
Location-oriented routing in opportunistic
networks

Bachelor Thesis
by

Timo Lux

born in
Duisburg

submitted to

Technology of Social Networks Lab
Jun.-Prof. Dr.-Ing. Kalman Graffi

Heinrich-Heine-Universität Düsseldorf

August 2017

Supervisor:
Raphael Bialon, M. Sc.

Abstract

This thesis focuses on location-oriented routing in opportunistic networks extending the pop-
ular probabilistic routing protocol PRoPHET. The goal is to provide a possibility to route
packets to geographical locations instead of to other hosts. This way other information, like
regular packets routed by PRoPHET, can be wrapped up into a location-oriented packet in
order to send it to a much frequented place, e.g. train stations, from where the chances to
find a route to the original receiver is much higher. The designed extension is implemented
in the network simulator PeerfactSim.KOM and used in the simulation of several scenarios.
The results of the scenarios are evaluated regarding the hop count, arrival ratio and time until
arrival of packets.

iii

Contents

List of Figures vii

List of Tables ix

List of Listings xi

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 2

1.3 Outline . 2

2 Fundamentals 3

2.1 PeerfactSim.KOM . 3

2.2 Opportunistic Networks . 4

2.3 PRoPHET . 4

2.3.1 Encountering Hosts . 4

2.3.2 Routing . 6

2.4 Location-oriented PRoPHET . 7

2.4.1 Way Points . 7

2.4.2 Direction Vectors . 8

2.4.3 Encountering hosts . 9

2.4.4 Routing . 9

3 Implementation 11

3.1 Challenges . 11

3.1.1 PRoPHET+ . 11

3.1.2 Movement Model . 12

3.2 The LocationRoutingPacket . 12

v

Contents

3.3 Configuration Classes . 13
3.4 Database . 14

3.4.1 Entity-Relationship Model . 14
3.4.2 Class Interface . 15

3.5 Helper Classes . 16
3.6 Routing Algorithm Classes . 16
3.7 Application . 17

4 Simulation and Results 19

4.1 Configuration file . 19
4.2 PRoPHET configuration . 21
4.3 Scenarios . 22
4.4 Results . 23

4.4.1 Hop Count . 23
4.4.2 Arrival Ratio . 24
4.4.3 Time Until Arrival . 26

5 Conclusion 27

5.1 Future Work . 28

Bibliography 29

vi

List of Figures

2.1 Angles mapped to the directions . 8

3.1 Example of Host Movement . 12
3.2 Another Example of Host Movement . 13
3.3 Example of Packet Movement and its Target Location 14
3.4 Entity-Relationship Model of the Database 15

4.1 Hop Count . 24
4.2 Arrival Ratio . 25
4.3 Time Until Arrival . 25

vii

List of Tables

4.1 Settings of PRoPHET . 22
4.2 Scenario configurations . 23

ix

List of Listings

2.1 Pseudocode of the PRoPHET Routing Algorithm 6
2.2 Pseudocode of the location-oriented PRoPHET Routing Algorithm 10

4.1 XML Configuration File Example . 20

xi

Chapter 1

Introduction

1.1 Motivation

In today’s world, the internet is a vital part of everyday life. It replaces activities which were
traditionally done differently, like communicating with other people. Instant messaging ser-
vices, e.g. WhatsApp and Telegram, have replaced other means of communication like SMS
and shopping can easily be done online with the products arriving as fast as the same day
in some places. Corporations are able to manage huge infrastructures and amounts of data
much easier with than without the internet. While the whole connectivity has its advantages,
it becomes more and more evident, that there are people and governments who want to con-
trol as much of the internet as possible. Governments might block communication within a
country to make it harder for people to organize.

In such a case alternative networks like opportunistic networks, might be the key to keep
communication up. In opportunistic networks no centralized infrastructure exists, in which
communication could be blocked easily. Instead, devices capable of wireless communication
with other devices, for example via WLAN or bluetooth, establish connections to each other
as soon as they are within each others communication range. In order to be able to find routes
for packets to the proper receivers, routing algorithms have to be developed. One large group
of routing protocols for this purpose are probabilistic routing protocols, which depend on
probabilities which are calculated opportunistically when two hosts meet. One of those is
the Probabilistic Routing Protocol using History of Encounters and Transitivity, also called
by its acronym PRoPHET ([LDDG12]). PRoPHET, as its name suggests, uses a history of

1

Chapter 1 Introduction

encounters and transitivity to calculate probabilities to meet certain hosts. As [GDLD11]
shows, it performs quite well.

However, depending on the situation it can require a long time until packets reach an area
which enough other hosts frequent, so the probability is higher to find a host which will
move into the direction of the packet receiver. It might be worthwhile to route a packet to a
frequently visited location first, instead of directly routing it to another host. For example,
one could wrap a usual PRoPHET packet into another packet, which is targeted at such a
location, e.g. train stations, city centers or tourist attractions. As soon as this packet reaches
its destination, it unwraps and continues as a packet to the receiving host.

