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Abstract

Many overlay-based distributed applications employ TCP for the communication between peer
nodes. Typically, the TCP connections of one peer will all share one physical Internet link. Using
real-world network experiments, we demonstrate that this can lead to undesirable interactions
between overlay links, resulting in oscillations and suboptimal throughput. Consequently, we argue
that such effects should be taken into account in the design and deployment of overlay networks.
In support of this case, we identify readily deployable countermeasures. In a first step, we show
that simple traffic shaping mechanisms based on existing operating system QoS functionality can
bring some relief. Yet, this alone is not fully effective if peers communicate bidirectionally, due
to TCP ACK piggybacking. We thus suggest to set up the overlay’s communication structure to
avoid piggybacked ACKs, by separating bidirectional peer communication into two independent
TCP connections. We demonstrate the effectiveness of this strategy and discuss viable migration
paths for existing applications.

I. INTRODUCTION

In recent years, a significant number of applications based on peer-to-peer overlay networks have
been proposed. Many of them are now in widespread use on the Internet. Prominent examples are
BitTorrent [1] for file distribution, Tor [2] for network anonymity, or the many existing flavors of
P2P file sharing networks. Each of these systems has hundreds of thousands or even millions of
active users.

Many such applications use TCP connections for the individual overlay links. Because a peer often
communicates with many neighbors simultaneously, it is common that many TCP connections are
active in parallel. This has important implications: the overlay nodes are Internet end systems,
connected to the Internet over one single physical link. This link is shared by all TCP overlay
connections to and from this peer. Consequently, overlay links are—very much unlike, e. g., the
links of a router in a physical network—not independent.



In the design of overlay networks, it is therefore important to consider not only the data transfer
within the overlay, but also potential interactions of overlay connections. Here, we put one
particularly severe case of such interactions into focus. TCP connections can interfere with each
other that originate from the same host, share this host’s physical network connection, and generate
both inbound and outbound bulk traffic on this link. These interactions cause throughput oscillations
and repeated TCP slow-starts, and thus highly unsteady data transfers and suboptimal transfer rates.

This is a source of potentially significant performance problems in overlays, including widely
deployed ones. In principle, it is known that such effects can occur, especially in the presence
of asymmetric links [3]. However, despite being particularly problematic in settings often found
in current peer-to-peer overlays, the effects have nevertheless been practically neglected in the
scientific discussion of protocol designs.

The key points in this paper are the insight that overlay designs need to be aware of the implications
of shared physical links on the one hand, and a discussion of how to deal with these implications
on the other hand. To this end, we contribute a problem analysis based on real-world network
experiments, and then focus on solution strategies. We aim for solutions with low intrusiveness and
a realistic deployment perspective. In this spirit we contribute a practical approach that tackles
the exposed performance problem by using readily deployable traffic shaping mechanisms in
combination with simple modifications in the overlay structure.

We first argue that a form of ACK prioritization in the overlay nodes helps to improve unidirectional
data transfers. This alone, however, does not yet lead to satisfactory results for bidirectionally used
overlay links, because ACK piggybacking prevents ACKs from being handled separately. We thus
suggest to substitute bidirectional overlay links by two unidirectionally used TCP connections, to
thereby avoid ACK piggybacking. By implementing these proposals, we obtain significantly more
steady data rates and throughput gains of 100 % and more.

This technical report is an extended version of [4]. Its remainder is structured as follows. We review
related work and background topics in Sec. II. In Sec. III, we describe first experimental results and
concretize the problem. We then show how ACK prioritization can help alleviate the problem for
unidirectionally used connections in Sec. IV. In Sec. V, we discuss the case of bidirectional traffic
and argue that the previously introduced measures should be combined with a directional separation
of connections. We outline migration paths and implications for overlay designs in Sec. VI, before
we conclude this paper in Sec. VII.

