
Data Aggregation and Roadside Unit Placement for a
VANET Traffic Information System

Christian Lochert? Björn Scheuermann? Christian Wewetzer�

Andreas Luebke� Martin Mauve?

?Computer Networks Research Group
Heinrich Heine University

Düsseldorf, Germany

{lochert,scheuermann,mauve}@cs.uni-duesseldorf.de
�Volkswagen Group
Wolfsburg, Germany

{christian.wewetzer,andreas.luebke}@volkswagen.de

ABSTRACT
In this paper we investigate how a VANET-based traffic informa-
tion system can overcome the two key problems of strictly lim-
ited bandwidth and minimal initial deployment. First, we present
a domain specific aggregation scheme in order to minimize the re-
quired overall bandwidth. Then we propose a genetic algorithm
which is able to identify good positions for static roadside units in
order to cope with the highly partitioned nature of a VANET in an
early deployment stage. A tailored toolchain allows to optimize the
placement with respect to an application-centric objective function,
based on travel time savings. By means of simulation we assess the
performance of the resulting traffic information system and the op-
timization strategy.

Categories and Subject Descriptors
H.4.3 [Information Systems Applications]: Communications Ap-
plications; C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems—distributed applications; C.2.1 [Computer-Com-
munication Networks]: Network Architecture and Design—dis-
tributed networks

General Terms
Algorithms, Design, Performance

Keywords
VANET, Aggregation, Genetic Algorithms, Information Dissemi-
nation

©ACM, 2008. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in
VANET’08, September 15, 2008, San Francisco, California, USA.

1. INTRODUCTION
Dissemination applications based on VANETs face two key chal-

lenges: a limited network capacity shared by all cars and—at least
initially—a highly partitioned network limiting the speed of data
dissemination. In this paper we tackle these problems in the context
of a cooperative traffic information system, where all participating
cars gather data on the current traffic situation. This information
is then distributed so that other cars may use it for improved route
planning.

It is obviously not possible to distribute all data to all cars. This
would quickly exceed the available bandwidth. Instead, we pro-
pose to aggregate it in a hierarchical fashion: the farther away a
region is, the coarser will be the information on its traffic situation.
The general idea of hierarchical aggregation is not new. However,
existing hierarchical aggregation schemes focus on combining data
from geographical regions, with aggregates representing averages
or extremal values within these regions. This may be fine for ag-
gregating information like the availability of parking places. It is
useful to have an aggregate describing the total number of avail-
able parking places within some region. For a traffic information
system, however, it is not sufficient to know geographical averages
or extremal values. We therefore propose a hierarchical aggrega-
tion scheme for travel times in road networks. Essentially, we use
coarser and coarser approximations of the road network to summa-
rize travel times in regions that are farther and farther away.

The aggregation scheme allows to deal with network capacity
limits by summarizing the collected data. But VANETs also suffer
from very limited connectivity and from limited information prop-
agation speed, especially during early rollout. It has been discussed
in prior work to improve information dissemination by adding com-
paratively inexpensive infrastructure at some locations in a city.
These supporting units (SUs) exchange information with cars pass-
ing by and, using a backbone network, with each other, thereby
delivering information rapidly to more distant regions. However,
while it has been shown that even a very limited number of SUs
can largely improve the dissemination process, it is not yet clear
where they should be located. Therefore, as the second major con-
tribution in this paper, we present an optimization methodology to
find a good placement for SUs in the context of a VANET-based
traffic information system. The presented approach makes use of a

genetic algorithm to maximize the travel time savings of cars in a
city environment.

The remainder of this paper is structured as follows. In Section 2
we review related work. Following that, we introduce in Section 3
our scheme for aggregating travel time information in city envi-
ronments. In Section 4 we show how a combination of good SU
locations for a traffic information system on the basis of this ag-
gregation scheme can be found. We present and discuss the results
of a simulative evaluation in a VANET city scenario in Section 5.
Finally, we conclude this paper with a summary in Section 6.

2. RELATED WORK
Many of the recently proposed VANET travel comfort or traf-

fic flow applications rely on some form of data dissemination and
aggregation. In this section we discuss four applications that stand
exemplary for a specific idea and show how they deal with the prob-
lems related to the work presented here.

