
Probabilistic Aggregation for Data Dissemination
in VANETs

Christian Lochert Björn Scheuermann Martin Mauve

Computer Networks Research Group
Heinrich Heine University

Düsseldorf, Germany

{lochert,scheuermann,mauve}@cs.uni-duesseldorf.de

ABSTRACT
We propose an algorithm for the hierarchical aggregation of ob-
servations in dissemination-based, distributed traffic information
systems. Instead of carrying specific values (e. g., the number of
free parking places in a given area), our aggregates contain a mod-
ified Flajolet-Martin sketch as a probabilistic approximation. The
main advantage of this approach is that the aggregates are dupli-
cate insensitive. This overcomes two central problems of existing
aggregation schemes for VANET applications. First, when multi-
ple aggregates of observations for the same area are available, it
is possible to combine them into an aggregate containing all in-
formation from the original aggregates. This is fundamentally dif-
ferent from existing approaches where typically one of the aggre-
gates is selected for further use while the rest is discarded. Second,
any observation or aggregate can be included into higher level ag-
gregates, regardless if it has already been previously—directly or
indirectly—added. As a result of those characteristics the quality
of the aggregates is high, while their construction is very flexible.
We demonstrate these traits of our approach by a simulation study.
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1. INTRODUCTION
Cooperative information gathering and sharing forms a promi-

nent class of VANET applications. For instance, approaches
that disseminate traffic information like TrafficView [10] or SO-
TIS [17, 18] as well as a system to exchange information on free
parking places [2] have been designed. These applications have in
common that they distribute measurement results obtained by the
participating cars in a comparatively large area.

Typically, this is accomplished in the following way. Each car
makes observations. An observation is essentially some measured
value (traffic density, free parking places,. . . ), related to a position
in space (i. e., a road segment or a small area) and a point in time
when the observation has been made. All or part of the locally
stored information is periodically broadcasted. Upon reception of
such a broadcast, a node incorporates the received data into the lo-
cal knowledge base. By comparing the timestamps of observations,
it can ensure that always the most up-to-date value for each position
is stored and redistributed. However, if we assume that the spatial
density of points for which observations are made is approximately
constant, the amount of data increases quadratically with the cov-
ered radius. Thus, the amount of data to be broadcasted by each
car will likewise increase quickly. Since the network’s capacity is
constant, this is fatal for the scalability of such a system.

To overcome this problem, the use of hierarchical data aggre-
gation has been proposed: with increasing distance, observations
concerning larger and larger areas (or road segment lengths) are
combined into one single value. Such an aggregated value could,
for example, be the average speed on a longer road segment, or the
percentage of free parking places in a part of a city. Coarse aggre-
gates are made available at greater distances, more detailed data is
kept only in the near vicinity. However, even though the idea has
often been mentioned, central problems of such an approach have,
so far, remained unsolved.

A fundamental issue that arises is that aggregates can not, like
single observations, be directly compared regarding the up-to-date-
ness and completeness of the contained data. They are created by
cars that will typically not have the most up-to-date measurements
for all underlying points available. Therefore, multiple aggregates
for the same area may exist, based on different, but likely overlap-
ping knowledge. To decide which one is based on “better” under-
lying data is hard, if not impossible.

In this paper we propose an algorithm that solves this issue. We
achieve this by a special data representation: both single obser-
vations and aggregates in our scheme do not carry the value of,
e. g., the number of free parking places directly, but instead con-
tain an approximation of it in form of a modified Flajolet-Martin



sketch [6]. This still does not provide a way to compare the quality
of two aggregates directly, but it allows for something even bet-
ter: in our scheme, multiple aggregates for the same area can be
merged, yielding a new one that incorporates all the information
contained in any one of the aggregates. This is fundamentally dif-
ferent from existing approaches where two aggregates describing
the same area cannot be merged1. In our scheme there is no longer
a need to decide which aggregate contained more up-to-date infor-
mation since the resulting aggregate comprises all the information
from all aggregates that have been merged.