II. BACKGROUND AND RELATED WORK

In this section, we will first briefly revisit two widely used applications—BitTorrent [1] and Tor [2]—
and some directions that have previously been pursued to improve their performance. In the role of
case studies, these examples underline why the discussed effects are important for a broad family
of overlay-based applications. Subsequently, we review previous results on interactions between
multiple TCP connections in other contexts and the option of using alternatives to TCP.
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A. Examples of TCP-based overlays: BitTorrent and Tor

The aim of a BitTorrent overlay is to distribute a (typically large) file to a significant number of
downloaders. For this purpose, an unstructured overlay is formed by establishing TCP connections
between nodes that are interested in the same file. The nodes exchange information about locally
already available parts of the desired file, and then share chunks of data with their neighbors over
these TCP connections. This allows to utilize the peers’ upload bandwidth and thus enables file
distribution in a self-scalable manner. For details on the mechanisms used to set up the overlay
and to coordinate the data exchange we refer the reader to [1]. Previous approaches to improve the
performance of BitTorrent focused primarily on its incentive mechanisms and download strategies,
i. e., on the application layer; examples are [5]–[8]. This is complementary to our work, as we focus
on the observation that BitTorrent peers use a significant number of TCP connections in parallel,
and on the resulting transport layer performance issues.

The number of simultaneously used TCP connections is even higher in the overlay that lies at
the heart of the Tor anonymization service [2]. Tor allows to set up anonymized TCP connections
to arbitrary TCP-based services, for instance to a web server. The Tor client software offers a
SOCKS proxy interface to applications like web browsers. To set up the requested connections,
it relies on a back-end network of so-called onion routers. The onion routers—currently about
1 500, contributed and operated by volunteers—form an overlay, which is used by several 100 000
clients. A client’s connection is repeatedly forwarded over a randomized sequence of onion routers
in different administrative domains. This is combined with sophisticated cryptography. Tor thereby
ensures that neither the final communication partner nor any of the onion routers can identify both
end points of the connection.

Data exchanged over an anonymized TCP connection via Tor usually takes three hops through the
onion router overlay. Between each pair of traversed Tor nodes, the data is tunneled over a TCP
connection. Consequently, onion routers in Tor need to maintain a huge number of TCP connections
in parallel—to other onion routers, to Tor clients, and to destinations of anonymized connections.
They are thus particularly heavily affected by TCP interference effects.

Tor currently suffers from severe performance problems, which are subject to ongoing in-
vestigation [9], [10]. We believe that transport layer interactions are likely one of the key
reasons. The existing literature on Tor performance improvements focuses either on alternative
data encapsulations—for example TCP-over-DTLS transport [11] or IPsec tunneling [12]—or
on application-layer problems like Tor’s path selection and load balancing [9], [13]. All these
approaches still employ TCP at some point; some, including [11] and [12], even increase the
number of TCP connections per physical link. Thus, our results are relevant for all of them.

Besides BitTorrent and Tor, there are many other proposed and deployed TCP-based overlays,
spanning the range from classical file-sharing applications like [14]–[16] to group communication
protocols like [17]–[19]. Multiple proposals, including [20], [21], even aim to improve the
performance of classical end-to-end unicast transport by sending the data over multiple hops through
an overlay. These “split TCP” approaches substitute one “long” connection by multiple “short”
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overlay hops.1 For all these systems, we may expect that they are affected by the effects described
here; the countermeasures that we discuss are applicable in all these cases.

B. TCP interactions and alternative protocols

TCP interactions of a kind that is similar to what consider here were described in the early 1990s
already. Zhang and Clark [22] and Clark et al. [23] analyzed situations where bottlenecks in the
core network are traversed by multiple TCP connections between different pairs of end systems.
They argued that “ACK compression” effects can lead to oscillations. Mogul [24] subsequently
demonstrated that this can actually occur in practice. Back then, the impact on peer-to-peer overlays
(with a concentration of potentially many active TCP connections at individual overlay nodes) and
the implications for their design have—quite understandably at that time—not been considered.

Later, TCP interaction effects have received some attention in the context of asymmetric Internet
connections. A good overview of early work in this area is given by Balakrishnan et al. in
RFC 3449 [3]. This also includes a review of a number of solution ideas, most of which require
complex modifications of the TCP implementations in the end systems and/or of the intermediate
routers. Here, we show that significant problems exist even in entirely symmetric settings. Moreover,
we are interested in solution strategies that can be easily implemented without deep modifications
in routers or end systems.