In the Self-Organizing Traffic Information System (SOTIS) [12],
information is distributed by sending periodic beacons containing
information on the traffic situation in a larger surrounding. The au-
thors outline a non-hierarchical aggregation scheme. It combines
information from different sources on the same road segment into
one average value. This helps to reduce the transmitted data and
is well-suited for one-dimensional highway scenarios, but it is not
sufficient in complex city scenarios, where many possible routes
exist between two points and the network capacity does not allow
for a distribution of separate data items for each single road seg-
ment in the whole city.

TrafficView [8] is another system for disseminating traffic in-
formation, similar to SOTIS. It also introduces a data aggregation
scheme. TrafficView distributes information on position and speed
of single vehicles. The aggregation mechanism combines a number
of “similar” vehicles in an adaptive way, aiming to minimize the in-
troduced errors. Like SOTIS’ aggregation approach, this does not
overcome the problem of insufficient capacity to provide individual
information on each road segment.

In [2], a VANET application distributing information on free
parking places is presented. Here, too, the information is dissem-
inated by periodic broadcasting. Aggregation is performed hierar-
chically in a quad-tree grid structure over the city area. Such an
area-based aggregation scheme cannot be used to summarize travel
time data in a road network.

A probabilistic algorithm for the hierarchical aggregation of ob-
servations in VANET-based traffic information systems is presented
in [7]. The aggregates are based on sketches, i. e., on probabilistic
approximations instead of exact values. This allows to update and
merge aggregates in a duplicate-insensitive way, thereby improv-
ing the aggregate quality. How an aggregate can be represented
is the central contribution in that work. This is complementary to
the work presented here: in our aggregation scheme, we focus on
what data should be combined into an aggregate, instead of the data
structure carrying the actual value.

The general feasibility of information dissemination in city sce-
narios is analyzed and discussed in [6]. There we propose to use
specialized infrastructure to improve dissemination performance,
called “stationary supporting units”. We demonstrate that a small
number of networked supporting units improves the dissemination
performance dramatically. However, realistic VANET applications
have not been considered in the evaluation, and the placement of
SUs followed simple heuristics. Here, we take up the idea of SUs
and infrastructure supported dissemination techniques, and present
an approach for optimal SU placement in the context of a traffic
information system.

A substantial amount of work has been put into optimizing the
beaconing in dissemination applications. This includes adaptive
beaconing intervals, and the selection of information to be incorpo-
rated into a beacon of limited size. Work in this area can, for exam-
ple, be found in [1, 2, 8, 12]. VANETs also face important security
questions. It has, for instance, been studied how VANETs and ag-
gregated messages in them can be made tamper-proof or resistant
to cheaters [4, 5, 9, 10]. Solving these issues is largely orthogo-
nal to answering the question how and which aggregates should be
formed, so these ideas can often be combined with our approach.

3. AGGREGATION
The basic idea of our aggregation scheme is as follows: we de-

fine landmarks on multiple levels of a hierarchy in the road net-
work. At the highest level these are junctions of the main roads
or highways. Lower levels include all higher level landmarks plus
more and more intersections of smaller streets. The lowest level is
a representation of the full road network. Cars passing a road seg-
ment can make an observation of the current travel time between
two neighboring landmarks. This information is distributed within
the closer surrounding. It is used by cars to calculate travel times
between landmarks of the next higher level, thereby summarizing
the travel times in the area. This coarser picture on the travel times
is distributed in a larger area than the observations of individual
cars. It is also used to calculate the travel times between landmarks
of the next higher level of the hierarchy, and so on.

These aggregation steps are performed by the cars themselves, in
a completely decentralized fashion, whenever information that is a
suitable basis for forming an aggregate becomes locally available.

3.1 Aggregation on a single level
Figure 1 shows an example for a single hierarchy level. The

travel time between the landmarks Eiffel Tower and Arc de Triom-
phe is determined. These two high-level landmarks are connected
via a number of possible routes over landmarks on the next lower
level, here indicated by circles. The travel times between these
lower-level landmarks are known, either from direct observations
or from received or previously calculated lower-level aggregates.
The aggregated travel time from Eiffel Tower to Arc de Triomphe
is the travel time along the minimal travel time route between these
two points. Essentially, this compresses all information on all pos-
sible paths between two landmarks to a “virtual” link between both
landmarks.

50s 35s

125s

20s 50s

70s

70s

55s

45s

25s

40s

Figure 1: Landmark aggregation.

