
Multiple Simulator Interlinking Environment for IVC

Christian Lochert, Björn Scheuermann,
Andreas Barthels, Alfonso Cervantes,

and Martin Mauve
Heinrich-Heine University Düsseldorf

Düsseldorf, Germany

{lochert, scheuermann,
mauve}@cs.uni-duesseldorf.de

Murat Caliskan
Volkswagen AG

Wolfsburg, Germany

murat.caliskan@volkswagen.de

Categories and Subject Descriptors:
C.2.1 [Computer-Communication Networks]: Network Architec-
ture and Design, Wireless communication
I.6.7 [Simulation and Modeling]: Simulation Support Systems, En-
vironments

General Terms: Experimentation, Performance

Keywords: simulator coupling, vanet

1. INTRODUCTION
The development and evaluation of applications for car-to-car

communication plays an increasingly important role, both in scien-
tific and industrial research [1,2,5,7,8]. These applications aim at
enhancing traffic safety, driving comfort, and in-car entertainment.
The common development cycle for these applications includes a
detailed simulation step preceding the actual implementation in or-
der to reveal hidden challenges or design flaws.

Commonly, a set of independent simulators is used to conduct
these studies. In order to capture the specific characteristics of a
VANET the nodes have to move in a realistic manner. The move-
ment patterns are created by vehicular traffic simulators and are
stored in traffic files. A network simulator is then used to model the
algorithms employed for routing data packets through the VANET.
It uses the traffic files generated by the traffic simulator to move
the nodes during the simulation. Finally the application data is
often approximated by some artificial stochastic or deterministic
processes within the network simulator.

One key disadvantage of this approach is the inability to mod-
ify the traffic data in response to application layer events. I.e., no
matter what happens at the application layer, the movement of the
vehicles will remain the same. There is no way for an application to
change the behavior of a vehicle during runtime. This reduces the
level of realism that can be achieved for key applications like active
safety which in reality influence the node’s movement significantly.

To solve this problem we propose to interlink different simula-
tors for network simulation, traffic simulation and application sim-
ulation to establish an integrated simulation environment that goes
beyond existing simulator couplings like [3] or simple downstream
simulators like [10]. Thus a holistic evaluation of VANET applica-
tions can be done. Two main concerns have to be dealt with: first,
how to communicate between the simulators without encountering
major performance losses and second even more critical, how to en-
sure (simulation-) time synchronization between these simulators.
Copyright is held by the author/owner.
VANET’05,September 2, 2005, Cologne, Germany.
ACM 1-59593-141-4/05/0009.

2. ARCHITECTURE
The aim of our architecture is to enable an holistic evaluation

of VANETs with the ability to tune each ’adjusting screw’ of all
involved simulators. As depicted in Figure 1 the architecture com-
prises one simulator each for vehicular movements (VISSIM), ap-
plication behavior (Matlab/Simulink), and network functionality
(ns-2). A helper application (Simulation Control) is present to en-
able cross operating system interaction between simulators.

traffic data

traffic data
queries
change of behavior

queries change of behavior

initialisation

initialisation
initialisation

initialisation

TCP−Sockets

Simulation Control

network packets
change of behavior

network packets
traffic data
polling

Matlab/Simulink

Matlab−Engine
COM−Interface

Vissim

drivermodel.dll

ns−2

Matlab−Control
TCP−Sockets

Windows Linux

Figure 1: Representation of the simulation environment.

2.1 The Network Simulator – Central Module
In the research community multiple distinct network simulators

are employed. We decided to use the freely available and widely
used open-source simulator ns-2 [6].

To enable simulator interlinking, a new central class calledSyn-
chronizewas implemented for ns-2. This class is responsible for the
synchronization between all interlinked simulators. At the startup
of the simulation a Tcl-object of this class is created and the con-
nection to the traffic simulator is established. After this initializa-
tion phase the network simulator itself is instanced. Within the
Synchronize-class a timer is set. After its expiration a request for
new movement data is sent to the traffic simulator. This process is
periodically repeated.