One of the solution strategies that has been suggested for asymmetric Internet connections is to
handle TCP acknowledgments with higher priority in node interface queues. This was suggested by
Kalampoukas et al. [25] and was subsequently adopted in some practical settings. It has, however,
barely been taken up in the scientific discussion. The key advantage of such an approach from
today’s perspective and in our specific context is that it is relatively non-intrusive: it can be realized
based on existing mechanisms of many current operating systems. We will therefore transfer this
to our problem setting and take it up as our first solution step.

It is of course conceivable to employ alternative transport protocols instead of TCP. Many have been
proposed, some are even specifically tailored to the needs of peer-to-peer overlays; examples include
SST [26] and CUSP [27]. Clearly, integrating such a transport protocol is much more intrusive than
the solution strategies we propose. Moreover, existing overlay-tailored transport protocols do not
take the deficiencies discussed here into account. They typically heavily borrow from TCP with
respect to congestion control, and will therefore exhibit similar problems.

For the specific case of BitTorrent, it has been proposed to use UDP in conjunction with the
LEDBAT congestion control mechanism [28] as an alternative transport mechanism for BitTorrent
traffic [29]. The primary aim of this proposal is to enhance the fairness between BitTorrent traffic
and other applications on the same host; at the same time an improved general performance is
intended. Even though this proposal attacks a different problem than the one pointed out here, it
clearly underlines that switching to a complex new transport protocol in a deployed application

1Note that despite the similarity in terminology this is very different from the “splitting” of an overlay connection into
two parallel TCP connections for “forward” and “reverse” data traffic discussed here.
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Fig. 1. Experiment setup.

is a challenging process and takes years to manifest: even though the introduction of LEDBAT
into BitTorrent has started in 2008, after two years most BitTorrent clients still do not support the
protocol, and stable implementations are only beginning to become available on a broader basis. Our
proposals made here follow a much less intrusive and thus hopefully much more easily deployable
direction.

III. INTERFERENCE BETWEEN OVERLAY CONNECTIONS

Overlay nodes are Internet end systems. Therefore, all their TCP connections to all their communi-
cation partners share one physical Internet link. As discussed above, they often exchange data with
a significant number of other hosts in parallel. In this section, we will analyze the interplay between
TCP data and ACK segments on the physical Internet link. We will show why the overlay nodes’
Internet end system character has significant—and non-obvious—impact on the overlay network’s
performance.

A. Experiment setup

To illustrate the effect we are dealing with, we perform a structurally simple experiment with real
network nodes. It is illustrated in Figure 1. Three Linux (kernel 2.6.26, CUBIC TCP) hosts A,
B, and C are connected via a 10/100BaseTx Ethernet switch (3Com SuperStack 3 Switch 4400).
To resemble typical Internet links more closely, we have configured all Ethernet interfaces to run
at 10 Mbps full-duplex. Two TCP connections are set up: one from A to B and one from B to
C. Both connections thus share the link between B and the switch, just like an overlay node’s
connections share its Internet link.

Starting from the beginning of the experiment for a total of 250 seconds, A continuously transmits
bulk data to B. 50 seconds later and likewise for a total duration of 250 seconds, B starts a bulk
data transfer to C. Consequently, there are three phases in the experiment: for the first 50 seconds,
only the connection A → B is active. From second 50 to second 250, both TCP connections
transfer data (from A to B and from B to C). During this period, B therefore has both incoming
and outgoing TCP data transfers. From second 250 to second 300, finally, only the transfer B → C

is active.
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(a) Throughput in a single experiment run.
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(b) Sequence and ACK number progression of A→ B.

Fig. 2. TCP interactions in the experiment.

B. Result analysis

Figure 2(a) shows the application-layer throughput over time in one single experiment run
(calculated over 1 s intervals). During the first and last 50 seconds, when only one of the connections
is active, the throughput is just as one would expect: due to the protocol overheads at the various
layers, slightly less than 10 MBit/s. In the second phase of the experiment, however, when both
incoming and outgoing transfers to/from B are active, the picture is drastically different.

