
High-Speed Per-Flow Traffic Measurement with
Probabilistic Multiplicity Counting

Peter Lieven Björn Scheuermann
Heinrich Heine University, Düsseldorf, Germany
{lieven, scheuermann}@cs.uni-duesseldorf.de

Abstract—On today’s high-speed backbone network links,
measuring per-flow traffic information has become very chal-
lenging. Maintaining exact per-flow packet counters on OC-192
or OC-768 links is not practically feasible due to computational
and cost constrains. Packet sampling as implemented in today’s
routers results in large approximation errors. Here, we present
Probabilistic Multiplicity Counting (PMC), a novel data structure
that is capable of accounting traffic per flow probabilistically. The
PMC algorithm is very simple and highly parallelizable, and
therefore allows for efficient implementations in software and
hardware. At the same time, it provides very accurate traffic
statistics. We evaluate PMC with both artificial and real-world
traffic data, demonstrating that it outperforms other approaches.

I. INTRODUCTION

Measuring the per-flow traffic on high-speed network links
is a challenging problem. In the case of a 40 Gbps link,
one can end up with as few as 12 ns for processing each
packet. In such an environment, the available processing power
and memory bandwidth do simply not suffice to maintain,
for instance, exact statistics of the traffic per source, per
application, per protocol etc.: the overall latency for looking
up the memory position of the correct counter, reading its
current value, incrementing it, and writing the result back to
memory is too large (at least without very costly hardware) [1],
[2], [3]. In fact, the problem is getting worse and worse,
as network bandwidth increases even faster than processing
power.1 Solutions implemented in today’s network equipment
like (Sampled) Netflow [4], [5] or sFlow [6] examine only
a small fraction of the packets, at the cost of significant
estimation errors [7], [8], [9], [10].

In this paper, we tackle this problem with a probabilistic
counting-based approach to network traffic measurement. We
introduce a stream processing algorithm—Probabilistic Mul-
tiplicity Counting (PMC)—which uses probabilistic counting
techniques to determine the approximate multiplicity of each
element in large streams. It is particularly well suited for traffic
measurements on high-speed communication links, and we
will focus on this application here. However, PMC is likewise
applicable for many other purposes.

PMC’s main benefit is that it is able to record information
on a passing-by packet (or, more generally, on a data item
in a stream) by setting only one single bit in a bit field. A

1This is known as “Gilder’s law”, stating that available bandwidth in
communication networks grows at least three times faster than processing
power (which, in turn, increases exponentially according to Moore’s law).

specific hashing mechanism determines the bit position to be
enabled, based on the packet headers. This operation can be
performed in constant time, without any loops or conditional
branches in the code, and with write-only memory access.
PMC is therefore particularly well-suited for pipelined and
parallelized operation. We can then extract flow size estimates
from the resulting bit field.

In the course of the paper we first review related work in the
following section. In Section III, we detail the problem setting
and introduce some important foundations. We then introduce
the PMC algorithm, discuss design tradeoffs and interrelations
in Section IV. Experimental results from applications of PMC
to artificial data sets and real network traces are presented in
Section V. Finally we conclude and summarize the paper in
Section VI.

II. RELATED WORK

Due to its high practical relevance, the topic of flow
measurement has attracted a lot of attention in recent years.
In the following, we provide an overview of the works that
are most closely related to our own contribution.

Both deterministic and probabilistic approaches have been
proposed. Particularly remarkable on the deterministic side
are hybrid architectures which use both fast, but expensive
SRAM and slower, but also cheaper DRAM storage in parallel.
This has first been proposed by Shah et. al. [11], and has
subsequently been further improved by Ramabhadran and
Varghese [12] and by Zhao et al. [13]. Although all algorithms
reduce the amount of expensive SRAM storage needed, they
still include deep (e. g., 64 bit) off-chip DRAM counter opera-
tions and costly SRAM-to-DRAM updates. An important step
if per-flow counters are used is to locate the correct counter(s)
for the currently examined packet in memory. This problem is
either neglected, or it is proposed to use (expensive) content-
addressable memory (CAM) or hash tables [14], both of which
limit cost effectiveness and/or scalability.

Due to these fundamental constraints, the larger fraction of
existing work falls, like PMC, into the area of approximate or
probabilistic counting. These algorithms can be divided into
three groups: (i) sampling algorithms that reduce the complex-
ity by sampling only a subset of all packets, (ii) algorithms
that focus only on flows which represent a significant part of
the overall traffic (so called heavy hitters or elephants), and
(iii) algorithms that process all packets. We detail them in the
following subsections.

c©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.