This approach can be stated more formally as follows. The road
network can be seen as a directed graph G(E,V) consisting of junc-
tions v ∈V and street segments e ∈ E ⊆V 2 connecting these junc-
tions. The segments are rated with a weight w(v1,v2) correspond-
ing to the current travel time. Some junctions are distinguished as
landmarks l ∈ L,L⊆V . A route r(A,B) between two landmarks A
and B is a sequence of junctions (v1, . . . ,vn) such that v1 = A,
vn = B and all pairs of consecutive junctions are connected by a
street segment, i. e., for all i = 1, . . . ,n−1 there exists (vi,vi+1)∈E.
The cost of this route is

‖(v1, . . . ,vn)‖ :=
n−1

∑
i=1

w(vi,vi+1).

Let R(A,B) denote the set of all possible routes from A to B. We
can then define the fastest route r∗(A,B) as follows:

r∗(A,B) := argmin
r∈R(A,B)

‖r‖.

‖r∗(A,B)‖ is used as the travel time between landmarks A and
B on the next higher level. I. e., the operation performed when
calculating an aggregate is to determine ‖r∗(A,B)‖ based on lower-
hierarchy travel times. Any standard routing algorithm may be used
in order to calculate ‖r∗(A,B)‖. Note that it is not relevant which
route actually achieves this travel time. While the car is further
away from both landmarks, the relevant information is that it is
possible to travel from A to B within the given time. When it comes
closer to the respective area, it will receive the locally available,
more detailed information. This information can then be used for
routing.

Aggregated travel times should not be calculated for each pair of
landmarks. First, this would result in a number of aggregates that
grows like O(n2) with the number of landmarks. More importantly,
however, travel times aggregates between landmarks that are very
far away from each other do also not contribute much additional in-
formation: there will be many other landmarks “in between”, and
a sequence of aggregates over those is likely to be a good approx-
imation of the travel time between the distant pair of landmarks.
Hence, only such pairs should be considered that are not too far
apart. It is either possible to use a fixed criterion, like a maximum
beeline distance of landmark pairs for which aggregates are formed
on a given hierarchy level, or to mark the landmark pairs explicitly
in the map data, choosing them such that a good approximation of
the underlying road network is maintained. In our evaluation here,
we follow the latter approach.

3.2 Judging the quality of information
Before calculating the aggregated travel time between two land-

marks and passing it on to other cars, a car needs to be able to
judge whether its knowledge about the current traffic situation suf-
fices for a good estimate. From a very general perspective, a very
large number of road segments could lie on a possible route be-
tween two landmarks. It is therefore necessary to determine which
road segments are likely to be relevant for the travel time estimate.
An aggregate may be formed if information on these relevant road
segments is locally available.

In order to define the set of relevant road segments, we look at
what we call the standard travel times along the road segments.
These travel times are hard-coded in the road map data and rep-
resent reasonable expectations of the travel times, as they are cur-
rently used for non-dynamic road navigation systems. One can eas-
ily calculate the optimal standard route r∗std(A,B) from A to B on
the basis of this static data—this is essentially what current nav-

igation systems do. For any route r, it is also easily possible to
calculate the standard travel time ‖r‖std.

We then choose a threshold θ > 1. We define the set R(A,B) of
relevant road segments between two landmarks A and B to encom-
pass all road segments that lie on a route for which the standard
travel time is at most by a factor of θ longer than the optimal stan-
dard travel time. I. e., a road segment e is in R(A,B) if and only
if there exists a route (v1, . . . ,vn) from A to B such that e is part of
that route and

‖(v1, . . . ,vn)‖std ≤ θ · ‖r∗std(A,B)‖std.

Since this criterion is based only on the (static) standard travel
times, the set of relevant road segments does not depend on the
current traffic situation or on a car’s current knowledge. We allow
the calculation of an aggregated travel time from A to B if informa-
tion on the road segments in R(A,B) is available.

3.3 Hierarchical aggregation
In order to perform hierarchical aggregation, landmarks are as-

signed a level in a hierarchy. Landmarks of a higher level are also
members of all lower levels. More formally, for a set of land-
marks Li of an aggregation level i:

Li ⊂ Li−1 ⊆V, i > 1.

To form an aggregate on hierarchy level i, the aggregates of level
i− 1 are used in the very same way as individual observations of
cars are used on the first level. Thus, the landmarks on level i−1 are
used like the junctions in the discussion above, and the aggregated
travel times between them take on the role of the travel times along
individual street segments.