Evidently, the problematic connection is the incoming one: even though the link between B and the
switch is a full-duplex link with 10 MBit/s in both directions, connection A → B does not manage
to make full use of this bandwidth. Instead, the achieved throughput is unsteady, it oscillates heavily.
The oscillations set in right after B → C starts to transfer data.

The reason lies in the outgoing queue of node B’s link. In this queue, there are (1) the TCP data
segments for connection B → C and (2) the ACKs of connection A → B. In fact, we observe that
when B → C sets in, this queue increases drastically in length, resulting in an increased queueing
delay. This queueing delay also affects the acknowledgments for A → B. This effect is clearly
visible if we take a detailed look at the sequence number progression for A → B during one of the
oscillation cycles. We show this in Figure 2(b). It visualizes the sequence numbers of outgoing data
segments and incoming ACK segments at node A over time, for a 30 s time interval immediately
after B → C starts to transfer data.

The time until an acknowledgment for a transmitted data segment arrives increases rapidly as the
outgoing queue at B grows. This can be seen from the longer and longer horizontal gap between
outgoing data segments and incoming ACKs with the same sequence number between seconds 50
and 55. The RTT of A → B rapidly increases to more than one second. Around second 55.5, a
segment loss occurs. Because of the long queue at B it takes a very long time until this loss is
detected and the gap is filled in by a fast retransmit.

Also due to the long queueing delay at B, A continues to receive duplicate ACKs for a very long
time after the fast retransmit. In the sequence number plot, it can clearly be seen that A is ultimately
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Fig. 3. Throughput average over 100 simulation runs.

forced into a slow start. Because of the still very long queue, the recovery takes a long time. In the
figure, it is evident that the transfer during the slow start is not continuous, but ACKs arrive (and
new segments are released) in “batches”. If the current congestion window is exhausted, the sender
is forced to wait until the next batch of acknowledgments makes it through the outgoing queue at
B; this picture matches the “ACK compression” effect described in [22], [23]. This happens over
and over again, and causes the oscillations.

These oscillations result in a significant loss of bandwidth. To obtain a statistically solid picture,
we have performed 100 independent runs of the above experiment. In Fig. 3 we show the measured
TCP throughput of connections A → B and B → C. The data points are throughput averages over
10 s intervals, the error bars show 90 % confidence intervals. These results show that the average
throughput from A to B decreases by approximately one third as soon as the transmission from
B to C starts. The bumps in the A → B throughput average line occur because the throughput
breakdowns tend to happen at similar points in time, especially during the first 100 seconds of
bidirectional traffic.

C. Deployed overlays

Beyond isolated and tightly controlled laboratory settings it obviously becomes more difficult to
rigorously determine the impact of specific factors. In large-scale overlays in the wild, we do not
have full control over all peers and their links, and therefore we cannot ultimately prove the presence
or absence of the above demonstrated effects. There is, however, at least indicative evidence that
such interactions do occur.

Clear signs for transport layer problems in the Tor overlay can be found in Loesing’s Tor
performance measurements [10]. There, it is reported that only half of the available bandwidth
is effectively used. An explanation for this finding is not provided in [10]. However, it apparently
fits the picture that we see in our experiments reported above.

A look at in-the-wild BitTorrent and Tor traces corroborates the real-world existence of TCP
interaction effects further. We downloaded a Gentoo Linux installation CD image via a Tor-
anonymized HTTP connection (Tor version 0.2.2.8-alpha) and recorded the throughput over time. In
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Fig. 4. Examples of TCP throughputs in real-world overlays.

a similar manner, we monitored a BitTorrent download (with KTorrent version 3.2.4). Throughput-
over-time plots are shown in Figure 4, one from a connection between two BitTorrent peers
(Fig. 4(a)) and one from the HTTP download via Tor (Fig. 4(b)). A multitude of external, non-
controllable factors contribute to the exact behavior of such connections. However, some key features
of Figure 2(a) are clearly present. In particular, we notice significant throughput oscillations and
sharp throughput drops at several points in time. Similar to what we see in Figure 2(a), connections
sometimes break down and may be stalled for several seconds (in the specific plots shown here
this happens particularly drastically for the Tor connection before second 200). We take this as an
indication that TCP interference effects do in fact occur.