In this thesis I focus on designing a location-oriented extension for PRoPHET, which just
as the original uses probabilities to reach a certain destination. I implement this design in
PeerfactSim.KOM ([Gra11]), a network simulator focusing on peer-to-peer and ad hoc net-
works.

1.2 Related Work

Globase.KOM ([KLS+07]) is a peer-to-peer overlay which aims at providing an efficient
way of location-based searching in large-scale peer-to-peer networks. It structures peers in a
tree structure in which super peers have control over larger areas and are connected to other
super peers. The overlay provides operations to search for all peers in a defined location, for
a peer in a specific location or for the geographically closest peer. Those peers can respond
with any information it wishes to, like the services it offers or an object it represents (e.g.
restaurants, universities, etc.).

1.3 Outline

In Chapter 2 the fundamentals of PRoPHET and the location-oriented extension are ex-
plained. The implementation is described in Chapter 3 and the simulation and its result
are shown in Chapter 4. Finally the thesis is summarized and concluded in Chapter 5 with
some examples of how the work of this thesis can be followed up on.

2

Chapter 2

Fundamentals

In this chapter the fundamentals of this thesis will be explained. In Section 2.1 the used
simulator will be introduced. Section 2.2 shortly explains the characteristics of opportunistic
networks, which is the type of network simulated later. In Section 2.3 I will describe the
central parts of PRoPHET, the routing protocol onto which the location-oriented parts will
be built as described in Section 2.4.

2.1 PeerfactSim.KOM

PeerfactSim.KOM (hereafter called Peerfact) is a network simulator written in Java. It was
originally written to simulate peer-to-peer networks, but has been enhanced to also be able
to simulate ad hoc networks with or without opportunistic encounters. Peerfact was first
developed at the TU Darmstadt and later extended by the University of Paderborn and the
Heinrich-Heine-University in Düsseldorf. It is a good fit for this thesis, because it is struc-
tured modularly and thus it is easy to add new routing algorithms beside the existing ones.
Peerfact uses XML configuration files to define simulation scenarios, which will be further
elaborated on in Chapter 4.

3

Chapter 2 Fundamentals

2.2 Opportunistic Networks

Opportunistic networks are a type of network, in which nodes only sporadically connect to
each other because of their mobility property. Because connections are intermittent and huge
delays often occur, oppotunistic networks are also a form of a delay-tolerant network. These
encounters can generally not be foreseen and so each node has to opportunistically decide
which of its contemporary neighbors are best suited to forward the packets it is holding.
Traditional routing protocols rely on a network topology which rarely changes and generally
expect end-to-end paths to exist between any two nodes. In opportunistic networks they
are not useful, because end-to-end paths generally do not exist and the topology changes
frequently, which is why newer routing protocols have been developed in recent years to
tackle this challenge. One of these protocols is the Probabilistic Routing Protocol using
History of Encounters and Transitivity (PRoPHET). Its general workings are explained in
Section 2.3. As for routing in opportunistic networks in general, refer to [PPC06].

2.3 PRoPHET

PRoPHET is a routing protocol used in delay-tolerant networks. It does not rely on a fixed
topology of the network, but instead uses probabilities (called delivery predictability or sim-
ply predictability) to determine whether to send a packet to a connected host. These delivery
predictabilities are based on the history of encounters of this host, but also transitively on the
encounters the connected host had.

Throughout this section I will explain everything from the perspective of a host called A. The
host it is currently communicating with will be called B and when refering to a third host,
which is not close to the other two, it will be called C.

2.3.1 Encountering Hosts

When two hosts come into vicinity of each other, so that a connection can be established, the
first part of data exchange begins. If it is the first time A meets B, a defined predictability,

4

2.3 PRoPHET

Pencounterfirst , will be assigned to the encounter entry for B. If an entry, and thus a predictability,
for B already exists, the new predictability is calculated according to Equation (2.1).

P(A,B) = P(A,B)old +(1−δ −P(A,B)old) ·Pencounter(intvl) (2.1)

Here, δ is a very small number, e.g. 0.01, which sets an upper limit to the predictability
value. This is only needed, because a value of 1.0 is reserved for P(X ,X) for any host X.
Pencounter is a function defined and explained below.

Pencounter(intvl) =

Pencountermax · (intvl/Ityp) for 0≤ intvl≤ Ityp

Pencountermax for intvl > Ityp

Hosts A and B might technically encounter each other multiple times, when we would not
actually count it as multiple encounters. For example, the connection could be interrupted
and reestablished several times in a short period of time. To prevent this from causing un-
representative predictability values, Pencounter is applied. This function uses Ityp, which is the
pre-defined amount of time two encounters should be apart to be counted as two separate
encounters. When A encounters B a second time before this amount of time has passed, the
function takes care of applying only a fraction of the change to the predictability value, so
that multiple encounters within this time should roughly have the same effect on the pre-
dictability as have two encounters Ityp apart. Pencountermax determines the rate at which the
predictability value increases for each distinct encounter.

The delivery predictabilities cannot always just increase. If host A does not meet host B
for a longer time, the probability to meet it has to decrease somehow. For this purpose the
predictability values will be aged regularly according to Equation (2.2).

