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I. INTRODUCTION

A fundamental problem in real-world computer network
experiments is that each system uses its own local clock to
timestamp events. These clocks are not perfectly accurate, and
thus deviate from each other. Event timestamps assigned by
different nodes can therefore not immediately be compared,
making the analysis of experimental results difficult. The
synchronization of the clocks online during the experiment
is at most a partial solution to the problem. While using
high-precision, special-purpose clocks implies high effort and
expensive hardware, online time synchronization protocols like
NTP [3] require a permanent, reliable network connection
between each node and a reference clock. This cannot always
be guaranteed during an experiment. Using such a time
synchronization protocol also generates network traffic, which
might interfere with the traffic of the experiment itself, and
therefore potentially influences the results. Furthermore, even
if the clocks were perfectly synchronized, it takes some system
dependent (and potentially non-deterministic) time from the
occurrence of an event until it is actually timestamped and
recorded. While it may be possible to use customized hard-
and software to bound this delay, such a solution cannot be
employed for the off-the-shelf systems often used in network
experiments.

In order to avoid these problems we have proposed in earlier
work [4] to record the occurring events with the deviating, lo-
cal clocks and synchronize the resulting event log files offline
after the experiment. The synchronization is based on so-called
anchor points, that is, on events that have been recorded and
timestamped by more than one node in parallel. The anchor
points allow to set the clocks of the nodes into relation. In
networks where the medium has a broadcast characteristic
(like many wireless networks, but also Ethernet using hubs),
the (almost) parallel reception of a packet transmission by
multiple nodes can serve as such an anchor point.

In [4], we laid the foundations of this technique. Here, we
go one step further and discuss aspects that arise if it is to be
applied in a real network. We introduce pcapsync, a tool
using the algorithm from [4] to synchronize event logs from
experiments in IEEE 802.11 wireless networks. It reads a set
of log files that have been recorded in libpcap format (used,
e. g., by tcpdump [5] and Wireshark [6]), identifies potential
anchor points in them, applies our offline time synchronization
algorithm, maps the recorded local timestamps to a common,
global time scale, and finally writes back a corresponding set
of synchronized libpcap files. Its output can thus immediately
be used for further analysis with standard tools.

II. MLE TIME SYNCHRONIZATION

The synchronization algorithm used by pcapsync has
been introduced in [4], here we provide a rough overview. As
its input, the algorithm is given a set of events that have each
been observed by two or more nodes (i. e., the anchor points),
and their local timestamps. These events provide information
about multiple nodes’ clocks at a common point in time. The
output includes estimates for the clock rates and offsets, and
a synchronized timestamp for each of the anchor points.

The approach assumes clocks to be linear, which is a good
approximation at least for experiment durations of up to about
20 minutes. Clocks are thus characterized by a rate r and an
offset o. When read at “true” time1 T , the clock shows

C(T ) = r ·T +o. (1)

Based on additional assumptions on the timestamping pro-
cess, a maximum likelihood estimator (MLE) for rates, offsets,
and event times can be established. This reduces the synchro-
nization problem to an optimization problem. By substitutions
and transformations, the MLE can be expressed as a linear
program (LP). However, with an increasing number of nodes
and anchor points the matrix of coefficients of the LP soon
becomes very big, so that standard LP solvers cannot be
applied in a straightforward way.

The matrix is very sparse, though. It can be arranged in
a special way such that its structure can be exploited to
reduce both computational and storage complexity. We use
an interior point method, a variant of Mehrotra’s predictor-
corrector algorithm [2], to solve the linear program. Analytical,
simulative, and experimental evaluations presented in [4] show
that the estimate is good even for a relatively limited number
of available anchor points, and quickly improves further as
their number increases.

III. PCAPSYNC

To apply MLE timestamp synchronization to real-world ex-
periments in IEEE 802.11 networks, we have implemented the
pcapsync tool. Figure 1 gives an overview of pcapsync’s
general operation. In its initial step, it parses sets of libpcap log
files and identifies anchor points. Anchor points are the foun-
dation of MLE synchronization, and its performance crucially
depends on correctly identifying them. In pcapsync, we use
parallel receptions of the same transmission as anchor points.
For a real wireless network, it is thus necessary to identify
groups of timestamped packet receptions in the libpcap files,

1An absolute time scale does of course not exist; it is, however, assumed
here for simplicity.
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Fig. 1. Structure of pcapsync.

from which it is known for sure that they belong to the same
physical transmission. One central duty of pcapsync is thus
to identify such events.

The link layer reliability mechanism in IEEE 802.11 retrans-
mits unicast packets up to seven times if an acknowledgment
is missing [1]. If multiple nodes receive the same unicast
transmission2, these events therefore do not necessarily belong
to the same physical layer transmission: for example, as shown
in Figure 2, it may well happen that one node receives only
the first transmission attempt, while another node receives
only the second one. Unfortunately, it is not possible to
record the number of performed retransmissions in a hardware-
independent way. A packet reception log entry also does not
reveal which (re)transmission attempt has been received. Thus,
in the specific case of 802.11, multiple receptions of the same
unicast packet cannot be used as anchor points.

For broadcast packets there is no automatic retransmission.
Still, however, it can happen that identical broadcast packets
recorded in the log files refer to different transmissions since
higher layers may generate multiple copies of the same packet.
ARP, for instance, often broadcasts identical requests when the
same address is resolved again. However, broadcast packets
generated multiple times can easily be identified using the
records about sent packets in the log files. Consequently, they
are not used as anchor points. In summary, pcapsync is
able to use parallel receptions of globally unique broadcast
transmissions as anchor points for the synchronization in
802.11 networks.

Based on these rules, the events that can be used as anchor
points and those which are not suitable for this purpose can be
identified and separated. For the anchor points, synchronized

2Note that this is generally possible if the log files are recorded in
promiscuous mode.
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Fig. 2. Ambiguous reception times in case of retransmissions.

timestamps are estimated by the MLE algorithm. As it also
yields estimates for clock rates and offsets of all nodes, the
timestamps of all other events can be corrected by applying
a linear transformation. For an event observed at local time t
by some node with estimated clock rate r̂ and estimated offset
ô, it can easily be seen from (1) that the corrected, global
timestamp T̂ is given by

T̂ =
t − ô

r̂
. (2)

After calculating global timestamps for all events,
pcapsync normalizes them such that the first event in the
experiment occurs at time zero. For this normalization, the
globally earliest synchronized event timestamp is subtracted
from all timestamps.

Finally, pcapsync writes the data to new, synchronized
per-node log files. To simplify the evaluation and visualization
of an network experiment, it also offers the option to write the
synchronized data into one global log file.

IV. CONCLUSION

In this paper, we have introduced pcapsync, a tool for
the offline time synchronization of libpcap log files recorded in
experiments with IEEE 802.11 networks. This tool is based on
MLE timestamp synchronization [4], which uses parallel event
observations to relate the clocks of different nodes. We have
discussed how suitable events can be identified in real world
log data. We have also shown how globally synchronized
timestamps can be obtained also for other events. In summary,
we believe that pcapsync will prove a valuable tool for
evaluating experimental results.
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