IV. TRAFFIC SHAPING AND ACK PRIORITIZATION

So far, the effects that we demonstrated in the previous section have not been taken into consideration
in the design of overlay networks. However, related phenomena are known in the context of TCP
performance on asymmetric links (like, e. g., ADSL Internet access links) [3]. In particular, it has
been observed that TCP download speed in asymmetric settings suffers in the presence of significant
upload activity, for very similar reasons. A possible remedy is to prioritize TCP ACK segments
in the outgoing traffic stream by using traffic shaping mechanisms [3], [25]. This technique is an
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important first step towards solving the throughput oscillation problem. In this section, we therefore
take it up and adapt it to our needs.

The key idea is easy to understand: the outgoing interface queue is replaced by separate queues for
(large) data packets and (small) acknowledgment packets. Acknowledgments are then forwarded
to the interface with higher priority. This avoids that the ACKs suffer from long delays due to
many large data segments from other connections. It can therefore be expected to counter the effect
observed in the previous section. Typically, this modification is combined with a marginal artificial
bandwidth throttling applied to the outgoing link. This ensures that the queue builds up before this
bottleneck and thus under the control of the traffic shaping module.

Such mechanisms are actually not uncommon in practice. They can be configured using the standard
Linux kernel’s class-based queueing features and the iproute2 package [30], similar means exist in
other operating systems. In fact, there are software packages designed to optimize the performance
of hosts with asymmetric Internet connections (examples are [31], [32]), and even some DSL home
routers provide corresponding features. However, even though early scientific literature like [3]
indicated the need for more detailed investigations, and despite increasing practical deployment
prospects, there is surprisingly little scientific discussion on these techniques.

We have set up such an ACK prioritization mechanism in host B in our experimental setting above
and assessed its performance impact. We attached a filter to the Linux kernel’s so-called root qdisc
to identify TCP ACK segments with a total size of less than 64 bytes. The matching packets form
one traffic class, another traffic class contains all other outgoing traffic. The two traffic classes are
served with different priorities and different bandwidth limits. Specifically, the ACKs are served at
a higher priority than the remaining traffic. Furthermore, we assign the remaining traffic queue a
fraction of 0.9 of the link bandwidth and combine this with a 5 % bandwidth throttling over both
classes. As mentioned above, the latter tweak ensures that the prioritization mechanisms hold sway
in the outgoing link queueing system.

Figure 5 shows the results obtained with this modification. The figure corresponds to Figure 3, but
now with ACK prioritization enabled. In this simple scenario, the problem is apparently solved.
Now both connections make close-to-optimal use of the available bandwidth, and the throughput
remains stable throughout the experiment.

V. BIDIRECTIONALLY USED TCP CONNECTIONS

So far, our experiments and explanations have focused on TCP connections with unidirectional data
traffic. In many overlay networks, however, TCP connections are used bidirectionally. For instance,
BitTorrent’s fairness mechanisms explicitly encourage connections to transfer data in both directions
at the same time; in Tor many anonymized connections may be multiplexed over a single overlay
link. This makes bidirectional data transfer likely to occur. In fact, this characteristic distinguishes
typical overlay communication from many other commonly used protocols: be it HTTP, mail
transport protocols, or media streaming—in most client-server protocols one communication
direction clearly dominates at any point in time.
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Fig. 5. Impact of ACK prioritization on simultaneous independent up- and downloads.

In case of bidirectional communication, TCP uses piggybacked acknowledgments—this saves (a
little) bandwidth. However, it also means that ACKs are not separate packets that can be identified
and preferred as described in the previous section. Thus, in case of bidirectional TCP traffic with
piggybacked acknowledgments, we should not expect ACK prioritization alone to perform as well
as it did for unidirectional traffic.

A. Remaining problems with bidirectional traffic

To see what happens in the case of bidirectional traffic, we have again performed experiments
in the same setting as above. Host B still communicates with hosts A and C over one TCP
connection each, but now both connections transfer data in both directions simultaneously. Again,
the communication between A and B starts at second 0 and ends after 250 seconds, and the
connection between B and C sets in after 50 seconds and ends at second 300.

