
At this point the tester was walking while holding the device in his hand. The other two in-
correctly identified movements where the state was not WALKING_STATE, were in stage 5.
After the tester went off the bus, the state was wrongly set to DRIVING_STATE for two
more cycles. Another important notice we can take from result, is that the PdrPositionMan-

ager works very accurate for walking straight. In every circle, where the tester was walking,
the PdrPositionManager determined a distance greater than the radius of 10. The average
distance the tester walked within one minute was around 80 meter.

The next row shows the results while driving bus. In total the tester was sitting for 23 minutes
in the bus. After getting in the bus in stage 4, the MovementListener correctly and imminently
identified the movement as Driving. In four cycles the movement were falsely identified as
WALKING_STATE. All of them were moments, when the bus was speeding up, after waiting
at a traffic light or a bus station for a moment. Every time the bus was waiting longer than a
minute.

The last row shows the result of the MovementListener while riding with the bike, which
were perfectly recognized as Driving. The tester was riding bike for 20 minutes and all of
them were correctly identified, although the tester had to wait at a traffic light for nearly 45
seconds.

All in all the calculations of MovementListener are very accuracy. Nearly 89.70% of all a
result were correct. The rate of 92.85% as result for identification the SLEEPING_STATE is
a great success, because this state is the power saving state. It does not request GPS position
and for that should not be wrongly identified.

36

5.1 User Data

(a) test setup

Test trails successful %
walking within the circle 25 15 60

walking out and in 25 18 72
walking out the circle 25 22 88

(b) test result

Figure 5.2: Pedestrian Dead Rocking accuracy test

5.1.2 Pedestrian Dead Rocking

In the last section we evaluated the Movement Recognition, but ignored the possibility that
the user could walk within a radius of the last known position. This scenario could happen,
when the user is walking around in a room, without leaving it. We implemented a class called
PdrPositionManager to calculate the position of the user without using GPS data. We needed
this function to determine whenever the user is outside a specific radius in the end of a cycle.
The center point of this radius was the last known GPS position. In order to test the exactness
of the calculated location we planned a test.

Test Setup

For testing the PdrPositionManager we modified the implementation to notify the user in
the end of a cycle. This notification had two possible outputs. If the calculated position
is within the radius it shows IN, or else it shows OUT. The test location was a big empty
place. We marked a position and used chalk to draw a circle with a radius of 10 meter
around this position. Figure (a)5.2 shows the setup. The drawn circle was the line between
being inside and outside the radius. Furthermore we created an Android Activity with only a
button to start the MovementTrackingService, that was also modified to only get the current
GPS position and after that it started the PdrPositionManager for one circle. Therefore we

37

Chapter 5 Evaluation

could test the PdrPositionManager only by pressing the button. We tested three scenarios.
In the first scenario the tester walked within the circle. In the second one the tester walked
in and outside the circle, but the ended within. In the last scenario the tester was outside
the circle in the end of one minute. All scenarios were tested 25 times. In the beginning of
each test the tester stand in the center of the radius and pressed the button. After receiving
the current GPS position, which was used as a start point to calculate the first step, the
PdrPositionManager started and the tester walked exactly thirty steps. Furthermore the tester
walked each time a different way. We used thirty steps for this test, because the tester used
to count his steps while walking in his flat. In total walking time, the tester used to make
an average number of 30 steps within a minute. We did not use a new GPS position to
check if the calculated position is accurate, because both GPS positions, the initial position
as well as the end position, would have needed to be very high accuracy value to be reliable
as comparison value for the calculated position.

Test Result

Table 5.2(b) shows the test result. The first thing we noticed is that the PdrPositionManager

often calculates more steps than we took. The average number of steps that we recognised
were around 33 steps. This problem is caused by the class PdrPositionManager itself, be-
cause it determines, based on the acceleration sensor, whenever a step was taken. Adjusting
the minimum value of acceleration that is necessary to trigger the step event, could solve this
problem.

In the first scenario the tester walked within the radius. In 60% of the tests, the PdrPosition-

Manager determined the right result. The result strongly depends on the route the tester had
walked. A route, where the tester often walked through the center of circle, was often deter-
mined with the right result. As a result of this test you can say that the PdrPositionManager

works more precisely when the direction of a few steps point towards the start point. Thus,
walking at the edge of the circle mostly ended with the wrong result.