Our approach also allows observations or lower-level aggregates
to be integrated into an already existing higher-level aggregate at
any time. Note that this is is not feasible with existing approaches,
because it cannot be determined which data is already present in
the aggregate and interesting aggregates like sums or averages are
typically duplicate sensitive.

Apart from making decisions regarding the aggregate quality un-
necessary, the proposed scheme also largely eases the generation
of good aggregates. In order to create a sensible aggregate, a node
would usually have to collect data on a significant fraction of the
covered area before an aggregate that likely constitutes a good rep-
resentation can be formed. With our scheme, the aggregate can
instead be maintained while being passed around in the network,
always incorporating new information on-the-fly. This results in
aggregates of a much higher quality.

The remainder of this paper is structured as follows. In the
next section we review aggregation as it has been proposed for
VANET applications, as well as some previous uses of Flajolet-
Martin sketches in the networking area. Thereafter, we introduce
our algorithm in detail in Section 3. In Section 4, we present and
discuss the results of a simulative evaluation of the algorithm in a
VANET city scenario. Finally, we conclude this paper with a sum-
mary in Section 5.

2. RELATED WORK

Recently, many convenience applications for VANETs have been
discussed, and often they use some form of data dissemination.
While discussing them all in detail would definitely exceed the
scope of this paper, we concentrate on three examples, and show
how they deal with the problems considered in this study.

In the Self-Organizing Traffic Information System (SOTIS) [17,
18], information on the traffic situation is distributed opportunisti-
cally, by sending periodic beacons containing the knowledge of the
sending node on the traffic situation in a larger surrounding. The
authors also outline a (non-hierarchical) aggregation scheme, com-
bining all the known information on each fixed-length road seg-
ment to one average value. Upon reception, a node considers an
aggregate “better” if it has a newer timestamp. But since these
timestamps are assigned when the aggregate is computed, this sys-
tem exhibits the problems outlined in the introduction: a newly
computed aggregate with a new timestamp is not necessarily based
on the most up-to-date information, and aggregates representing
largely disjoint knowledge can neither be identified as such nor
can they be merged. For these reasons, a system like SOTIS could
largely benefit from the aggregation scheme introduced here.

1Any hierarchical aggregation scheme will provide a way to merge
lower level aggregates into a higher level aggregate. This is not
what we refer to. The point here is that two aggregates describing
the same area are merged.

TrafficView [10] is another system for disseminating traffic in-
formation, similar to SOTIS in both aims and mechanisms. The au-
thors of TrafficView also introduce a data aggregation scheme. Dif-
ferent from SOTIS, TrafficView distributes information on position
and speed of single vehicles. The aggregation mechanism com-
bines a number of “similar” vehicles in an adaptive way, aiming to
minimize the introduced errors. Again, each aggregate is assigned
a timestamp: TrafficView uses the minimum information genera-
tion time of the combined measurements. Consequently, similar
problems as for SOTIS arise. A definite decision about the rela-
tive up-to-dateness of stored and received values can not reliably
be made. Again, this could be overcome by using our probabilistic
aggregation scheme.

A different application of data dissemination with aggregation in
VANETs is proposed in [2]: the distribution of information on free
parking places. The information on the current occupancy level
is generated by local infrastructure at the parking lots, and, like
in the traffic information systems above, disseminated by periodic
broadcasting. Aggregation is performed hierarchically in a quad-
tree structure over the city area. Where SOTIS uses the time of
generation of the aggregate and TrafficView the minimum of the
generation times of the contained atoms, the parking guidance sys-
tem compares aggregates by the average time of information gen-
eration of the atomic values contained in the aggregate. However,
this again does not allow to decide reliably which of two aggregates
is based on more precise data. Furthermore, it does not solve the
duplicate problem, and hence does not allow merging aggregates
for the same region. In this case our aggregation scheme could be
applied as well, and would help to overcome these difficulties.