2

A. Packet sampling

Packet sampling is what we already find in today’s routers,
in Cisco’s Netflow [4], IPFIX [3], or in sFlow [6], which
is currently implemented by most other vendors like Juniper,
Brocade, HP or Force10. In most cases, packets are sampled
at a fixed frequency (typically 1 out of 512 packets or less).
Cisco’s Sampled Netflow [5] introduced the variant of picking
packets at random; pseudorandom packet selection has been
proposed for multi-point observations [15]. However, sampling
as it is implemented today provides only limited accuracy,
especially for small flows [7], [8], [9], [10]. To address this
problem, more sophisticated techniques like Sketch-Guided
Sampling [16] or ANLS [17] maintain per-flow counters to
keep track of the flow size or the number of sampled packets
and throttle the sample rate with increasing flow size. The
larger a flow grows, the less packets are sampled. The reduced
error comes at the cost of additional storage for per-flow state
and higher computational complexity. With PMC, we propose
an algorithm that has a very simple structure and is fast enough
to examine all packets. We will demonstrate that it achieves
higher accuracy than packet sampling.

B. Heavy hitter algorithms

Estan and Varghese’s “Sample-and-Hold” approach [10]
was the first that exploited the heavy-tailed nature of Internet
traffic [18]. The idea is that most of the bandwidth is occupied
by only a small fraction of the flows2. So, these algorithms
maintain only a small set of (deterministic) counters, which
count only the traffic of the heavy hitters. Heavy hitter algo-
rithms are able to provide high accuracy for, e. g., all flows that
occupy at least 0.1% of the total bandwidth. Enhancements
with further guarantees or lower storage requirements have
also been proposed, see, e. g., [19], [20], [21]. In contrast to
heavy hitter algorithms, our design is able to provide flow size
information for all flows, not only for the extrema.

C. Approximations for all flows

In recent years, increasing focus has been put on proba-
bilistic algorithms that are fast enough to examine all packets,
and at the same time provide estimates of the sizes of all
flows. A number of approaches from this category use standard
binary counters in a memory element, and focus on how to
arrange and update these counters. A well-known example are
Spectral Bloom Filters [22]. They are based on the well-known
Bloom filter data structure [23], [24], but use a counter at
each position in the filter instead of a single bit. Count-Min
Sketches [25] hold counters in a matrix-like organization. A
big caveat for both Spectral Bloom Filters and Count-Min
Sketches is that the maximum multiplicity has to be known
a priori quite accurately, to provide large enough counters
without wasting too much memory. A recent invention called
Counter Braids [14] adds additional layers which are accessed
as soon as counters overflow to overcome this problem.
All these algorithms need read and write memory access to

2This is known as a quasi-Zipfian or Pareto distribution.

multiple counters for recording information on a packet, which
is comparatively expensive. PMC does not need to know the
maximum frequency beforehand, and its counting operation is
much simpler.

Probably the closest relative to PMC is the Multi-Resolution
Space-Code Bloom Filter (MRSCBF) introduced by Kumar et
al. [2]. MRSCBF, too, is based on a write-only bit field for
collecting information on the packet stream. While the general
direction of MRSCBF is very promising, Donghua et al. [26]
found that it is difficult to apply in practice. With parameter
choices as suggested in [2], MRSCBF sets an average of 5
bits per captured packet, the worst case is 49 bits. The exact
number is determined by a quite complex process. Donghua
et al. did an implementation on the Intel IXP 2400 network
processor and observed that this complexity (including a lot of
conditional branches), along with the large number of memory
accesses, makes MRSCBF inefficient. The structure of PMC,
in contrast, is extremely simple: it performs the very same
sequence of operations for each packet, with no conditional
operations, and sets exactly one bit. Despite this simplicity, we
will show that PMC achieves higher precision than MRSCBF
under similar working conditions.

There is also a wide range of probabilistic algorithms that
deal with the estimation of flow size distributions, examples
are [27], [28], [29]. Here, we are interested in the size of each
individual flow.

III. PRELIMINARIES

Before we dive into the details of our algorithm, it is helpful
to take a closer look at the problem setting. Furthermore, in
order to understand PMC, a basic understanding of the FM
sketch data structure introduced in [30] is vital. We will cover
both topics in this section, before we subsequently come to
our own contributions.