The area in which individual observations and aggregates are
distributed is limited based on their level in the hierarchy. Indi-
vidual observations are distributed in a very limited range whereas
the highest level aggregates are distributed in the whole network.
Figure 2(a) depicts this. The driver of the car located in the south
of the scenario intends to travel towards the north. Three hierar-
chy levels can be seen here. The circles around the car indicate
the regions from which detailed, fine-grained level 0 information,
slightly aggregated level 1 information, and more coarsely aggre-
gated level 2 information is available to this car. As the car travels
towards its destination, these regions shift as shown in Figure 2(b),
as additional information is received.

The destination of a trip will not always be a high-level landmark
position. Nevertheless, the aggregated information can of course
be used for route planning. In order to do so, a navigation system
would “fill up” the missing information between the final desti-
nation and close-by landmarks by using the standard travel times
hardcoded in the map data. This is reasonable, because a final deci-
sion on the last part of the route is not yet required at this stage—it
is sufficient if a good choice for the immediately upcoming routing
decisions can be made. While the car approaches its destination,
the route can be updated and refined as more detailed information
becomes available.

4. PLACEMENT OF SUPPORTING UNITS
During the rollout of car-to-car technology the equipment den-

sity of cars participating in a VANET will be low. This makes
timely information dissemination very difficult. It is the second
key problem that has to be solved for a VANET-based traffic in-
formation system. It has been proposed (e. g. in [6]) to make use
of infrastructure devices—supporting units (SU)—to improve dis-
semination performance. SUs use the same radio technology and

P

(a) Starting point.

P

(b) During the trip.

Figure 2: Hierarchy based navigation.

essentially the same application as equipped vehicles. They are
able to receive observations and aggregates from passing-by cars.
They also send beacons and thereby hand over their knowledge to
cars. The central benefit of SUs, however, is achieved by connect-
ing them via a backbone network, allowing them to exchange in-
formation. This can bring up-to-date knowledge to distant network
regions in very short time.

A very limited number of SUs is sufficient for substantial bene-
fits. But nevertheless SUs incur deployment and maintenance costs.
Hence, the question arises how to achieve good performance with
as few SUs as possible, or—putting it the other way around—at
which positions in the road network of a given city a given num-
ber of SUs should be located in order to achieve high benefit. This
question is closely related to the employed aggregation scheme, be-
cause both in conjunction determine which information will be able
to arrive at which location and which point in time.

In the following we propose a way to position SUs such that their
application level benefit is maximized. To this end we define an ap-
plication level metric for a traffic information system. This metric
reflects the travel time saved by using the application. Then we
show how a genetic algorithm can be used to optimize the place-
ment with respect to this metric.

4.1 Optimizing SU placements
In a city, there are typically many possible positions for SUs.

Given a set of potential SU locations and a number of SUs to be
placed, our approach aims to identify the optimal subset of loca-

tions. For a given SU positioning, it is theoretically conceivable to
run a simulation (using, e. g., an integrated simulation environment
that models both car movement and network traffic) and to measure
the achieved travel time saving. But even with a moderate number
of possible locations and SUs, the number of possible combinations
is overwhelming. If there are 100 potential locations for 10 SUs,
there are 1.73 · 1013 possible placements. With 30 SUs, there are
2.9 ·1025 possibilities. Therefore it is obviously not feasible to as-
sess and compare all placements. Identifying the optimal subset of
SU locations actually turns out to be a very difficult optimization
problem. Here, we use genetic algorithms in order to find a good
approximation.

Basically, genetic algorithms start off with a random set of “in-
dividuals” (SU placements), assess their “fitness” (achieved travel
time savings), and then generate a new “generation” of individu-
als by combining features of the “fittest”. This approach has been
applied to a broad range of problems, and often yields excellent re-
sults. A more detailed description can be found in [11]. Neverthe-
less, the computational effort for assessing SU placements remains
significant. Typically, at least several dozens of generations are
necessary, each with many individuals. For each of these individu-
als the fitness—i. e., the objective function—needs to be calculated.

A fully-fledged simulation would model car movement, the net-
work (i. e., radio propagation, medium access, exchanged beacons
etc.), and the application (i. e., the contents of the beacons) in par-
allel. This is computationally very expensive (with standard traffic
and network simulators at least a few hours of computation time
per individual), and is thus still not possible for all these individ-
uals within reasonable time. Thus, some approximations must be
found, which significantly speed up the simulation, but still capture
the relevant effects in sufficient detail. We propose such a method
to obtain an estimate of travel time savings within a comparatively
short time (typically 1–3 minutes). This is made possible by de-
coupling the application-layer simulation from the lower layers.