P(A,B) = P(A,B)old · γ
K (2.2)

This equation uses an aging constant γ and the number of time units passed since the last
aging update, K. This function is called everytime another host is met.

5

Chapter 2 Fundamentals

Finally, the transitivity has to be taken care of. Host A receives all of B’s encounters and
recalculates its predictability values for each host C, B has encountered. For this, equation
Equation (2.3) is used.

P(A,C) = max(P(A,C)old,P(A,B) ·P(B,C) ·β) (2.3)

If P(A,C)old does not exist, 0.0 is assumed. β is a scaling constant which affects the impact
of transitivity on the predictability value.

After all this is done, the exchange of packets can begin.

2.3.2 Routing

Everytime an encounter takes place and the initial exchange of encounter data has been fin-
ished, the two hosts have to determine which of their packets should be sent to the other
host. As can be seen in Listing 2.1, the Time To Live (TTL) is checked first. If the packet
has reached the maximum number of hops, it will be dropped. Next, the predictability of all
neighbors for every packet is queried and compared to the own predictability. If the neigh-
bor’s predictability is higher than the own, the packet is sent, unless the neighbor is already
in the hop list and thus already has this packet.

1 if not TTL reached:

2 for each connected neighbor:

3 if neighbor did not see the packet yet:

4 if neighbor predictability > own predictability:

5 sendPacket()

6 else:

7 dropPacket()

Listing 2.1: Pseudocode of the PRoPHET Routing Algorithm

6

2.4 Location-oriented PRoPHET

2.4 Location-oriented PRoPHET

In order to add location-oriented routing to PRoPHET, some changes have to be made to the
protocol, which will be explained in this section.

2.4.1 Way Points

Each host has to keep track of the locations it has visited. To do this, it saves its position
along with a predictability value in a given interval WPintvl. Everytime a position is about
to be logged, it is first checked whether another way point close enough to the new position
has already been stored. If there is none, a new way point entry is made with an initial
predictability value of PWPfirst . A way point is close enough to another one, if the distance
between their x-values is not greater than WPMinXDistance and the distance of their y-values is
not greater than WPMinYDistance.

Analogous to Equation (2.1), an equation to increase the predictability of a way point is
needed.

P(A,W) = P(A,W)old +(1−P(A,W)old ·PWPmax (2.4)

Equation (2.4) shows how the predictability host A has for a way point W is calculated. In
contrast to the original equation, no δ is needed here, because a value of 1.0 is not reserved for
anything. Also, we do not need a function similar to Pencounter, because way points are already
only saved and updated in a fixed interval WPintvl, which should represent a time for which
it is reasonable to increase the predictability when the location has not been changed.

Before a way point is saved, all stored way points have to be aged. The function used for this
is essentially the same as the aging function described in Equation (2.2) and can be seen in
Equation (2.5). It also uses an aging constant γWP and the amount of time units passed K.

P(A,W) = P(A,W)old · γ
K
WP (2.5)

7

Chapter 2 Fundamentals

Figure 2.1: Angles mapped to the directions

2.4.2 Direction Vectors

Exchanging way points between hosts would raise privacy concerns, because every host
would know exactly which locations any encountered host visits. By looking at the pre-
dictability value, one would also know if a location is visited regularly or infrequently. For
this reason way points are converted to direction vectors before sending them to the con-
nected neighbors. This way only the directions a host supports for routing can be seen, but
not the distance, hence not the exact locations visited.

Direction vectors consist of a point of origin, which is simply the location the encounter took
place at, an angle representing the direction and again, a predictability value. The angle is
a value in the half-open interval [0,2π). As shown in Figure 2.1, 0 corresponds to east, 1

2π

corresponds to north, π corresponds to west and 3
2π corresponds to south. To calculate this

angle, the function atan2 ([Gli11], [ata]), a variation of arctangent and present in many
programming languages, can be used. It calculates the angle between the (shifted) x-axis and
a given vector, with a positive result for the upper half-plane (above and on our x-axis) and a
negative result for the lower half-plane (below our x-axis). Since this is not exactly how the
angle is needed, 2π has to be added to a negative result as shown in Equation (2.6).

8

2.4 Location-oriented PRoPHET

α =

arctan2(∆y,∆x) if arctan2(∆y,∆x)≥ 0

arctan2(∆y,∆x)+2π else
(2.6)

When A receives a direction vector from B, then A multiplies the vector’s predictability value
by the predictability it has for B as can be seen in Equation (2.7).

P(A,D) = P(A,B) ·PD (2.7)

If a direction vector with exactly the same origin and angle already exists, it’s predictability
will simply be overwritten, if the new value is higher than the stored one.

Direction vectors also have to age. An equation similar to Equation (2.2) is used, as illustrated
in Equation (2.8). Like before, γDV is an aging constant and K is the amount of time units
passed.