A substantial amount of work has been put into optimizing the
beaconing in dissemination applications. This includes adaptive
beaconing intervals, aiming to give cars with more or newer knowl-
edge preferred access to the medium. It also encompasses the se-
lection of the optimal subset of the knowledge base to be incor-
porated into a transmission of limited size. Work in this area can,
for example, be found in [1, 2, 10, 17]. When speaking about ap-
plications for VANETs in a real environment questions about se-
curity arise. For instance, it has been studied how VANETs and
aggregated messages in them can be made tamper-proof or resis-
tant to cheaters [7, 8, 12, 15]. Since all these questions are largely
orthogonal to the fundamental challenge of how aggregates should
be computed, compared, and merged, their ideas can be combined
with our approach.

In [3], Flajolet-Martin sketches are used for robust in-network
aggregation in sensor networks in the presence of packet loss or
node failures. The coordinated collection of information towards
a sink in the sensor network is considered, as opposed to contin-
uously updated distribution of information to all nodes as in this
paper. The problem of removing old information, which we solve
here, does therefore not arise.

In [16], the use of Flajolet-Martin sketches for spatio-temporal
database indexes is discussed. The intention is to support queries of
the form: “How many objects were in region x over the time inter-
val t?” While these techniques could potentially be used to speed
up specific queries in a centralized traffic information system, the
problem is rather different from what we consider here, and their
approaches are not transferable to a distributed, dissemination-
based system.

Several other data structures for probabilistic, duplicate insen-
sitive counting have been proposed lately. Examples are LogLog
sketches [4] and the very recent HyperLogLog sketches [5]. Here,
we use Flajolet-Martin sketches because they allow for a modifica-
tion that enables the removal of old data from the aggregates.



3. ALGORITHM

3.1 Flajolet-Martin sketches

A Flajolet-Martin sketch (also called “FM sketch” or in the fol-
lowing simply “sketch”) is a data structure for probabilistic count-
ing of distinct elements that has been introduced in [6]. It represents
an approximation of a positive integer by a bit field S = s1, . . . ,sw
of length w ≥ 1. The bit field is initialized to zero at all positions.
To add an element x to the sketch, it is hashed by a hash func-
tion h with geometrically distributed positive integer output, where
P(h(x)= i)= 2−i. The entry sh(x) is then set to one. (With probabil-
ity 2−w we have h(x) > w; in this case, no operation is performed.)
A hash function with the necessary properties can easily be derived
from a common hash function with equidistributed bit string out-
put by using the position of the first 1-bit in the output string as the
hash value.

The central result of [6] is that an approximation C(S) of the
number of distinct elements added to the sketch can be obtained
by locating the end of the initial, uninterrupted sequence of ones,
given by

Z(S) := min({i ∈N0 | i < w∧ si+1 = 0}∪{w}) (1)

by calculating

C(S) :=
2Z(S)

ρ
, (2)

with ρ ≈ 0.775351.

The variance of Z(S) is quite significant, and thus the approxi-
mation is not very accurate. To overcome this, instead of only one
sketch a set of sketches can be used to represent a single value,
trading off accuracy against memory. The respective technique is
called Probabilistic Counting with Stochastic Averaging (PCSA)
in [6]. With PCSA, each added element is first mapped to one of
the sketches by using an equidistributed hash function, and is then
added there. If m sketches are used, denoted by S1, . . . ,Sm, the es-
timate for the total number of distinct items added is then given
by

C(S1, . . . ,Sm) := m · 2∑
m
i=1 Z(Si)/m

ρ
. (3)

But, as [6] also states, this formula is rather inaccurate as long as
the number of elements is below approximately 10 ·m. We thus
modify (3) in the following way:

C(S1, . . . ,Sm) := m · 2∑
m
i=1 Z(Si)/m−2−κ·∑m

i=1 Z(Si)/m

ρ
, (4)

with κ ≈ 1.75. This alleviates the initial inaccuracies, while other-
wise being asymptotically equivalent to (3).

PCSA yields a standard error of approximately 0.78/
√

m. For
many VANET applications, sufficiently good approximations are
possible at reasonable sizes.

Sketches can be merged to obtain the total number of distinct
elements added to any of them by a simple bit-wise OR. Important
here is that, by their construction, repeatedly combining the same
sketches or adding already present elements again does not change
the results, no matter how often or in which order these operations
occur.
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Figure 1: Generation and merging of FM sketch aggregates.