The second scenario, where the user is walking inside and outside, but ended in the circle,
the success rate was 72%. This result supports the thesis, that walking towards the circle
increases the chances of determining the right result. Another thing we noticed was, that
whenever the result, of a route (a), was right and we nearly walked the same route (b), but
further away from the outermost point of route (a), route (b) also had the right result. That

38

5.1 User Data

could indicate that the PdrPositionManager is able to notice very well, whenever the user is
turning around and is walking back.

The last scenario covers the case, where the user is walking inside and outside, but is not
walking back into the circle. In this scenario we received the best results. 88% of the deci-
sions were correct. In 3 tests the PdrPositionManager calculated a wrong result and all of
them had one thing in common. The last step, in each of the three wrong identified routes,
was very close, around 1 meter, to the edge of the circle. Therefore the result is more accurate
if the user is walking far. This recognition covers with the results we made in the previous
chapter, where walking straight was every time determined right by the PdrPositionMan-

ager.

The average success rate is around 75.33%. In order to increase this rate, two parts of the
PdrPositionManager needs to be adjusted. First we should fix the problem, that more steps
are recognised than taken. From that bug a greater distance is recognised by the device than
the user walked, which results in a greater calculated distance. Often the extra distance made
the PdrPositionManager decide that the user is outside the radius. The second factor that
could increase the success rate, is a custom step length. The fixed value for the step length is
set to 70cm. The tester had a step length around 76cm. The total deviation is increased by
the discrepancy on each step.

Conclusion

The MovementTrackingService works very accurate. It is able to determine whenever a per-
son is staying at a location, regardless of the person’s current movement. It therefore follows
that the number of circles, when the MovementTrackingService requested a GPS-based loca-
tion update, enormous decreased. A day has 86,400 minutes. Without the implementation
of PdrPositionManager and MovementListener, the MovementTrackingService would start
to request the GPS data every minute. After analysing the results of the next section 5.2,
the number of GPS request strongly depends by the user’s movement. On average days the
total number of location updates were decreased to 150 requests. That means the Movement-

TrackingService decreased the number of GPS request by 99.99%.

39

Chapter 5 Evaluation

Figure 5.3: Collected data after three days

5.2 Evaluating the Data Collection

In this section we are going to evaluate the collected data from the MovementTrackingService.
In the previous section we already evaluated the main components of it. In order to analyse
the data, we exported the database from the test device, on which the MovementTrackingSer-

vice was running for three days. Within these days the tester was in the university, at home
or driving between those two spots by bus.

In this period of time, the service wrote 443 database entries. For this evaluation we only
look at the columns Latitude, Longitude and Counter. The first two values are making
the coordinates of the location and the third value represents how long, in minutes, the user
stayed in this location. Figure 5.3 shows a plot of the mentioned data. The x axis represents
the Latitude and the y axis represents the Longitude. Therefore a location is displayed as
a point and the size of this point represents its duration time. The plot shows two area with
a high density of points that are above-average size. In Figure 5.4 these areas are marked as
Area A and Area C. We will start by evaluating this two areas. Area A Area A contains a few
bigger points. At those locations the tester stayed for a longer period of time. Furthermore
there are a lot of little points. That means that the user is also moving around in this area. In
reality, this area represents the university where the tester is studied. We imported some of
the points into Google Maps and the tester was able to verify the marked locations

40

5.2 Evaluating the Data Collection

Figure 5.4: Added additional information to Figure 5.3

Figure 5.5: Bus Route (Source Google Maps)

41

Chapter 5 Evaluation

Area C contains a lot of big points. Most of them are overlapping each other. This indicates
that the tester stayed there for a long time and that he was there very often. In reality, the
tester is living in this area and he could also verify the accurate of this data.

It seems that the other dots are trying to draw a line between those two areas by overlapping
each other. We highlighted this possible line with the red line in Figure 5.4. A high density
of points means that the tester was often around this points. The tester could verify that he
often moved between Area A and Area C, because this was the route of his bus. In the three
days, when the MovementTrackerService was enabled, he took the bus 7 times. Figure 5.5
shows the bus route. The red line from Figure 5.4 does look very similar, compared to the
bus route in Figure 5.5.