P(A,D) = P(A,D)old · γ
K
DV (2.8)

2.4.3 Encountering hosts

Just like the standard PRoPHET implementation, the location-oriented adaption has to take
care of some data exchange before the actual exchange of packets takes place. First, the same
procedure as described in Section 2.3.1 is executed. The next step is to age all stored direc-
tion vectors according to Equation (2.8). After that, the connected hosts exchange direction
vectors and save them with the predictability calculated as stated in Equation (2.7).

2.4.4 Routing

After the initial transfer of data, the algorithm in Listing 2.2 is executed for every packet. The
general workings are the same as in Listing 2.1, but the predictability is based on the location
the packet is targeted at. Hosts scan their own way points and stored direction vectors to

9

Chapter 2 Fundamentals

return the best predictability value they can find. If it is higher than the best predictability
value the host with the packet has, then it is transfered.

1 if not TTL reached:

2 if packet is location-targeted:

3 for each connected neighbor:

4 if neighbor did not see the packet yet:

5 if neighbor location predictability > own location

↪→ predictability:

6 sendPacket()

7 else:

8 let standard PRoPHET take care of this packet

9 else:

10 dropPacket()

Listing 2.2: Pseudocode of the location-oriented PRoPHET Routing Algorithm

10

Chapter 3

Implementation

After covering the fundamentals in Chapter 2, in this chapter I will describe the implemen-
tation within the simulator Peerfact. First, I will go into the challenges I have faced during
implementation in Section 3.1. Then, I will outline the workings of the implemented classes
in Sections 3.2 to 3.7 and the database model in Section 3.4.

3.1 Challenges

3.1.1 PRoPHET+

The implementation of PRoPHET+, as described in [HLC10], which had already been done
in Peerfact, was not adequate to build location-oriented routing upon. While it provided
some of the basic equations and mechanisms (i.e. encounters) needed, it lacked the tran-
sitivity aspect of PRoPHET. Furthermore it depended on several more parameters when
deciding whether to forward a packet. While that is not bad per se, those would be additional
factors which might interfere with the simulation and its results. Therefore I decided to im-
plement a standard version of PRoPHET according to Section 2.3 instead of building onto
PRoPHET+.

11

Chapter 3 Implementation

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

y
[m

]

x [m]

Figure 3.1: Example of Host Movement

3.1.2 Movement Model

Peerfact uses movement models, which implement an interface by which the next movement
points can be retrieved. First, I used the random movement model while writing and testing
the rest of the implementation. But for the simulation I wanted something less random, be-
cause PRoPHET relies on the non-randomness of node movement. I tried to use other already
implemented movement models, which seemed like they would suffice (i.e. line movement,
rectangle movement), but none of them worked. Finally I decided to implement my own
movement model, in which for each host a fixed number of random points is chosen at the
start of the simulaton. Hosts can only move directly between these points. Everytime a point
is reached, a new point is randomly chosen. Now hosts do not move through the whole map,
eventually reaching the packet’s target location on their own, but instead rely on meeting
other hosts. Two examples of host movement can be seen in Figures 3.1 and 3.2.

3.2 The LocationRoutingPacket

A packet routed by a location-oriented routing algorithm has to store information about the
area, to which it has to be forwarded. The existing RoutingPacket already provides basic

12

3.3 Configuration Classes

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

y
[m

]

x [m]

Figure 3.2: Another Example of Host Movement

features such as a hop counter, TTL and some more features not used in this thesis. The
LocationRoutingPacket extends the RoutingPacket and adds coordinates and a radius to its
information. Furthermore it adds a list of locations, so one can track the path of each packet.
Everytime the simulator calculates a new location for a host, it adds it to all LocationRout-
ingPackets this host holds. An example of the movement of a packet and its target area can
be seen in Figure 3.3.

3.3 Configuration Classes

Both, standard PRoPHET and location-oriented PRoPHET rely on a configuration class to
feed them with the values of variables and exact working of the methods described in Sec-
tions 2.3 and 2.4. ProphetConfig stores the information relevant to standard PRoPHET, while
LocationProphetConfig extends that class and adds information relevant to the location-
oriented PRoPHET. By using these classes, or more precise instances of them, it is easy
to pass objects with host specific configurations to other parts of the implementation, which
need to access it.

13

Chapter 3 Implementation

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

y
[m

]

x [m]

Figure 3.3: Example of Packet Movement and its Target Location

3.4 Database

To store all the information every node aquires over time, I have chosen to use an in-memory
SQLite database. The reasoning behind this is, that it works reliable and fast even with
large amounts of data. To minimize the overhead, only one database exists for all nodes, as
opposed to one database per node.

3.4.1 Entity-Relationship Model

As can be seen in Figure 3.4, the database consists of the three following tables: en-

counters, way_points and direction_vectors. All three save their respective
predictability value in predictability and a time stamp of the last time the predictabil-
ity value has been aged in lastUpdate. They also all use id as primary key for easy
reference to the entries.
In addition to that, encounters stores the owner of the entry in host1, the encountered
host in host2 and a time stamp of the last time the two have encountered each other in
lastEncounter. There can only be one entry for each (host1, host2) combination.
way_points stores the owner of the entry in host and its coordinates in x and y. There
can only be one entry for each combination of host, x and y.