4.2 Estimating travel time savings
Dissemination takes place by periodic beaconing by both cars

and SUs. Though other approaches are generally conceivable, in
the majority of schemes and also in the mechanisms employed here,
the transmission of these beacons does not depend on their con-
tents or on the sender’s knowledge. PHY and MAC effects do also
not depend on the data within the packets. The points in time at
which the network nodes transmit and the set of nodes receiving
each transmission do therefore not depend on the transmitted data.
Therefore, we may simulate the network traffic independently from
the application. In practice, we use VISSIM for the simulation of
car movements in a city, and ns-2 for the simulation of periodic
beacons issued by all cars and SUs; other traffic and/or network
simulators could be used without generally affecting the proposed
methodology. This simulation step yields a log file in which all bea-
cons are recorded with their respective receiver set, along with the
car positions. We may then—subsequently—run a separate appli-
cation simulator that reads this log file, keeps track of the knowl-
edge base of all nodes, performs aggregation as specified in the
previous section, decides about the data contained in each of the
beacons, and respectively updates the knowledge bases of all re-
ceivers of the beacon. This does not allow to model the impact of
changing knowledge on the behavior of the cars (in particular, their
route will not depend on their knowledge). But unless the large-
scale traffic flow is significantly impacted by use of the application
(implying that a very large fraction of cars use it), the effects will
be negligible.

The so far described approach is able to separate traffic and net-
work simulation from the simulation of the application. But the
network simulation simulates SU beacons and therefore still de-
pends on the SU positioning. This is where one of the central ap-
proximations made by our method comes into play: we simulate
SUs at all possible SU locations in the network simulator, and let
all of them transmit periodic beacons. In the application simulator,
we then simply ignore beacons from “non-existing” SUs; the re-
spective beacons are not considered when updating the knowledge
bases. The number of SU locations is small in relation to the num-
ber of cars. So, the vast majority of network traffic is caused by
cars, and occasional beacons sent at unoccupied SU locations have
only negligible effects. But this simplification allows us to re-use
a traffic and network simulation log file for application simulations
of any arbitrary set of SU locations. A set of such log files may be
precomputed. A flow-chart outlining the toolchain is depicted in
Figure 3.

ns-2 VISSIM

movement + traffic

log file

application simulator genetic algorithm

individual

SU vector

time savings

(fitness)

optimal SU vector

random initial

SU vectors

Figure 3: Toolchain used for SU placement optimization.

We can now draw samples of estimated travel time savings in the
following way. The application simulator assigns travel times to all
road segments. Our implementation picks a pre-configured fraction
γ of the road segments and assigns them a travel time that is φ times
higher than their respective standard travel time; the travel time of
all other segments is set equal to the standard travel time. If more
sophisticated models for the travel times become available, they
can of course easily be plugged in.

We choose a car at a specific point in time. The car’s posi-
tion at this time is known, as well as its (not necessarily perfect)
knowledge about the current traffic situation. We also choose a
random destination for the car. We then calculate the optimal route
r∗ from the car’s current position to this destination, based on this
car’s knowledge. We also calculate the optimal standard route r∗std
based on standard travel times as introduced in Section 3.2. This
is the route a standard navigation system would choose. For both
routes, we calculate the travel times based on the true current travel
times as set by the application simulator. The ratio of these two
travel times is used as the estimated travel time saving. Note that
the car’s current knowledge is typically not perfect. It will virtu-
ally always deviate from the current traffic situation to some extent
(e. g., because the situation changes over time). The dynamic route
might therefore even be worse than the standard route. The travel
time benefit is thus highly dependent upon the dissemination per-
formance: it will be high if up-to-date information relevant for the
route calculation is known by the car. The mean travel time savings

over many such samples can be used as a metric for the application
benefit.

Of course, this approach is an approximation in many regards.
The simulation methodology makes, as already discussed, a num-
ber of simplifying assumptions. Furthermore, for example, cars do
not actually follow their dynamically chosen routes in the simula-
tion, and thus information potentially obtained during their travel
and subsequent route adjustments are not taken into account. The
central benefit of the method, however, is that it allows to obtain a
good estimate with limited computational effort. It is therefore us-
able as an objective function for the optimization of the SU place-
ment.