A. Problem statement

We consider a router at which packets arrive, typically at
a very high rate. We assume that each of these packets is
attributed to exactly one flow. Our aim will be to (approxi-
mately) keep track of the number of passing-by packets per
flow. In our context, the notion of a flow is very wide and
can be adjusted (almost) arbitrarily, which results in high
flexibility. A sensible definition could be that two packets
belong to the same flow if their source and destination IPs are
identical; other possibilities include summarizing all packets
that stem from the same source in one flow, or to take the used
protocol into account. We assume that a function F is given,
which maps packets to flow IDs. We furthermore assume that
determining the flow of a packet (i. e., evaluating F) is not
a performance bottleneck. This is not a significant restriction:
typically, determining the flow ID of a packet is barely more
effort than extracting and concatenating one or two header
fields (like source and destination IP). This is a trivial task in
both software- and hardware-based designs.

After some time interval during which traffic measurements
have been performed, we want to be able to ask questions

3

like: “How many packets from flow x have passed through
this router?” For this purpose, we may simplify the problem
by considering a sequence of flow IDs instead of a sequence
of packets. The algorithm will be given such a stream of flow
IDs as its input.

From a more mathematical perspective, the stream of flow
IDs during some time interval can also be interpreted as a
multiset. Then, the number of packets for a given flow is equal
to the multiplicity of the flow ID in the multiset. Alternatively,
PMC can thus also be interpreted as a means to determine the
multiplicities of individual elements in a multiset.

B. FM sketches

PMC builds upon a probabilistic counting algorithm which
originates from the database context. It has been devised by
Flajolet and Martin in 1985 [30] and is known under the
name “FM sketches”. FM sketches solve a problem that is
quite different from the one tackled by PMC: they provide an
estimate of the cardinality of a multiset, i. e., the number of
distinct elements, whereas PMC’s purpose is to estimate the
multiplicities of the elements in the multiset, i. e., how often
each single element occurred. Thus, FM sketches are not a
solution to the problem posed here. Nevertheless, PMC makes
use of the algorithmic ideas behind FM sketches, and a basic
understanding of FM sketches—and especially of the way how
estimates are obtained from the FM sketch data structure—is
essential for understanding PMC.

An FM sketch uses a bit field S = s1, . . . , sw of length
w ≥ 1 as a basis. The bit field is initialized to zero at all
positions. To add an element x to the sketch, it is hashed by a
hash function h with geometrically distributed positive integer
output, where P (h(x) = i) = 2−i. The entry sh(x) is then
set to one. With probability 2−w we have h(x) > w; in this
case, no operation is performed. For practical implementations,
especially in the context of PMC, it is sometimes easier to
avoid this special case by restricting the range of possible
values of h to [1, w] and setting P (h(x) = w) = 2−w+1. Upon
careful implementation, this avoids conditional branches. For
reasonably large w, the differences are negligible. Note that
adding an element to an FM sketch may only result in a
change of the sketch if an element is encountered that has not
been observed before—otherwise the respective bit position
will already be one. It therefore effectively ignores duplicate
additions.

The key result of [30] is that an estimate for the number n
of distinct added elements can be obtained from the length of
the initial, uninterrupted sequence of ones, i. e., from

Z(S) := min({i ∈ N0 | i < w ∧ si+1 = 0} ∪ {w}). (1)

Furthermore, Flajolet and Martin find that Z(S) grows like
log2 n, i. e., there is a proportionality factor ϕ such that

n ≈ 2Z(S)/ϕ. (2)

It is possible to obtain the value of ϕ as follows. The
probability that bit i is not set after n distinct elements have

been added is

P (si = 0 | n) =
(
1− 2−i

)n
. (3)

Consequently, the probability qk(n) of having at least k
consecutive ones at the beginning of the sketch is

qk(n) =
k∏

i=1

(1− P (si = 0|n)) =
k∏

i=1

(1− (1− 2−i)n). (4)

The probability for exactly k initial ones is qk(n)− qk+1(n).
This allows us to obtain the expected value of the length of
the initial, uninterrupted sequence of ones Z(n), which is

E[Z(n)] =
w∑

k=1

k · (qk(n)− qk+1(n)). (5)

We can combine this with (2) to get an expression for ϕ
depending on the multiplicity n:

ϕ(n) = 2E[Z(n)]/n. (6)

The dependency on n, however, can be overcome: Flajolet
and Martin prove by means of Mellin transform and residue
calculation that ϕ(n) goes to ϕ ≈ 0.77351 for n → ∞. It
converges so quickly that the value can be considered constant
in practice, and can be used for obtaining estimates using (2).
A numerically easy way to obtain the value of ϕ is to evaluate
(6) for sufficiently large n (e. g., n = 105).