Figure 6 shows the achieved throughput over time for the bidirectional data streams without ACK
prioritization. We show the throughput from A to B and from C to B—as we have seen before,
the incoming data transfer towards B is the problematic direction. In the figure, we see a massive
decrease in throughput to around 200 kB/s when both connections are active. There are also high
throughput variations.

If we repeat the experiment with the ACK prioritization mechanisms described above, the result
are surprising at a first glance: despite piggybacked ACKs, the throughput deterioration virtually
vanishes. Both connections now achieve half of the throughput of a single connection, i. e., they
share the bandwidth fairly and make (almost) full use of it (note that, unlike in our previous
experiments, each direction of B’s link is now shared between two data transfers, not only between
data and ACK streams). This is shown in Figure 7(a).

The reason for this improvement becomes clear upon closer examination of the traffic. Even
though both sides continuously generate traffic at the application layer, there is, in fact, a small
number of non-piggybacked acknowledgments. Their presence is easily explained: consider the
situation where one side temporarily exhausts its window, but incoming data from the other end
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Fig. 6. Bidirectional communication without ACK prioritization.

of the connection is to be acknowledged. In that case, despite a non-empty outgoing buffer,
non-piggybacked acknowledgments will be generated. Such acknowledgments are handled by the
prioritization mechanism; effectively, they are brought to the front of the queue. Upon their arrival,
they serve as cumulative ACKs. This apparently suffices to remedy the throughput decrease.

A more detailed look, however, reveals that this remedy is treacherous: the average throughput
increases, but strong throughput oscillations still remain. This is not evident in the multi-run averages
in Figure 7(a), but upon examination of the individual connections’ behavior the still unsteady
behavior becomes apparent. We show one typical example in Figure 7(b). Significant oscillations
are clearly visible.

Particularly problematic are the frequent multi-second throughput breakdowns, like those in
Figure 7(b) around seconds 55 and 200. To name one example where this is fatal, consider
BitTorrent’s incentive mechanisms [1]. BitTorrent peers monitor the current download rates from
all their neighbors. After each 10 second interval they re-decide how they spend their upload
capacity. The neighbors from which the highest download rates were recently achieved are rewarded
by uploading to them, others are “choked”, i. e., they receive no data. The effectiveness of this
mechanism is vital for BitTorrent’s fairness and efficiency [6], [8]. Transport-layer effects as we
see them here may lead to a good sharing partner being choked. The respective neighbor will then
react by choking, too, so that data transfer in both directions is halted at the application layer—
potentially for a long time. Even one single throughput breakdown may therefore have a large
impact on the effectiveness of the sharing mechanism.

B. TCP connection separation

Clearly, prioritizing the small number of individual ACKs that occur despite bidirectional traffic is
not enough. However, piggybacked ACKs cannot be prioritized as described above, because they
cannot easily be separated from the data packets—at least not by standard operating systems means.
We therefore argue that overlay designs should take this into account by avoiding to use a single
TCP connection for longer data transfers in both directions simultaneously. If bidirectional data
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(a) Multi-run averages.
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Fig. 7. Bidirectional communication with ACK prioritization.

exchange between the same pair of peers is required, a simple solution is to separate incoming and
outgoing traffic into two different TCP connections.

We have verified the efficacy of this proposal in another experiment. Now, two TCP connections
are set up between hosts A and B, and another two connections between B and C. Each of these
connections is used in one direction; transmissions start and end as in the previous experiments.
Apparently, piggybacked acknowledgments will no longer exist in this setting. This implies a slightly
higher overhead for the separate ACK segments, but in return the prioritization mechanisms become
fully effective again.

Figure 8(a) shows the throughput of the data streams towards B over time, averaged over 100
experiment runs with 90 % confidence intervals; Figure 8(b) is a throughput-over-time plot for one
single representative connection. Here, we observe a significantly more stable throughput. It varies
much less over time, and multi-second breakdowns like above do not occur.

Note that by applying our TCP connection separation we do not deteriorate the fairness between
other traffic on the same link—because TCP congestion control works independently for both
directions of a connection, the behavior of the connections with respect to fairness remains
unchanged if connections are directionally split.
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Fig. 8. Bidirectional communication with separate TCP connections.
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Fig. 9. Throughput variance.