3.2 Creating and merging sketches
For the purpose of discussion, let us consider a specific applica-

tion. Assume that we are interested in disseminating the number of
free parking places. For now, we do not care about the measured
values changing over time. As a first step, we use a sketch (or, with
PCSA, a set of sketches) for each road segment. We assume that
a car is able to observe the current number of free parking places
while passing a road segment, e. g., by collecting data from sensors
on the parking places, as proposed in [13]. After passing a road
segment with ID r and observing n free parking places on it, a car
may add the tuples (r,1), . . . ,(r,n) to the sketch for r, by hashing
them and setting the respective bits.

The locally stored sketches for the road segments are periodi-
cally broadcasted. Upon reception, received and local sketches are
merged by calculating the bit-wise OR. Figure 1 exemplifies this
procedure. Two cars, A and B, make independent observations on
the same road segment (with ID 17). A observes 4 free parking
places and thus hashes the tuples (17,1), . . . ,(17,4) into its sketch
for road segment 17. B observes 5 free parking places, and con-
sequently adds (17,1), . . . ,(17,5). If A and B meet later, and A
receives a transmission containing B’s sketch, A merges them by
bit-wise OR and obtains a new sketch, replacing its previous one.

The hashed tuples (r, i) are identical for different observers, the
observed value determines only how many of them are added. Thus
the same number of free parking places on the same road segment
will set the same bits, a lower number a subset thereof. Of course,
in the current basic algorithm, bits that have once been set will
never get unset again, and the sketch is therefore not able to fol-
low decreasing values. We will soon see how to extend the data
structure in order to overcome this limitation.

3.3 Hierarchical aggregation
Hierarchical aggregation is typically done on trees, often on

symmetric and self-similar ones like quad-trees over the two-di-
mensional plane. But while it may for instance be expected that
the traffic situation does not differ much among a set of similar and
close-by road segments, or that the fraction of free parking places
is relatively constant within a neighborhood, it might at the same
time be vastly different not too far away: for example on the other
side of a highway or a river. Therefore a good aggregation scheme



should respect the environment it is imposed on. We envision that
such an aggregation hierarchy is pre-defined in the map data, fol-
lowing the underlying structure and grouping areas in a way that
reflects their natural relations, like city districts or road hierarchies.

This is explicitly supported by our algorithm. Let L denote the
set of locations for which observations can be made, like the en-
tirety of road segments, or simply all points on the map. Many
aggregates are possible—in principle, any arbitrary combination of
locations could be aggregated. Possible aggregates are thus the
(non-empty) elements of L’s power set P(L). We may choose a
subset A of these as the areas for which sketches are to be main-
tained:

A⊆ P(L)\{ /0} (5)

The structure ofA is not constrained by our method, though certain
choices exhibit benefits.

Based on the outlined idea, hierarchical aggregation can be ac-
complished in the following way. We allot sketches for all elements
in A. Any observation made for some location l ∈ L can immedi-
ately be incorporated into each aggregate for which the aggregated
area A contains l, that is, l ∈ A. Consequently, in our example
application of counting free parking places, these aggregates will
contain the total counts in their respective areas.

It should be noted that not necessarily for each location a sepa-
rate sketch needs to be maintained, i. e., there is no necessity that
∀l ∈ L : {l} ∈A. Especially if L is large (or continuous!), it might
make sense to maintain sketches only for areas encompassing mul-
tiple locations.

Information on small-scale areas will then typically be kept in
the closer vicinity and is broadcasted only there, while further away
cars will preferably maintain and distribute larger-scale aggregates
of the region. The duplicate insensitivity of the sketches allows for
aggregates to be merged in just the same way as it has been intro-
duced above for sketches of single locations. But in particular, any
received sketch for some area A can immediately be incorporated
into any superordinate aggregate A′, where superordinate means
that A is wholly covered by A′, i. e., A ⊆ A′.