In Area B are the points a little bigger than the points on the red line. The tester explained,
that in this area is a bus station, where the bus driver is taking a little pause. Sometimes up
to five minutes, which cause the points to grow bigger.

In conclusion it can be said that the MovementTrackerService is very accurate tracking the
users movement and that the number of GPS position requests is linked with the user’s move-
ment. The high density of points around the red line and the background information clearly
shows that fast movements require a lot of location updates.

To adjust the duration of a cycle while being in the driving state could decrease the number
of position request. This could be part of future work.

5.2.1 Battery Usage

We designed the MovementTrackerService to be as power saving as possible. The results
of reducing the number of GPS requests was calculated in the conclusion of Section 5.1.2.
With the introduction of the different states the number of request could be decreased nearly
99.99%, which is very high.

In this section we want to evaluate the actual battery usage. In the three days, when the
service was enable, the GpsPositionManager requested 443 locations. Nearly 150 requests
per day. The device that we used was the Sony Xperia Z5 (E6653). this device is capable of
measuring the battery usage for each application. Our extension was requesting GPS position

42

5.2 Evaluating the Data Collection

for nearly 2.5 hours per day and nearly used 220 mAh per day. The total battery capacity of
the device is about 2900 mAh. That means that the extension is using 7.6% when the battery
is fully charged.

In conclusion we can say that the MovementTrackerService is not using too much power and
while evaluating the implementation we found several possibilities to decrease the battery
usage even more.

43

Chapter 6

Conclusion and Future Work

In the last chapter of this thesis we will summarize the conclusion in Section 6.1 and we will
look at the possible future work in Section 6.2

6.1 Conclusion

The evaluation showed that MovementTrackingService as well as its components Move-

mentListener and PdrPositionManager are providing accurate data. Therefore we were able
to reduce the GPS location updated to a minimum.

An important aspect that was not mentioned earlier is the preserving of privacy. The approach
of the GPS-based routing shows that no private data are exchanged between devices. Each
device holds the collected data and does not share with any system. Androids file system is
also not able to extract information from the database or the database itself.

6.2 Future Work

As we mentioned in the motivation, the thesis was to lay a foundation. The extension does
not include a proper algorithm for the GPS-based Routing. Future work could include a

45

Chapter 6 Conclusion and Future Work

self-learning algorithm that is trying to predict, whenever accepting a Bundle would help the
Bundle get closer to its destination.

The MovementTrackingService could also be complemented by a learning algorithm. After
determining daily routines, the service could stop tracking duplicated data and would only
recognises changes in this routine. This could drastically decrease the daily GPS requests for
users that are moving fast for a long period of time. Like driving the same long track each
day to work.

Another part that could be adjusted in the future is the PdrPositionManager by adding filters
like the Kalman-Filter to reduce wrong calculated locations.

46

Bibliography

[Gooa] GOOGLE: Sensors Overview. https://developer.android.com/

guide/topics/sensors/sensors_overview.html. [Online; ac-
cessed 26-June-2017]

[Goob] GOOGLE: Storage Options - Using Databases. https://developer.

android.com/guide/topics/data/data-storage.html#db.
[Online; accessed 26-June-2017]

[Goo17a] GOOGLE: Google Maps APIs Term of Service. https://developers.

google.com/maps/terms. Version: 2017. [Online; accessed 21-June-2017]

[Goo17b] GOOGLE: Making Your App Location-Aware. https://developer.

android.com/training/location/index.html. Version: 2017.
[Online; accessed 21-June-2017]

[Goo17c] GOOGLE: Platform Versions. https://developer.android.com/

about/dashboards/index.html. Version: 2017. [Online; accessed 21-
June-2017]

[Ipp15] IPPISCH, Andre: A fully distributed Multilayer Framework for Opportunistic

Networks as an Android Application, Department of Computer Science, Heinrich
Heine University Düsseldorf, Diplomarbeit, März 2015

[JDO96] JUDGEROY, James O.; DAVIS, B. III; OUNPUU, Sylvia: Step Length Reductions
in Advanced Age: The Role of Ankle and Hip Kinetics. In: The Journals of

Gerontology: Series A 51A (1996), Nr. 6, S. M303.