2.2 The Traffic Simulator
For the simulation of traffic data we used the simulator VIS-

SIM [9]. This simulator is able to do microscopic simulations on
the basis of realistic driver behavior. It offers two main interfaces:
i) the Component Object Model (COM) interface andii) the cus-
tomizable dynamic link library (DLL) calleddrivermodel.dll. VIS-
SIM requires a MS Windows platform.

The COM interface allows full control about most aspects of a
VISSIM simulation, including the modification of attributes such
as speed and acceleration of a vehicle. Since the access to this in-

terface is very heavy-weighted we used it only for those aspects
that cannot be controlled via other means. This includes starting
and halting the simulation process. In contrast to the COM inter-
face the dynamic link library offers a very light-weighted access
to the VISSIM simulator. This interface is originally intended to
allow the customization of the driver behavior during runtime. In
particular it can be used to change the behavior of the driver in re-
sponse to an application-level event. Furthermore, we employ the
drivermodel.dllinterface to access data such as the positions of the
vehicles in a lightweight and highly performant fashion.

Due to the fact that VISSIM requires MS Windows while the
other simulators perform optimally under Unix operating systems,
cross operating system communication was necessary. This task is
performed by an external application (Simulation Control).

2.3 The Application Simulator
We decided to use the Matlab/Simulink [4] environment as an

application level simulator. Simulink allows a user to create appli-
cations by providing personally adaptable drag and drop utilities.
Furthermore it is possible to automatically generate C-code out of
the Simulink simulation. This is regularly done to use the same
code-base for simulation and real-world products.

The Matlab environment is used to run the simulations. This en-
vironment offers the possibility to operate by remote control through
the Matlab engine. This engine includes a variety of library func-
tions such as starting and quitting Matlab, exchanging data with
Matlab, or requesting mathematical operations. In our environment
the network simulator uses these functions to communicate with
Matlab/Simulink during the simulation’s runtime of a simulation.

There is one major performance issue with interlinking the net-
work and the application simulator: handing data back and forth
between the simulators is costly. One transfer from the network
simulator to Matlab takes approximately 20 ms. It is therefore very
important to aggregate all packets for all vehicles that need to be de-
livered to the application simulator within a given period of time.
These packets are de-aggregated by the application simulator and
are then forwarded to the simulation of the individual vehicles.
From our experience it is not feasible to let one separate simula-
tion register with the network simulator for each vehicle.

3. SIMULATIONS
The interlinked network (ns-2.27) and traffic (VISSIM-4.0) sim-

ulators were used to investigate the transmission of emergency warn-
ings in vehicular ad-hoc networks. Besides demonstrating the via-
bility of interlinking the simulators, the key aim of the simulation
study was to understand the impact of the single hop bandwidth on
reliability and latency. The simulation area was part of a demo city.
Obstacle modeling was used to ensure that only vehicles that are in
direct line of sight could communicate.

For each simulation run one vehicle near the center of the sim-
ulation area was selected to simulate an accident. This triggered
the stopping of the vehicle in the traffic simulator and the transmis-
sion of a 64-byte emergency warning message by this vehicle. The
emergency warning was then forwarded by using simple flooding.
Each vehicle that received the message forwarded it once and then
decelerated using a regular braking pattern. We were interested in
how reliable and how fast the emergency message would be de-
livered depending on the available single hop bandwidth and the
distance to the accident.

For the experiments the average delivery ratio and delay of the
warning messages are investigated. Vehicles are grouped according
to their distance to the original sender of the emergency warning at
the time this warning message is transmitted by the original sender.

The first group contains all vehicles that are within a 500 m radius,
the second includes all vehicles that are not in the first group but are
located within a 1000 m radius and so on. This value is displayed
as distance on the x-axis of Figure 2(a) and Figure 2(b).