14

3.4 Database

Figure 3.4: Entity-Relationship Model of the Database

direction_vectors stores its point of origin in x and y, its direction as an angle in
angle. It also stores encounter_id as a foreign key to the encounter’s primary key,
and thus each entry belongs to one encounter. There can only be one entry for each combi-
nation of (x, y, angle, encounter_id).

3.4.2 Class Interface

1 // Standard PRoPHET

2 void addOrUpdateEncounter(ProphetConfig pConfig, NetID

↪→ encounteringHost, NetID encounteredHost, long currentTime);

3 void ageAllPredictabilities(ProphetConfig pConfig, NetID host, long

↪→ currentTime);

4 void addEncountersTransitively(ProphetConfig pConfig, NetID

↪→ encounteringHost, NetID encounteredHost, List<Encounter>

↪→ encounterList, long currentTime);

5 double getPredictability(NetID encounteringHost, NetID encounteredHost

↪→);

6 List<Encounter> getAllEncounters(NetID host);

7
8 // Location-oriented PRoPHET

9 void addOrUpdateWayPoint(LocationProphetConfig pConfig, NetID host,

↪→ long x, long y, long currentTime);

15

Chapter 3 Implementation

10 List<WayPoint> getAllWayPoints(NetID host);

11 void ageAllWayPoints(LocationProphetConfig pConfig, NetID host, long

↪→ currentTime);

12 List<DirectionVector> getDirectionVectorsFromWayPoints(NetID host,

↪→ long originX, long originY);

13 void addDirectionVectors(LocationProphetConfig pConfig, NetID

↪→ encounteringHost, NetID encounteredHost, List<DirectionVector>

↪→ dvList, long currentTime);

14 List<DirectionVector> getAllDirectionVectors(NetID host);

15 void ageAllDirectionVectors(LocationProphetConfig pConfig, NetID host,

↪→ long currentTime);

3.5 Helper Classes

Because all hosts use one big database, it would make sense to let each of them access the
other hosts’ information instead of letting them actually transfer any of it. But I want to por-
tray interactions between hosts as realistically as possible, so some helper classes are needed
to transfer information about the encounters a host had, its way points and its stored direction
vectors. These are Encounter, WayPoint and DirectionVector respectively.

3.6 Routing Algorithm Classes

The actual routing algorithm classes are the core of this implementation. They provide meth-
ods to process encounters and route packages to other hosts. StandardProphetRouting con-
cerns itself with delivery predictabilities of encountered hosts and routing of packets targeted
at hosts instead of locations. LocationProphetRouting is an extension to the aforementioned
class and adds algorithms to take care of way points and direction vectors. Obviously, this
class is also responsible to route packets targeted at locations.

16

3.7 Application

3.7 Application

The last part of the implementation is a small application, which generates LocationRouting-
Packets and lets hosts route them. It chooses random locations which serve as the target area
the packets have to be routed to. The radius of the circular area can be defined in the scenario
configuration file (see Section 4.1) by setting a lower and an upper limit. Between those, the
radius is also randomly chosen. Because of the structure of the simulator the packets cannot
be empty, so I have created a dummy UDP datagram, which is used for all created routing
packets.

17

Chapter 4

Simulation and Results

In this chapter the implementation described in Chapter 3 will be used to simulate several
scenarios. First, the way Peerfact scenarios are set up will be explained in Section 4.1. Then,
the configuration of the nodes which implement location-oriented PRoPHET will be shown
and explained in Section 4.2. After that, I will describe the different scenarios in Section 4.3
and present their results in Section 4.4 in regard to the metrics hop count, which is the number
of nodes which carried the packet at the time it reached its destination, the arrival ratio,
which is the percentage of total initial packets which arrived at its destination and the time

until arrival, which is the time difference between when a packet was first created and the
time it reached its destination.

4.1 Configuration file

Peerfact allows to define scenarios in XML files. Here, the behaviour of the different net-
working layers can be adjusted to one’s needs. An example of a configuration file can be
seen in Listing 4.1. In lines 2 to 12 some variables are defined, which can be used throughout
the file. Lines 14 to 16 set up the simulator with a seed and the length of the simulation.
The routing algorithm and algorithms for insertion of packets into the buffer and dropping
packets are defined in lines 18 to 22. The application, as explained in Section 3.7, is set up
with the radius the packet’s target area should have in lines 24 to 26. The GeoLayer, which
takes care of generating the world and placing and moving hosts, is configured in lines 28 to
33. Specifically, in line 32 the movement model described in Section 3.1.2 is set. In lines

19

Chapter 4 Simulation and Results

35 to 40 the HostBuilder is constructed, which distributes nodes into groups, so different
actions can be defined for each of them. Those actions are defined in another file, which is
loaded by the Scenario class, configured in lines 42 to 44.