4.3 Genetic algorithm
Based on the method for calculating the objective function for

a given SU placement, a genetic algorithm can be used to actually
find a good SU placement. To this end we need to express the set of
occupied SU locations as an “individual”. There is a rather natural
representation for this purpose: a bit string, where each bit position
stands for one SU location. A bit is set to one if and only if there
is an SU at this position. An example representation is depicted in
Figure 4. There are ten possible positions of SUs, four of them are
used.

4.3.1 Selection and recombination
For each generation, the fitness of each individual is computed.

We do so using the methodology described above. Then the sum of
the fitness values of all individuals in the generation is calculated.
The selection of parents for the next generation is then performed
by randomly selecting individuals based on their relative fitness,
i. e., their own fitness divided by the sum.

For a given, fixed number of SUs we want to optimize over
all bit vectors with the respective number of bits set. Therefore,
when combining two parent individuals, it needs to be ensured
that the newly created individual still has the same number of bits
set. Standard recombination techniques like uniform or multi-point
crossover cannot guarantee this. We propose to use the following
recombination technique: in the child’s bit vector, we first set all bit
positions that are set in both parents (i. e., we start with the bit-wise
AND of the parents). We then “fill up” the bit vector by setting
additional bits. We choose these additional bits randomly from all
bits set in exactly one of the parents (i. e., from those bits enabled
in their bit-wise XOR).

4.3.2 Mutation
After creating children, it is vital for genetic algorithms that “mu-

tations” happen. They avoid that the algorithm gets trapped in a
local optimum. This is done by randomly flipping some (few, here
we use 0.4 %) of the bit positions. Again we need to make sure
that the number of set bits remains constant. We therefore chose to
mutate by simply exchanging the state of two bits in the bit vector.

4.3.3 Parallelization
In our implementation we use a Multi-Population Genetic Algo-

rithm (MPGA) with two separate populations. It has been shown
that this leads to faster convergence properties for genetic algo-
rithms; for a survey see [3]. After each generation it is possible that
an individual migrates to the other population.

SU0 SU1 SU2 SU3 SU4 SU5 SU6 SU7 SU8 SU9
1 0 1 1 0 0 1 0 0 0

Figure 4: The genetic representation of supporting units.

4.3.4 Search termination
We stop the genetic algorithm if we arrive at homogeneous pop-

ulations, i. e., if one specific set of SU locations dominates the pop-
ulations. If no homogenization occurs, we stop the algorithm after
a fixed number of generations.

The operation of the genetic algorithm is summarized in Fig-
ure 5. Whenever one iteration (i. e., one generation of individu-
als) is finished, the individuals of the old population are replaced
by newly recombined and mutated ones. In order not to lose the
information of the so far overall best individual, the memorized
chromosome is also included into the new population. In the last
step of each iteration, the algorithm randomly chooses an individ-
ual from each population. These individuals are then moved to the
other population. After this final step the genetic algorithm pro-
ceeds with the next generation.

Start

Create initial populations

Compute fitness

Optimal/good solution found
or

Maximum number of generations

Memorize best individual

Select individuals for evolving

Recombination

Reproduction

no

Stop

yes

Mutation

Exchange between populations

Figure 5: The steps of a genetic algorithm.

5. EVALUATION
In order to evaluate the aggregation scheme and SU placement

methodology outlined above, we apply it to a specific VANET city
scenario model and analyze aspects of both the traffic information
system and the SU placement approch with genetic algorithms. In
a very similar way, it could be applied to find good SU placements
for any other real city, given that a sufficiently detailed road and
traffic model is available.

5.1 Simulation setup
We use VISSIM to simulate vehicular traffic in the city of Bruns-

wick, Germany. The model covers an area of approximately 16×
16km2, 500 km of roads and a total of about 10 000 cars. It is based
on detailed measurements of the real traffic pattern in the city. We
use an average equipment density of 0.25 equipped vehicles per ra-
dio range. This corresponds to a VANET equipment ratio of 5%
of all cars. In ns-2, IEEE 802.11 is employed as the MAC proto-
col, with the two-ray ground propagation model, a communication
range of 250 meters, and a carrier sense range of 550 meters. The
network simulator also uses an obstacle model that does not allow
radio signals to propagate through the walls of buildings.