To allow for incorporating received information into as many ag-
gregates as possible,A will thus indeed often be a hierarchical tree
structure, where for all A1,A2 ∈A it holds that

A1∩A2 6= /0 =⇒ A1 ⊆ A2 ∨ A2 ⊆ A1. (6)

Even this, however, implies neither any symmetry nor the same
depth of all subtrees of any given node. It also does not exclude
cases where some higher-level area is not completely covered by
smaller subareas. Therefore, this concept is much more powerful
than the commonly used aggregation trees.

3.4 Soft-state sketches
With the so far discussed algorithm, the sketches will always

represent the maximum of all ever observed values for each road
segment. This is of course not desirable. Therefore, a method is
needed to remove old observations.

We accomplish that by modifying the original FM sketches. We
use small counters of n bits length instead of single bits at each
index position. These counters represent a time to live (TTL) in
the range 0, . . . ,2n − 1 for that bit. The operation of setting a bit
to one after an observation is replaced by setting the corresponding
counter to the maximum TTL, to T := 2n−1. Broadcasts contain-
ing the sketches are sent at regular intervals. Just before sending
such a broadcast with information from the local knowledge base,
all counters in the locally maintained sketches are decremented by
one, if they are not yet zero.
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Figure 2: Merging of soft-state sketches.

When incorporating a received sketch into the local knowledge
base, the bit-wise OR is substituted by a position-wise maximum
operation. This yields a soft-state variant of FM sketches, in which
previously inserted elements essentially die out after their TTL has
expired, unless they are refreshed by a newer observation. The
merging is visualized in Figure 2. Car A receives an aggregate from
car B, and updates its own soft-state sketch accordingly.

For obtaining the current value from a soft-state sketch, the al-
gorithm remains essentially unchanged; still, the smallest index po-
sition with value zero is identified and used. Note that this incurs
some delay if a bit position is no longer set in newer observations.
Coming back to our above example of observing parking places,
assume that no further observations are made which set a particular
bit position (e. g., because there is no longer a free parking place
being hashed to it). If the position had previously been set in an ag-
gregate, then the TTL value will decrease over time until it arrives
at zero.

As an extension, it is possible to consider the smallest index po-
sition with a value below some threshold instead of the smallest
position being zero, by using

Zt(S) := min({i ∈N0 | i < w∧ si+1 ≤ T − t}∪{w}) (7)

in the role of Z(S)—which equals ZT (S)—in (2) or (4). The thresh-
old t can be chosen arbitrarily and individually whenever evaluating
a sketch, in the range between 1 and T . This yields an approxi-
mation Ct(S) of the total distinct item count observed in the last t
broadcasting intervals. It therefore allows to dynamically choose a
“cutoff horizon”, thereby trading off between taking only more re-
cent observations—that is, the most up-to-date data—into account
and working on a larger data basis.

3.5 Longer counters for larger aggregates
In a typical application of our aggregation scheme, large aggre-

gates will be distributed over longer distances, while smaller ag-
gregates remain in the closer vicinity. But distribution over long
distances implies that the aggregates are longer underway, and will
typically traverse more hops. In short: the information will be older
when it arrives at the place where it is used. Consequently, while
locally relatively quick ageing of the information will be tolerable
(or even desirable), for larger, widely distributed aggregates it will
likely be advisable to use a longer lifetime for the soft-state infor-
mation. To accomplish this, it is possible to extend our algorithm
in a way that uses soft-state sketches with longer TTL counters for
larger aggregates. Obviously, this increases the size of these aggre-
gates, but since the available TTL range grows exponentially with
the counter size it scales very well.



Using different counter lengths in different aggregates slightly
increases the complexity of the merge operation. However, the nec-
essary modifications become relatively straightforward if the age
of an entry is considered instead of its TTL. The age is the number
of decrements that have occurred at that position, i. e., its differ-
ence from the maximum TTL. Instead of setting the position in the
merged aggregate to the maximum TTL of the two merged soft-
state sketches, it is set to the TTL corresponding to the minimum
age, where the received TTL is larger than zero. The resulting op-
eration is equivalent in the case of identical counter sizes in the two
sketches, but differs if the counter sizes are different.