1 <Configuration>

2 <Default>

3 <Variable name="seed" value="0" />

4 <Variable name="finishTime" value="300m" />

5 <Variable name="actions" value="LocationProphetScripts/

↪→ locationProphet.dat" />

6 <Variable name="world_X" value="1000" />

7 <Variable name="world_Y" value="1000" />

8 <Variable name="size" value ="100" />

9 <Variable name="sizeSenders" value="50" />

10 <Variable name="sizeOthers" value="50" />

11 <Variable name="targetRadius" value="20" />

12 </Default>

13
14 <SimulatorCore class="org.peerfact.impl.simengine.Simulator"

15 static="getInstance" seed="$seed" finishAt="$finishTime">

16 </SimulatorCore>

17
18 <RoutingLayer class="org.peerfact.impl.routing.RoutingFactory" >

19 <BufferInsertAlghorithm class="org.peerfact.impl.routing.

↪→ bufferPolicies.FiFo" />

20 <DroppingAlghorithm class="org.peerfact.impl.routing.

↪→ droppingpolicies.TimeToLive"/>

21 <AbstractRoutingAlgorithm class="org.peerfact.impl.routing.

↪→ algorithm.LocationProphetRouting" />

22 </RoutingLayer>

23
24 <Overlay class="org.peerfact.impl.application.

↪→ locationpacketgenerator.LocationPacketGeneratorFactory"

25 radius="$targetRadius">

26 </Overlay>

27
28 <GeoLayer class="org.peerfact.impl.geo.modular.factory.

↪→ DefaultGeoFactory">

29 <World class="org.peerfact.impl.geo.modular.world.DefaultWorld"

30 worldX = "$world_X" worldY ="$world_Y"/>

31 <PlacementModel class="org.peerfact.impl.geo.modular.placement.

↪→ RandomPlacement"/>

32 <MovementModel class="org.peerfact.impl.geo.modular.movement.

20

4.2 PRoPHET configuration

↪→ FixedPointMovement"/>

33 </GeoLayer>

34
35 <HostBuilder class="org.peerfact.impl.scenario.DefaultHostBuilder"

36 experimentSize="$size">

37
38 <Group groupID="Senders" size="$sizeSenders" />

39 <Group groupID="Others" size="$sizeOthers" />

40 </HostBuilder>

41
42 <Scenario class="org.peerfact.impl.scenario.CSVScenarioFactory"

43 actionsFile="$actions"

44 componentClass="org.peerfact.impl.application.

↪→ locationpacketgenerator.LocationPacketGenerator" />

45 </Configuration>

Listing 4.1: XML Configuration File Example

4.2 PRoPHET configuration

PRoPHET’s configuration must be adjusted according to the situation it is used in. While the
request for comments in which PRoPHET is defined suggests some initial default values for
its parameters, some had to be slightly modified so that predictabilities do not reach extreme
values. The relative differences are what matter here, and they cannot be taken advantage of
if it is easy for the delivery predictabilities to reach 0.99 or 1.0 for encounter predictabilities
and way point predictabilities respectively.

In Table 4.1 the used configuration for the nodes in this simulation is shown. The first part of
the table consist of the variables used by the standard PRoPHET implementation, while the
second part is used by the location-oriented part. The variables in the first part which differ
from the suggested default values are Pencountermax (default 0.7) and γ (0.999). As for the sec-
ond part of the variables, I have used default variables for similar variables and adjusted them
from there. As for Ityp, I have run some of the scenarios and calculated the average of the time
passed between two encounters of any two hosts. The calculated value is 5468793497 µs,
which is about 91.14655 min in the simulator. For the application of the settings, refer to
Chapter 2.

21

Chapter 4 Simulation and Results

Setting Value
Pencountermax 0.75
Pencounterfirst 0.5
PfirstThreshold 0.1
β 0.9
γ 0.99
δ 0.01
Ityp ca. 91 min
PWPmax 0.7
PWPfirst 0.5
PWPfirstThreshold 0.1
γWP 0.99
WPintvl 15 min
WPMinXDistance 10
WPMinYDistance 10
PDVthreshold 0.01
γDV 0.9

Table 4.1: Settings of PRoPHET

4.3 Scenarios

In this section I will describe the different simulated scenarios. Some basic configuration is
common to all scenarios. The simulated time for all scenarios is 300 min and will take place
in a world with the dimensions of 1000 m times 1000 m. These settings can be seen in line 4
and lines 6 to 7 of Listing 4.1 respectively.

The scenarios differ in the number of nodes, number of created packets and the radii of the
target locations of the packets. As shown in Table 4.2, I have defined 12 scenarios. In the
first four scenarios, A1 to A4, 100 nodes participate, sending out 50 packets at minute 20.
The radius of the packets is 20, 40, 60 and 80 meters respectively. The next four scenarios,
B1 to B4, define 300 participating nodes with 150 created packets. The time when they are
created and the radii are the same as in the A scenarios. Lastly, C1 to C4 use the same node
and packet count as the B scenarios, as well as the same radii. The packets are created much
later here, so that the nodes have more time to learn about their way points and meet other
nodes.