[Ltd] LTD, Movable T.: Calculate distance, bearing and more between Lati-

47

https://developer.android.com/guide/topics/sensors/sensors_overview.html
https://developer.android.com/guide/topics/sensors/sensors_overview.html
https://developer.android.com/guide/topics/data/data-storage.html#db
https://developer.android.com/guide/topics/data/data-storage.html#db
https://developers.google.com/maps/terms
https://developers.google.com/maps/terms
https://developer.android.com/training/location/index.html
https://developer.android.com/training/location/index.html
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html

Bibliography

tude/Longitude points. http://www.movable-type.co.uk/scripts/
latlong.html. [Online; accessed 23-June-2017]

[Map17a] MAPSFORGE: Specification: Mapsforge Binary Map File Format.
https://github.com/mapsforge/mapsforge/blob/master/

docs/Specification-Binary-Map-File.md. Version: 2017. [On-
line; accessed 21-June-2017]

[Map17b] MAPSFORGE: Vector map library written in Java - running on Android and

Desktop. http://mapsforge.org/. Version: 2017. [Online; accessed 21-
June-2017]

[Ope17a] OPENSTREETMAP: Basic components of OpenStreetMap’s conceptual data

model of the physical world. http://wiki.openstreetmap.org/wiki/
Elements. Version: 2017. [Online; accessed 21-June-2017]

[Ope17b] OPENSTREETMAP: OpenStreetMap is a map of the world. https://www.

openstreetmap.org/about. Version: 2017. [Online; accessed 21-June-
2017]

[Ope17c] OPENSTREETMAP: Start Mapping. https://www.openstreetmap.

org/export. Version: 2017. [Online; accessed 21-June-2017]

[Osm17] OSMOSIS: Osmosis is a command line Java application for processing OSM data.
http://wiki.openstreetmap.org/wiki/Osmosis. Version: 2017.
[Online; accessed 21-June-2017]

48

http://www.movable-type.co.uk/scripts/latlong.html
http://www.movable-type.co.uk/scripts/latlong.html
https://github.com/mapsforge/mapsforge/blob/master/docs/Specification-Binary-Map-File.md
https://github.com/mapsforge/mapsforge/blob/master/docs/Specification-Binary-Map-File.md
http://mapsforge.org/
http://wiki.openstreetmap.org/wiki/Elements
http://wiki.openstreetmap.org/wiki/Elements
https://www.openstreetmap.org/about
https://www.openstreetmap.org/about
https://www.openstreetmap.org/export
https://www.openstreetmap.org/export
http://wiki.openstreetmap.org/wiki/Osmosis

Ehrenwörtliche Erklärung

Hiermit versichere ich, die vorliegende Bachelorarbeit selbstständig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel benutzt zu haben. Alle Stellen, die aus
den Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit
hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Düsseldorf, 30. Juli 2017 Justin Marks

49

Hier die Hülle

mit der CD/DVD einkleben

Diese CD enthält:

• eine pdf -Version der vorliegenden Bachelorarbeit

• die LATEX- und Grafik-Quelldateien der vorliegenden Bachelorarbeit samt aller verwen-
deten Skripte

• [anpassen] die Quelldateien der im Rahmen der Bachelorarbeit erstellten Software
XYZ

• [anpassen] den zur Auswertung verwendeten Datensatz

• die Websites der verwendeten Internetquellen

	Titlepage
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Outline

	2 Fundamentals
	2.1 Android Smartphone
	2.1.1 Operating System
	2.1.2 Applications
	2.1.3 Built-in Sensors

	2.2 Global Positioning System
	2.2.1 Geographic Coordinate System

	3 Demands and Design
	3.1 Demands
	3.2 Design
	3.2.1 GPS-based Routing
	3.2.2 User Interaction
	3.2.3 User Data

	4 Implementation
	4.1 Development
	4.2 User Interaction
	4.2.1 Requirements
	4.2.2 Activity

	4.3 Collect User Data
	4.3.1 MovementTracker

	4.4 Database
	4.4.1 Structure and Content
	4.4.2 LocationDBHelper
	4.4.3 PersonalLocationAnalyzer

	4.5 Opptain Integration
	4.5.1 User Settings
	4.5.2 Network Bundle
	4.5.3 Device Communication

	5 Evaluation
	5.1 User Data
	5.1.1 Movement Recognition
	5.1.2 Pedestrian Dead Rocking

	5.2 Evaluating the Data Collection
	5.2.1 Battery Usage

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Bibliography