As an example, consider a locally stored aggregate with a
counter size of eight bits. Let us concentrate on one single position,
and assume that it currently has a value of 8. This corresponds to
an age of 255−8 = 247, since the maximum TTL is 28−1 = 255
here. Now a sketch for a sub-area contained in our aggregate is
received, which uses a counter size of only four bits. The value at
our bit position is 10 in this sketch. Because the maximum TTL is
15, this corresponds to an age of 5. Since the minimum age of local
and received aggregate is 5, we set the local aggregate to this age,
and consequently to a TTL value of 255−5 = 250.

More formally speaking, if Tlocal and slocal are the maximum
TTL and the current value of an entry of the locally stored sketch,
and Trecv and srecv > 0 are the corresponding counterparts in a re-
ceived sketch that is to be merged in, then the new value of the
respective position is given by

Tlocal−min{Tlocal− slocal, Trecv− srecv}
= max{slocal, srecv +Tlocal−Trecv}.

(8)

This scheme is applicable for arbitrary combinations of counter
sizes.

3.6 Example applications and practical issues
The simple parking place counting application as discussed

above has a major drawback. In case of an aggregate showing a
small total number of free parking places, it is not clear whether
this is caused by a small number of parking places being free, or by
a small number of free parking places having been observed in the
time interval covered by the TTL, due to a generally low number of
observations. Note that this is not a problem of our approach, but
a general one. It is, fortunately, relatively easy to overcome. In the
proposed application a car may distribute two values with separate
sketches instead of just one: the number of observed free park-
ing places, and in addition the number of observed total parking
places. Both values in combination describe which fraction of the
observed parking places is free. It generally seems that distributing
such relative values is more robust. Recall that due to the soft-state
approach it is not necessary to report occupied parking places since
a no longer free parking place will die out if it is not refreshed.

This also accommodates trading off the considered timespan as
introduced above: the application can easily infer the comprehen-
siveness and coverage of the underlying data basis for increasing
time horizons, to optimize the tradeoff.

Sketches can be used to approximate sums of positive integers,
but can be generalized to general integers and fixed or floating
point numbers [3]. Our scheme is thus applicable whenever the
aggregated value can be expressed through sums. Examples are
counts, sums, or averages, but also variance and standard devia-
tion (through the average and the average of the squares) or even
products (by adding logarithms) [3]. The accuracies of the approxi-
mations, of course, vary, and an appropriate tradeoff for the specific
application has to be found.

Further application examples could be the dissemination of the
current traffic density (e. g., by distributing the number of observed
vehicles and the total length of the roads for which there are obser-
vations), or the current average speed on a road. Both are useful to
support navigation and route planning.

4. EVALUATION

4.1 Methodology
To evaluate our scheme, we implemented it in a simulation en-

vironment encompassing the network simulator ns-2 [11] and the
microscopic traffic simulator VISSIM [14]. This combination [9]
allows for a detailed simulation of both, vehicle movements and
network traffic.

VISSIM was used to generate the vehicular movements. We used
a detailed model of a real city’s extended downtown area with more
than 500 km of roads and up to 10 000 vehicles. It includes, for
example, multi-lane traffic, traffic lights, and different types of ve-
hicles, and simulates differing driver psychologies. The vehicular
traffic in the model is based on extensive measurements undertaken
by the city administration for the purpose of traffic planning.

We simulate a VANET equipment penetration ratio of 20 %. This
corresponds to an average equipment density of one vehicle per
communication range. In ns-2, IEEE 802.11 is employed as the
MAC protocol, with the two-ray ground propagation model with a
communication range of 250 meters and a carrier sense range of
550 meters. The network simulator is enhanced with an obstacle
modeling that does not allow radio signals to propagate through
the walls of buildings.