To underline that the observed improvements are indeed statistically significant, we also performed
a different evaluation of the experimental results from this section. In Figure 9, we quantify the
long-term throughput stability: how strong are the throughput variations after fair throughput sharing
has initially been reached? To this end, we consider all throughput samples for data flows towards
B from all 10 s time slots between seconds 100 and 250 from all experiment runs. For this set of
samples, we calculate the sample variance. A high variance means that the throughput samples are
spread over a large range of values, a low variance means that the throughput is generally more
balanced. It can therefore be used as a measure for the smoothness of the data transfer.
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In the figure, the variance for the experiments without ACK prioritization and with bidirectionally
used TCP connections, for the experiments with ACK prioritization only, and for the experiments
with separate per-direction TCP connections are shown. The results corroborate and quantify what
the individual connection plots in Figures 7(b) and 8(b) already indicated: ACK prioritization brings
with it a clear benefit, but only with the per-direction separation of TCP connections can undesirable
effects be avoided with full effectiveness.

VI. DESIGN IMPLICATIONS AND MIGRATION PATHS

In the design of overlay networks, the TCP transport layer has mostly been perceived as a black box.
This point of view is definitely not enough. Undesired interactions between TCP overlay links may
incur performance penalties and unexpected effects like throughput breakdowns. Consequently, we
argue that researchers and practitioners must take the transport-layer implications of their overlay
designs into consideration.

Fortunately, relatively simple strategies yield significant benefits. First, we suggest that overlay
application developers encourage their users to make use of ACK prioritization on their Internet
link. As mentioned before, this is not difficult, since readily usable software packages like [31] or
[32] exist. This technique and its implementations are originally intended for use on asymmetric
links, but our results clearly demonstrate their effectiveness also in symmetric settings.

Of even greater significance from a protocol design perspective, though, are the implications for the
bidirectional use of overlay links. Our advice for overlay designers is simple: avoid bidirectional
traffic on TCP connections whenever the amount of data exceeds that of a few control messages.
There are multiple strategies how overlays could take this advice into consideration. The most
consequent one would be to design the communication structure of the overlay in a way where
each overlay link has a fixed direction, and communication in the opposite direction occurs seldom
or never. This is not as unrealistic as it may appear at a first glance. In fact, some existing overlay
structures exhibit similar properties (for entirely different reasons, though): just consider tree-based
overlay streaming solutions [17], [19] or the always clock-wise message forwarding in the Chord
DHT [33].

More easily viable for the migration of many existing overlay designs, however, is a pragmatic
approach: setting up two separate TCP connections between each neighboring pair of peers—one
for each direction—, as we did in Sec. V-B. The application-layer protocol could otherwise remain
unchanged, so this can easily be incorporated in future protocol versions: if two peers establish a
connection and, during the initial handshake, find that both support the feature, a second connection
is set up. Otherwise, for backward compatibility, one connection is used in both directions. The
overlay will incrementally profit if more and more peers are upgraded to the new protocol version.
For BitTorrent, for example, this appears to be a viable and promising option.

The drawback of this approach is that it increases the number of open sockets. Depending on the
number of open connections and on operating system limits, this may or may not be a problem.
Tor routers, for instance, must already deal with sometimes thousands of open sockets, and clearly
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approach the limits of some operating systems [9]. For such cases, we recommend a dynamic
strategy: the current usage of TCP connections can be monitored. If significant bidirectional traffic
on a connection is detected, a second connection is set up and the traffic is directionally separated.
If one direction remains unused for a certain time period, one of the connections can be closed
again.

VII. CONCLUSION

Simultaneous inbound and outbound TCP traffic is common in peer-to-peer overlays. In this paper,
we argued that this can cause interactions between overlay links, leading to resource underutilization
and high throughput variability. Based on real-world network experiments, we analyzed the problem
and discussed how to overcome it in the context of existing overlay networks. Our focus was on
solutions that are minimally intrusive and readily realizable, and are thus realistic to deploy.

Our results are important for both existing and future overlay designs. Interactions between transport
layer streams are likely and should be taken into account when the communication structure of the
overlay is designed. In particular, our results show that ACK prioritization combined with separate,
per-direction TCP connections constitutes a promising path.
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