As mentioned above, the objective of the genetic algorithm is to
find the optimal vector of supporting units for 100 predefined pos-
sible locations (this could, e. g., be the positions where potential
cooperation partners are located, who would allow for an SU to be
installed). The genetic algorithm starts with 40 individuals, split
into two populations. Each simulation run of the application sim-
ulator uses a randomly chosen random seed. This ensures that the
process does not get stuck in a local optimum. Our implementation
uses a maximum of 100 generations. If this number is reached be-
fore homogeneity has occurred, the algorithm is stopped. This did,
however, not happen in our simulations.

5.2 Travel time savings
It seems obvious that placing more supporting units in the sce-

nario improves the performance of the dissemination process and
hence higher travel time savings can be achieved. In Figure 6 this
expectation is confirmed. On the x-axis the number of used sup-
porting units is shown. The y-axis shows the relative travel time
for the best supporting unit vector found by the genetic algorithm.
The error bars show 99.9% confidence intervals. A value of one
means that no savings can be achieved compared to the current
travel time on the optimal standard route, i. e., ‖r∗‖ = ‖r∗std‖. If
supporting units are placed at all 100 considered locations, an aver-
age car needs a relative travel time of 0.9 compared to the standard
travel time. This is equivalent to a travel time saving of 10%.

Similar time reductions, however, are also possible with fewer
supporting units. Even without any infrastructure support the ag-
gregation based dissemination scheme is able to deliver data to cars
that can help to improve their route. The knee in the plot indicates
that a good tradeoff between cost and utility in the considered city
could be between 10 and 30 SUs.

It should be noted that a large number of cars does not profit
from the additional information, since the standard path to their
destination is not congested, or despite a certain level of congestion
no better alternative route exists. Those vehicles would not profit
from any traffic information system at that time. However, they are
included in the calculation of the average travel time savings. Cars
for which better routes actually do exist often exhibit substantially
larger improvements than the above average values.

This can be seen by investigating the distribution of travel time
savings. Figure 7 shows the cumulative distribution function of the
individual relative travel times. The large fraction of cars with a
relative travel time of one includes all those cars that would choose
the same path without any dynamic information.

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100

R
e
la

ti
v
e
 t
ra

v
e
l
ti
m

e

Number of supporting units

Static Route
Dynamic Route

Figure 6: Performance evaluation of different active support-
ing units.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

F
ra

c
ti
o
n
 o

f
n
o
d
e
s

Relative travel time (CDF)

0 SU
5 SU

10 SU
30 SU

100 SU

Figure 7: Cumulative distribution function of the relative travel
times.

5.3 Genetic algorithm evolution
Figures 8 and 9 depict the evolution of the vector of supporting

units while the genetic algorithm is running. On the x-axis the IDs
of all possible SU location are shown. The z-axis, on the right hand
side of the figures, shows the progression of generations. For each
SU location in each generation, the z axis shows the number of in-
dividuals in which the respective location is occupied by an SU.
Initially the SU vectors are chosen randomly, so in the first gener-
ations, SUs are distributed very homogeneously over the locations.
After some generations, however, clear trends become visible and
the individuals start to become more and more similar. Some loca-
tions are virtually completely abandoned quite early. At some point
a specific combination of SU locations becomes predominant and
the genetic algorithm cannot gain any further improvement.

A final evaluation of the results of the genetic algorithm is de-
picted in Figures 10 and 11. Here, the locations of the supporting

N
u
m

b
e
r

o
f
v
e
c
to

rs

 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100
Location ID

 0

 10

 20

 30

 40

 50

 60

Generation

 0

 5

 10

 15

 20

 25

 30

 35

 40

Figure 8: Evolution of SU vectors with ten active SUs.

N
u
m

b
e
r

o
f
v
e
c
to

rs

 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100
Location ID

 0

 10

 20

 30

 40

 50

 60

Generation

 0

 5

 10

 15

 20

 25

 30

 35

 40

Figure 9: Evolution of SU vectors with thirty active SUs.

units are shown in the analyzed scenario. The crosses represent the
100 possible SU locations. The locations chosen by the genetic al-
gorithm are marked using squares. It is conspicuous that SUs are
distributed quite uniformly around the city center, in particular if
few of them are available. When more supporting units are avail-
able, like in Figure 11, SUs are also placed within the city center.

6. CONCLUSION
In this paper we have presented an aggregation scheme for travel

time data in road networks. In order to disseminate information
within a large network, aggregation is done by means of a multi-
layer hierarchy of approximations of the road network. A landmark
based aggregation scheme distributes information about the travel
times between prominent points of the road network in order to
build an abstract view of more distant regions.