The road density, movement speed and pattern, etc. are, like in a
real city, very heterogeneous in the simulation model. This makes
the model realistic. But evaluating a protocol in such a complex
environment in absolute terms is difficult. For example, if a high-
speed road with lots of traffic connects two points that are 5 km
apart, then one can expect well-working dissemination over that
distance. If two other points with the same distance are separated
by a municipal park, then the performance is bound to be worse.
Often, it can make a large difference whether a single vehicle car-
rying a piece of information gets through to a certain point and
distributes its knowledge there.

In order to overcome these difficulties at least partially, we opted
to use an optimal reference protocol in an otherwise exactly identi-
cal simulation setting for comparison. In this protocol, information
is spread by periodic beacons, in just the same way as in our and
many other approaches. But the optimal protocol does not care
about practical bandwidth limitations. In a simulator the packet
size and the amount of information actually exchanged between
the nodes are independent. The reference protocol exploits this fact
and does not aggregate information at all. Instead, a received “ag-
gregate” contains the sending node’s most up-to-date measurement
values of all the locations. Each of these values also carries an indi-
vidual timestamp, making optimal merging of information trivial.
In order to avoid keeping too old measurements in the network, we
use a timeout equivalent to the initial TTL of the soft-state sketches’
entries.

Obviously, implementing this optimal reference protocol is eas-
ily possible in a simulator, but not in practice. However, it is well
suited as a benchmark: with a practical protocol based on beacons
and a knowledge base the cars can never have better information.

We evaluate both our scheme and the optimal reference protocol
with an idealized application. We subdivide the city area into 256
small areas, which we use as single locations. We simulate a sim-
ple stochastic process for each of these areas, the current value of



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15

E
s
ti
m

a
te

Time (in minutes)

Soft-state sketches
Optimal reference

True value

Figure 3: Accuracy of local measurement representation.

which can be “measured” by every car entering the respective area.
This could be interpreted as “counting” the number of free parking
places in this area.

Our simulations cover a timespan of 15 minutes. As aggregation
generally makes sense only if the dynamics at least of close-by ar-
eas is not completely unrelated (which can of course be expected in
the real world), the stochastic processes of the single locations are
also not totally independent. All of them typically start relatively
low, and increase substantially over the first half of the simulation,
before they subsequently tend to decrease again. In relation to the
relatively short total time, the changes are very rapid, and thus are
very challenging for a dissemination protocol that needs to keep
track of them. Since, as discussed above, disseminating relative
values is much more appropriate than absolute sums, we also have
one reference value per area—e. g., the “total number of parking
places”—, which is likewise “observed” and distributed.

For hierarchical aggregation, groups of four neighboring areas
are combined into a total of 64 medium-sized areas, and these are
in the same way aggregated further to form 16 large-scale areas.
For deciding which information is to be transmitted in a beacon, we
constrain ourselves to a simple selection strategy—mainly to limit
the overall complexity of the system and to allow for reasonable
result interpretation. In our simulations, each node transmits 27
aggregates in each beacon: on all three hierarchy levels, the area
the car is currently in and the eight neighboring areas are sent.

4.2 Local accuracy

The first parameter we evaluate is how well the aggregates repro-
duce the current value of a measured parameter locally, i. e., at the
location where the measurement is performed. This is of interest
because the data representation with soft-state sketches is proba-
bilistic, and therefore does not necessarily reproduce the current
value exactly.

Figure 3 shows, for one typical location, the average value from
the knowledge bases of all vehicles that are currently within the
corresponding region. As discussed above, we use a relative value,
given by the ratio of the number currently free “parking places”,
which is changing over time, and their (fixed) total number for
this location. For comparison, we also plot the current true value,
and we perform the same evaluation with the optimal dissemina-
tion protocol. In the specific case of a single, locally continuously
measurable value the latter two are of course always identical.
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Figure 4: Accuracy of local medium-sized aggregate.

We use PCSA sets with 16 soft-state sketches and 5-bit counters
in the evaluations shown here. The maximum TTL of the soft-
state sketch entries is set to 31, the beaconing frequency is five sec-
onds. The figure shows that the sketch-based dissemination is able
to model the correct value quite well. When the measured value
starts decreasing again, the time needed for the soft-state decaying
of the no longer set bits becomes visible: the sketch represents the
maximum value observed in the recent past. Thus, there is a time
lag before it follows a decreasing value, about 31 · 5s ≈ 2.5min
with the chosen parameters. Recall in this context that an appli-
cation can dynamically select the cutoff horizon in (7), and may
therefore tune this parameter locally and individually at any time.