Each scenario has been run multiple times with different seeds and their results have been

22

4.4 Results

Scenario Nodes Packets Send time Radius
A1 100 50 20 min 20
A2 100 50 20 min 40
A3 100 50 20 min 60
A4 100 50 20 min 80
B1 300 150 20 min 20
B2 300 150 20 min 40
B3 300 150 20 min 60
B4 300 150 20 min 80
C1 300 150 120 min 20
C2 300 150 120 min 40
C3 300 150 120 min 60
C4 300 150 120 min 80

Table 4.2: Scenario configurations

combined into averages, to ensure representative results and not only those of a possible
outlier. Scenarios A1 to A4 have been run 20 times, while scenarios B1 to B4 and C1 to C4
have been run 10 times each.

4.4 Results

In this section the results of the simulations described in Section 4.3 are presented.

4.4.1 Hop Count

The results of the simulation regarding the hop count can be seen in Figure 4.1. We can see,
that the average hop count of the scenarios with less nodes is significantly lower than in those
with more nodes. Because packets do not have a lot of possible paths to their target location,
they tend to stick with their hosts longer until a better host is found. In the second and third
group of scenarios a downward tendency of the average hop count with increasing radii of
the target locations becomes evident, which cannot be said about the A scenarios. While the
average hop count here only drops from 4.93 to 4.25, it drops from 10.85 to 8.36 in the B
scenarios and from 8.01 to 6.48 in the C scenarios. The average hop count in the C group

23

Chapter 4 Simulation and Results

A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4

2

4

6

8

10

12

14

16
ho

p
co

un
t

Figure 4.1: Hop Count

is generally lower than in the B group, because nodes have more time to learn about their
environment and other nodes before having to deal with routing packets.

4.4.2 Arrival Ratio

The averages of the arrival ratio can be seen in Figure 4.2. With an increasing radius of
the target location, the arrival ratio also considerably increases. While only about 11 % of
packets arrive in the scenarios with the smallest radius, up to 44 % of packets reach their
destination in the scenarios with the largest radius. Nodes have a much higher chance to go
through a larger area, so more nodes are actually able to deliver a packet to its destination.
The graphs of the different scenario groups are very similar, with slightly lower numbers in
the B and C group. In all cases the average arrival ratio does not cross the 50 % mark.

24

4.4 Results

A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4

0.1

0.2

0.3

0.4

0.5

0.6

ar
riv

al
 ra

tio

Figure 4.2: Arrival Ratio

A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4
25

50

75

100

125

150

175

200

tim
e

un
til

 a
rri

va
l

Figure 4.3: Time Until Arrival

25

Chapter 4 Simulation and Results

4.4.3 Time Until Arrival

As can be seen in Figure 4.3, the radius of the target location does not seem to influence the
average time until a packet arrives at its destination. Within each scenario group, the averages
are always similar. The standard deviation is large in all cases, especially in the A and B
groups. The reasoning behind this is, that there are always cases in which packets begin close
to their destination or need only a few quickly found hops and cases in which the opposite is
true. In the C group, packets need significantly less time to reach their destinations, because
the nodes in this group have a lot more time to get accustomed to their surroundings and
know much better if they are eligible to deliver a packet to its destination. While the packets
in the A and B scenarios need about 125 minutes, those in the C scenarios only need about
85 minutes.

26

Chapter 5

Conclusion

The goal of this thesis was to extend the original PRoPHET protocol in such a way, that
routing of packets is not only possible from one node to another, but instead packets can
also be routed to a geographical location. For this purpose the location-oriented PRoPHET
approach has been designed with way points and direction vectors, which much like the
encounters of the original PRoPHET store a probabilistic value. On those values’ basis it is
decided opportunistically, whether encountered hosts are qualified to deliver packets to their
destinations. The location-oriented implementation in Peerfact works hand in hand with the
standard implementation, by letting it manage the encounters itself.

The implementation has been used to simulate several scenarios with different node counts,
packet counts, radii of the target locations of packets and times at which the packets are cre-
ated. The results of the hop count and time until arrival metrics show, that PRoPHET works
at its best, when nodes had enough time to accumulate data about other nodes and in this
case about their own way points and the direction vectors others send to them. This was to be
expected, since the history of encounters and transitivity are what makes PRoPHET efficient
and that carries over to the history of way points and exchanged direction vectors, which
provide transitivity. The arrival ratio is generally very low, which can probably be attributed
to the part of the implementation, where the location of the packet is added. Here, only a few
points along the line of the host movement are calculated, with gaps inbetween. When hosts
move through the target location of a packet they are carrying, but it is completely in such a
gap, the packet is not considered to have reached the destination. This can for example be
remedied by checking for an intersection between the line spanned over two movement points
and the target location. Perhaps the location checking can also be implemented elsewhere in

27

Chapter 5 Conclusion

Peerfact. Unfortunately, there was not enough time to correct this and let the simulations run
through again.

Nonetheless, this thesis shows that a location-oriented approach to PRoPHET works and can
be used as a basis for further development in the direction of location-oriented routing in
opportunistic networks.

5.1 Future Work

The implementation in this thesis can still be improved. First of all, the aforementioned prob-
lem with checking whether a packet has arrived at its target location should be remedied.