Given this aggregation scheme, it then becomes possible to tackle
a second big issue in a VANET-based traffic information system:
how and where infrastructure should be used in order to improve in-
formation dissemination over larger distances. We have introduced
an approach for optimizing the placement of networked roadside
infrastructure—supporting units—based on genetic algorithms. By
a simulation methodology that separates movement and network is-
sues from application behavior it becomes possible to estimate the
travel time savings achieved by a given vector of active SU loca-
tions. These savings can be used as a fitness metric, making an

Figure 10: Location of ten active SUs.

Figure 11: Location of thirty active SUs.

application-centric optimization approach feasible. We have con-
firmed the viability of this approach and assessed the achievable
improvements by applying it to a large-scale city VANET model.

7. REFERENCES
[1] C. Adler, R. Eigner, C. Schroth, and M. Strassberger.

Context-adaptive information dissemination in VANETs –
maximizing the global benefit. In CSN ’06: Proceedings of
the 5th IASTED International Conference on Communication
Systems and Networks, pages 7–12, Aug. 2006.

[2] M. Caliskan, D. Graupner, and M. Mauve. Decentralized
discovery of free parking places. In VANET ’06: Proceedings
of the 3rd ACM International Workshop on Vehicular Ad Hoc
Networks, pages 30–39, Sept. 2006.

[3] E. Cantú-Paz. A summary of research on parallel genetic
algorithms. Technical Report 95007, University of Illinois at
Urbana-Champaign, July 1995.

[4] P. Golle, D. Greene, and J. Staddon. Detecting and correcting
malicious data in VANETs. In VANET ’04: Proceedings of
the 1st ACM International Workshop on Vehicular Ad Hoc
Networks, pages 29–37, Oct. 2004.

[5] M. Jakobsson and S. Wetzel. Efficient attribute authentication
with applications to ad hoc networks. In VANET ’04:
Proceedings of the 1st ACM International Workshop on
Vehicular Ad Hoc Networks, pages 38–46, Oct. 2004.

[6] C. Lochert, B. Scheuermann, M. Caliskan, and M. Mauve.
The feasibility of information dissemination in vehicular
ad-hoc networks. In WONS ’07: Proceedings of the 4th
Annual Conference on Wireless On-demand Network
Systems and Services, pages 92–99, Jan. 2007.

[7] C. Lochert, B. Scheuermann, and M. Mauve. Probabilistic
aggregation for data dissemination in VANETs. In
VANET ’07: Proceedings of the 4th ACM International
Workshop on Vehicular Ad Hoc Networks, pages 1–8, Sept.
2007.

[8] T. Nadeem, S. Dashtinezhad, C. Liao, and L. Iftode.
TrafficView: Traffic data dissemination using car-to-car
communication. ACM SIGMOBILE Mobile Computing and
Communications Review, 8(3):6–19, July 2004.

[9] F. Picconi, N. Ravi, M. Gruteser, and L. Iftode. Probabilistic
validation of aggregated data in vehicular ad-hoc networks.
In VANET ’06: Proceedings of the 3rd ACM International
Workshop on Vehicular Ad Hoc Networks, pages 76–85,
Sept. 2006.

[10] M. Raya, A. Aziz, and J.-P. Hubaux. Efficient secure
aggregation in VANETs. In VANET ’06: Proceedings of the
3rd ACM International Workshop on Vehicular Ad Hoc
Networks, pages 67–75, Sept. 2006.

[11] S. N. Sivanandam and S. N. Deepa. Introduction to Genetic
Algorithms. Springer Verlag, 2007.

[12] L. Wischhof, A. Ebner, and H. Rohling. Information
dissemination in self-organizing intervehicle networks. IEEE
Transactions on Intelligent Transportation Systems,
6(1):90–101, Mar. 2005.

	1 Introduction
	2 Related Work
	3 Aggregation
	3.1 Aggregation on a single level
	3.2 Judging the quality of information
	3.3 Hierarchical aggregation

	4 Placement of Supporting Units
	4.1 Optimizing SU placements
	4.2 Estimating travel time savings
	4.3 Genetic algorithm
	4.3.1 Selection and recombination
	4.3.2 Mutation
	4.3.3 Parallelization
	4.3.4 Search termination

	5 Evaluation
	5.1 Simulation setup
	5.2 Travel time savings
	5.3 Genetic algorithm evolution

	6 Conclusion
	7 References