The variance of Z(S) is quite significant, and thus the
approximation is not very accurate. This can be improved by
using multiple sketches in parallel to represent a single value,
trading off accuracy against memory. The respective technique
is called Probabilistic Counting with Stochastic Averaging
(PCSA) in [30]. With PCSA, each element is first mapped
to one of the sketches by using a uniformly distributed hash
function, and is then added there. If m sketches are used,
denoted by S1, . . . , Sm, then the estimate for the total number
of distinct items added is given by

C(S1, . . . , Sm) := m · 2
Pm

i=1 Z(Si)/m/ϕ. (7)

One can identify a PCSA set with an m × w matrix, where
each row is a standard FM sketch. Upon addition of an
element, a uniformly distributed hash function selects one
row, and a second, independent, geometrically distributed hash
function picks one column. The one single bit located at these
coordinates in the matrix is then set to one.

For a sufficiently large number of elements, PCSA yields a
standard error of approximately 0.78/

√
m [30]. For very small

element counts in the order of m or below, however, there are
initial inaccuracies. We will come back to this issue later.

IV. PROBABILISTIC MULTIPLICITY COUNTING

In the course of this section, we will now step by step con-
struct a new network traffic accounting mechanism, Probabilis-
tic Multiplicity Counting (PMC). PMC is able to determine the
multiplicities of individual keys in a multiset—or, equivalently,
the number of occurrences of each flow ID in a stream of
network packets.

4

A. Counting individual elements

As our first step towards PMC, we consider a significantly
simpler problem: we assume that all elements are identical,
i. e., that all packets belong to one single flow. Thus, we only
need to count their total number. We will do so probabilisti-
cally, by “abusing” FM sketches in a certain way. By itself,
this is of limited utility—but it will subsequently become a
central building block of PMC.

We can turn an FM sketch into a simple probabilistic
counter in the following way. Consider a stream of elements
that are all pairwise distinct. In that case, the cardinality of
the multiset (which is estimated by FM sketches) and the
total number of elements are identical. If the hash function
h used in the FM sketches is good, then the sequence of hash
values for a stream with all-distinct elements is equivalent to
a sequence of independent, geometrically distributed random
numbers. We can exploit this property: we take an FM sketch,
and simulate a stream of all-distinct elements by not using
a hash function at all, but instead setting a bit at a random,
geometrically distributed position whenever we want to incre-
ment the “counter”. Clearly, the effect on the FM sketch is the
same as if a “new” element in the multiset had been observed.
This can analogously be done for FM sketches with PCSA,
by additionally selecting one of the m sketches at random for
each addition.

Note that it may (and will) happen that the same random
number occurs multiple times, and the same bit is enabled
in the FM sketch. This, however, is not different from the
case where the hash function in standard FM sketches yields
the same hash value for distinct elements; this is taken into
account in the construction of FM sketches.

In order to state this more formally, we introduce rand(m)
to denote a function that gives us a uniformly distributed
random integer in the range [1,m]. We furthermore write
georand(w) for a geometrically distributed random number
where the probability that georand(w) = i is 2−i for i =
1, . . . , w − 1 and is 2−w+1 for i = w (as mentioned in
Sec. III-B, the exception for i = w simplifies the implemen-
tation). To increment the probabilistic “counter” built from a
m×w PCSA matrix, we choose i using rand(m) and j using
georand(w) and set the element at coordinates (i, j) in the
matrix to one. An estimate can be obtained using the standard
FM sketch PCSA evaluation procedure (7).

B. Virtual PCSA matrices

Probabilistic Multiplicity Counting (PMC) consists of two
central algorithms: one for capturing the statistics in a special
data structure during the measurement, and another one for
extracting flow size estimates from this structure. We are now
ready to introduce the first of these components. While it is of
course desirable that both algorithms are as simple as possible,
the capturing algorithm is the really performance critical one:
it must be executed for each captured packet in real-time.