The y-axis of Figure 2(a) shows the ratio between the number of
nodes that have received a warning packet and the number of nodes
that belonged to the respective group. From a reliability perspective
it can be observed that a bandwidth of 10 KBit is the absolute mini-
mum value to achieve a reliability of around 0.9 for any significant
distances. It should be noted that this is influenced significantly
by the topology of the radio obstacles. This seems also to be the
reason why the group at 1500 m and 2000 m has a higher delivery
ratio than the group at 1000 m: in the topology of our city model
distances between 1500 m and 2500 m required the traversal of a
long street which is unlikely to fail.

Further conclusions can be drawn by studying the average la-
tency of the delivered warning packets (see Figure 2(b)). This la-
tency increases dramatically as the available bandwidth decreases.
To transmit a warning message early enough to warn another driver
it seems likely that at least a bandwidth of 100 KBit is needed. Here
the duration to transmit a packet grows from 0.1 s in a distance to
500 m up to almost 1 s in a communication range of 2500 m.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500

de
liv

er
y

ra
te

distance [m]

Delivery Rate

1 KBit/s 64 Byte
10 KBit/s 64 Byte

100 KBit/s 64 Byte
1 MBit/s 64 Byte

(a) Packet delivery ratio
versus distance of commu-
nication partners.

 0.001

 0.01

 0.1

 1

 10

 100

 0 500 1000 1500 2000 2500

tim
e

[s
ec

]

distance [m]

Avg latency of first delivered packet

1 KBit/s 64 Byte
10 KBit/s 64 Byte

100 KBit/s 64 Byte
1 MBit/s 64 Byte

(b) Avg. latency of deliv-
ered message vs. distance
of comm. partners.

Figure 2: Simulation Results

4. FUTURE WORK
One focus of our work will continue to be on the simulation of

vehicular emergency warning systems. In a next step we will inves-
tigate complex environments including full application level func-
tionality, e.g., only those vehicles that are likely to be affected by
the accident will break. We will then take into account that not
all vehicles need to receive the warning message to increase traffic
safety: if a vehicle ahead of another vehicle breaks then the other
vehicle will be stopped through normal driver behavior. It is thus
likely that a high reliability for the delivery of the warning mes-
sage is only required very close to the accident. Also, we will use
advanced flooding strategies to reduce the required bandwidth and
the time until the affected vehicles will break.

5. REFERENCES
[1] The DSRC project. http://www.leearmstrong.org/DSRC/DSRCHomeset.htm.
[2] The FleetNet project. http://www.fleetnet.de.
[3] U. Hatnik. et al. Using ModelSim, Matlab/Simulink and NS for Simulation of

Distributed Systems. InPARELEC ’04, pages 114–119, Washington, DC,
USA, 2004.

[4] The Matlab/Simulink application simulator.
http://www.mathworks.com/products/simulink/.

[5] The Network-on-Wheels project. http://www.network-on-wheels.de.
[6] The ns-2 network simulator. http://www.isi.edu/nsnam/ns/.
[7] The PATH project. http://www.path.berkeley.edu.
[8] The PReVENT project. http://www.prevent-ip.org.
[9] The VISSIM traffic simulator. http://www.ptv.de/cgi-bin/traffic/traf_vissim.pl.

[10] Q. Xu. et al. Vehicle-to-vehicle safety messaging in DSRC. InVANET ’04,
pages 19–28, Philadelphia, PA, USA, 2004.

http://www.leearmstrong.com/DSRC/DSRCHomeset.htm
http://www.fleetnet.de
http://www.mathworks.com/products/simulink/
http://www.network-on-wheels.de
http://www.isi.edu/nsnam/ns/
http://www.path.berkeley.edu
http://www.prevent-ip.org
http://www.ptv.de/cgi-bin/traffic/traf_vissim.pl

	1 Introduction
	2 Architecture
	2.1 The Network Simulator -- Central Module
	2.2 The Traffic Simulator
	2.3 The Application Simulator

	3 Simulations
	4 Future Work
	5 REFERENCES -9pt