Further, the cartesian coordinate system has been used, which would not be well applicable
in the real world. Instead, it should be considered to use a geographic coordinate system with
latitudes and longitudes, like the WGS841, which is the reference coordinate system of the
Global Positioning System (GPS).

As the area this location-oriented approach is used in becomes larger, it might be worth
considering clustering larger areas together, so that direction vectors can be used on a larger
scale if needed.

Another feature for the target locations of packets might be a second radius, greater than the
first one. Inbetween those two circles, a distance factor could be used to let the predictability
of direction vectors decline, depending on its distance to the inner circle.

Momentarily, packets which reached their target location do not behave different than if they
did not yet reach their destination. It might be useful to implement another kind of TTL,
which is time-based instead of hop-based and defines the time it should remain in the target
area.

1World Geodetic System, 1984

28

Bibliography

[ata] Math (Java Platform SE 8). http://docs.oracle.com/javase/8/

docs/api/java/lang/Math.html#atan2-double-double-.

[GDLD11] GRASIC, Samo; DAVIES, Elwyn; LINDGREN, Anders; DORIA, Avri: The evo-
lution of a DTN routing protocol-PRoPHETv2. In: Proceedings of the 6th ACM

workshop on Challenged networks ACM, 2011, S. 27–30.

[Gli11] GLISSON, T.H.: Introduction to Circuit Analysis and Design. Springer
Netherlands, 2011. 348 S. https://books.google.de/books?id=

7nNjaH9B0_0C. ISBN 9789048194438

[Gra11] GRAFFI, Kalman: PeerfactSim. KOM: A P2P system simulator—Experiences
and lessons learned. In: Peer-to-Peer Computing (P2P), 2011 IEEE Interna-

tional Conference on IEEE, 2011, S. 154–155.

[HLC10] HUANG, Ting-Kai; LEE, Chia-Keng; CHEN, Ling-Jyh: Prophet+: An adap-
tive prophet-based routing protocol for opportunistic network. In: Advanced In-

formation Networking and Applications (AINA), 2010 24th IEEE International

Conference on IEEE, 2010, S. 112–119.

[KLS+07] KOVA, Aleksandra; LIEBAU, Nicolas; STEINMETZ, Ralf u. a.: Globase. kom-a
p2p overlay for fully retrievable location-based search. In: Peer-to-Peer Com-

puting, 2007. P2P 2007. Seventh IEEE International Conference on IEEE, 2007,
S. 87–96.

[LDDG12] LINDGREN, A.; DORIA, A.; DAVIES, E.; GRASIC, S.: Probabilistic Rout-

ing Protocol for Intermittently Connected Networks. http://tools.ietf.
org/rfc/rfc6693.txt. Version: August 2012. RFC6693

29

http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#atan2-double-double-
http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#atan2-double-double-
https://books.google.de/books?id=7nNjaH9B0_0C
https://books.google.de/books?id=7nNjaH9B0_0C
http://tools.ietf.org/rfc/rfc6693.txt
http://tools.ietf.org/rfc/rfc6693.txt

Bibliography

[PPC06] PELUSI, Luciana; PASSARELLA, Andrea; CONTI, Marco: Opportunistic net-
working: data forwarding in disconnected mobile ad hoc networks. In: IEEE

communications Magazine 44 (2006), Nr. 11.

30

Ehrenwörtliche Erklärung

Hiermit versichere ich, die vorliegende Bachelor Thesis selbstständig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel benutzt zu haben. Alle Stellen, die aus
den Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit
hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Düsseldorf, 03.August 2017 Timo Lux

31

Hier die Hülle

mit der CD/DVD einkleben

Diese CD enthält:

• eine pdf -Version der vorliegenden Bachelor Thesis

• die LATEX- und Grafik-Quelldateien der vorliegenden Bachelor Thesis samt aller ver-
wendeten Skripte

• [anpassen] die Quelldateien der im Rahmen der Bachelor Thesis erstellten Software
XYZ

• [anpassen] den zur Auswertung verwendeten Datensatz

• die Websites der verwendeten Internetquellen

	Title Page
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Outline

	2 Fundamentals
	2.1 PeerfactSim.KOM
	2.2 Opportunistic Networks
	2.3 PRoPHET
	2.3.1 Encountering Hosts
	2.3.2 Routing

	2.4 Location-oriented PRoPHET
	2.4.1 Way Points
	2.4.2 Direction Vectors
	2.4.3 Encountering hosts
	2.4.4 Routing

	3 Implementation
	3.1 Challenges
	3.1.1 PRoPHET+
	3.1.2 Movement Model

	3.2 The LocationRoutingPacket
	3.3 Configuration Classes
	3.4 Database
	3.4.1 Entity-Relationship Model
	3.4.2 Class Interface

	3.5 Helper Classes
	3.6 Routing Algorithm Classes
	3.7 Application

	4 Simulation and Results
	4.1 Configuration file
	4.2 PRoPHET configuration
	4.3 Scenarios
	4.4 Results
	4.4.1 Hop Count
	4.4.2 Arrival Ratio
	4.4.3 Time Until Arrival

	5 Conclusion
	5.1 Future Work

	Bibliography