The key idea of PMC is to use one FM sketch matrix for
each flow ID, in combination with the counting methodology
from the previous subsection. However, these matrices are not

Figure 1. Mapping of individual entries in two distinct matrices a, b to B.

stored explicitly and individually, because this would require
to look up the correct matrix in some way whenever a packet
is processed—an expensive operation which, as it turns out,
can be avoided entirely. Instead, PMC uses what we call a
virtual PCSA matrix for each flow. The physically stored data
structure in which PMC collects information about the packet
stream is a simple bit field B of size l bits, where l can be
chosen arbitrarily. For any given flow ID f , the individual
entries of the virtual PCSA matrix are mapped to positions in
B by means of a hash function H with the following signature:

H : F × [1,m]× [1, w]→ [1, l],

where F is the set of possible flow IDs and m and w are the
dimensions of the virtual PCSA matrices. If the bit at row i
and column j in the virtual PCSA matrix of flow f is to be
accessed, we evaluate H(f, i, j). This yields the corresponding
position in the bit field B. It is straightforward to use any
uniformly distributed hash function with sufficiently random
output in the role of H: the input parameters can simply be
concatenated to a single bit string. The idea of virtual PCSA
matrices and mapping their entries to one long, single bit field
is visualized in Figure 1.

The dimensions of the virtual PCSA matrices—that is,
m and w—can be chosen arbitrarily. We will come back
to both parameters later on. Of course, it may happen that
multiple positions from the same or different virtual matrices
are mapped to the same bit in B. We will soon show that these
hash collisions can effectively be dealt with.

The PMC data acquisition algorithm consequently works as
follows: initially, all positions in B are set to zero. Whenever
we encounter a packet from flow f , we generate a uniformly
distributed random number i in the range [1,m] and a geomet-
rically distributed random number j in the range [1, w]. These
are the row and column of the virtual matrix entry that is set
to one. We then evaluate H(f, i, j) and set the resulting bit
position in B. Algorithm 1 summarizes this operation.

Algorithm 1 PMCCOUNT(f)
1: i← rand(m)
2: j ← georand(w)
3: B[H(f, i, j)]← 1

5

Algorithm 2 GETZSUM(f)
1: Z ← 0
2: for i = 1 . . . m do
3: for j = 1 . . . w do
4: if B[H(f, i, j)] = 0 then break
5: end for
6: Z ← Z + (j − 1)
7: end for
8: return Z

Algorithm 1’s properties make very efficient implemen-
tations in both software and hardware possible if suitable
pseudorandom number generators and hash functions are
chosen. For generating uniform randomness, two examples of
very fast pseudorandom number generators are complementary
multiply-with-carry [31] and xorshift [32]. They combine very
good randomness with a very simple, branchless algorithmic
structure. It might seem that implementing georand(w) is
particularly difficult, but starting from uniform randomness it
is actually very easy: one may simply determine the position of
the first one in a uniformly distributed random bit string [30].
This is very easy in hardware, and for software implementation
there is valuable support in many current CPUs. For instance,
on the x86 architecture the bsf and bsr opcodes can be
used (starting from the Intel P6 architecture, they even require
only one single CPU cycle). Regarding the hash functions,
Henke et al. [33] compare various hash functions with respect
to their suitability for network measurement applications. This
includes well-suited candidates for our purposes. Upon careful
implementation, Algorithm 1 can thus make optimal use of
modern pipelined CPU designs for maximum performance.

C. Obtaining estimates from the bit field

We now turn towards the question how we can obtain an
estimate for the multiplicity of a given flow ID f from B. To
this end, we extract f ’s virtual matrix from B, by iterating
over the parameter tuples (f, i, j), where i = 1, . . . ,m and
j = 1, . . . , w and evaluating H for each combination. In
combination with calculating the sum of the lengths of the
initial sequences of ones in each row (as it is used in the PCSA
evaluation formula), this is what Algorithm 2 accomplishes.

Then, however, the question arises how we can map Algo-
rithm 2’s output to an estimate. As an initial approach, we
could use the standard FM sketch PCSA evaluation according
to (7). This, however, will not work: hash collisions can lead
to bits that are incorrectly set to one (“false positive bits”), if
their storage position in B coincides with another bit (from
the same or another virtual matrix) that has previously been
set to one. This does not occur for FM sketches, so it is not
taken into account there.

Observe that bits in a virtual matrix will never be incorrectly
set to zero (because the capturing algorithm can only enable,
but never disable bits). Thus, basically, our virtual matrix is
a standard PCSA FM sketch matrix, where some of the zero
bits may be flipped to one. Given that the hash function H is
sufficiently random, all bits in the virtual matrix are mapped

to de-facto-random positions in B. Thus, the probability of a
false positive bit is solely determined by the fraction p of bits
that is set to one in B, i. e., by the fill rate of B.