Taking the time lag into account, the soft-state sketches indeed
reflect the true situation very well here. This encouraging first re-
sult leads us to the next question: how well can aggregates for
larger regions be formed and maintained?

4.3 Forming aggregates

With the proposed scheme, aggregates for larger regions can and
will be formed wherever information on the respective region flows
together. But nevertheless it is reasonable to expect that this will
most regularly happen within the respective region. Therefore, we
now look at how well sketch-based aggregates represent the situ-
ation in a larger area, while they are stored, passed around, and
merged by cars within this area. Note that now the cars can no
longer observe the entirety of the underlying information them-
selves. They can only measure the current value of their own lo-
cation, and thus depend on received and merged information from
other nodes in order to complete their picture.

In Figures 4 and 5 we show such evaluations for a typical medi-
um-sized and a large inner-city aggregate (consisting of 4 and 16
locations, respectively). It is visible that perfect knowledge like in
Figure 3 is no longer possible: the optimal reference protocol does
not always have perfect information. Especially for the high-level
aggregate in Figure 5 the inevitable delay until up-to-date informa-
tion on the entirety of the area has arrived can clearly be seen from
the offset between the true value and the optimal protocol. The
sketch-based aggregation is close to the optimal knowledge, again
with the previously discussed soft-state time lag in case of a de-
creasing value. These results demonstrate that probabilistic aggre-
gation is indeed able to collect the available information, yielding
aggregates that represent the available knowledge.



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15

E
s
ti
m

a
te

Time (in minutes)

Soft-state sketches
Optimal reference

True value

Figure 5: Accuracy of local large aggregate.
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Figure 6: Accuracy of distant medium-sized aggregate.

4.4 Distributing aggregates

Now, we look at further away regions and evaluate the represen-
tation of the situation in the knowledge bases of participating cars.
Figures 6 and 7 represent two instances of medium-sized regions,
as they are seen at a distance of about 3 km beeline. In addition to
the time lag for the information transport it is not astonishing that
even the optimal reference protocol does not always have complete
information. If up-to-date data only on parts of the total aggrega-
tion area is present and this data is not typical for the whole ag-
gregate, effects like the overestimation around simulation minute
six in Figure 7 are the logical consequence. Nevertheless, the es-
timates once again reflect the true situation in the modeled regions
well. Finally, this is also confirmed by a look at a large aggregate’s
representation of the outskirt area in our model, as it is depicted in
Figure 8.

In summary, sketch-based probabilistic aggregation can be used
to create aggregates that come close to what can theoretically be
achieved with the considered kind of system. This optimum was
here represented by a non-realizable optimal reference protocol.
We consider these results very encouraging indications that the pro-
posed algorithm is a suitable way to overcome the often observed
general difficulties of distributed, uncoordinated data aggregation
in dissemination schemes.
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Figure 7: Accuracy of distant medium-sized aggregate.
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Figure 8: Accuracy of distant large aggregate.

5. CONCLUSION
In this paper, we introduced a data aggregation mechanism for

dissemination-based VANET applications. It is based on a proba-
bilistic data representation, Flajolet-Martin sketches, which we ex-
tended to a soft-state data structure. This yields duplicate insen-
sitive aggregates, thereby overcoming major unsolved problems in
existing aggregation schemes for VANETs. We discussed several
application scenarios of our scheme and possible extensions, show-
ing the broad applicability of the approach.

In a simulative evaluation study using ns-2 and a realistically
modeled inner-city VANET we assessed the performance of the ag-
gregation scheme. We compared the values to what could ideally
be achieved in the same setting. The results of this study confirm
our expectation that sketch-based schemes are well-suited for the
considered purpose, and may well form a central building block for
a large variety of future VANET applications.
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