With the standard FM sketch evaluation, this effect will lead
to overestimation: the length of the initial sequence of ones in
an FM sketch may increase due to false positive bits. This in
turn results in a higher value of Z in (7) and consequently in a
higher estimate. The higher p, the more severe this effect will
be. Upon evaluation, p can easily be determined from B by
counting the bits set to one and dividing this number by the
bit field length l. We therefore revisit Flajolet and Martin’s
arguments in the light of false positive bits, and derive an
evaluation formula that takes p into account. This will enable
us to obtain unbiased estimates even in the presence of a
significant number of collisions.

We start with the probability qk(n) that at least the first k
bits in a sketch row are set after n additions as given in (4).
We observe that qk is now also a function of p, and obtain a
modified version of (4) as follows:

qk(n, p) =
k∏

i=1

[
1−

(
1− 2−i

)n · (1− p)] . (8)

This formula can be understood as follows: a bit is zero if
and only if 1) it has not been enabled by an addition to the
respective virtual matrix and 2) it is not a false positive bit.
Observe that for the case p = 0 (8) is identical to (4).

Analogously, we obtain E[Z(n, p)] as follows:

E[Z(n, p)] =
w∑

k=1

k · (qk(n, p)− qk+1(n, p)). (9)

For ϕ(n, p), now also depending on p, we get

ϕ(n, p) = 2E[Z(n,p)]/n. (10)

As in the case of FM sketches, ϕ(n, p) converges very
quickly to a constant value for large n; the limit, however, now
depends on p. Just as above in Sec. III-B, we can obtain the
value ϕ(p) from the above formula numerically, by evaluating
for large n. Two example values for ϕ(p) are ϕ(0) = 0.78
and ϕ(0.5) = 1.85. If we then replace ϕ in (7) by ϕ(p), we
obtain an estimation methodology that takes false positives
into account.

It should be noted that it is also possible to adapt Flajolet
and Martin’s analytical arguments regarding ϕ to include false
positive bits. This yields an analytical expression for ϕ(p).
However, the calculations are rather laborious, so that they
exceed scope (and page limit) of this paper significantly. More-
over, evaluating the resulting expression is computationally
much more costly than determining ϕ(p) using (10), without
giving higher accuracy.

D. Dealing with small multiplicities

We are now at a point where we have mechanisms for
adding elements to a PMC bit field, and for extracting esti-
mates. However, it cannot estimate flow sizes below m/ϕ(p)
(typically a few ten, at most a few hundred packets), because

6

Algorithm 3 GETEMPTYROWS(f)
1: k ← 0
2: for i = 1 . . . m do
3: if B[H(f, i, 1)] = 0 then k ← k + 1
4: end for
5: return k

the exponent in (7) cannot take on values below zero. This
effect has been observed before for FM sketches [30], [34], and
it likewise exists in PMC. Fortunately, we can do significantly
better by a slight modification. This modification affects only
the evaluation algorithm; the capture part remains untouched.

We propose to alleviate the small value problem by a
modified variant of HitCounting [35]. HitCounting solves the
same problem as FM sketches—determining the cardinality of
a multiset—with different means. It uses a bitmap of size m
and a uniformly distributed hash function that maps elements
to bit positions. The bit field is initialized to zero, positions are
set to one when they are “hit”. From the number of positions
that are still zero, the number of insertion operations with
distinct elements is estimated: after how many additions can
we expect that k out of m positions are still zero? This is
closely related to the coupon collector’s problem.

In standard HitCounting, after n additions, each of the m bit
positions had n “chances” of being hit, each with probability
1/m. So, the probability π that any individual position is still
zero is

π = (1− 1/m)n ≈ e−n/m. (11)

Consequently, we may expect a total of k = m ·π bit positions
that are still zero. By combining this and solving for n, the
cardinality estimator is obtained:

n = −m · log(k/m). (12)

We apply this idea to our problem in the following way:
we introduce a second evaluation method that is especially
designated to small flows. We then discuss how one can
dynamically choose the better suited method upon extracting
an individual estimate. The alternative method does not work
on the full virtual matrix, instead, we consider only the
first matrix column. Due to the geometric distribution of the
column hash function the probability that an addition happens
in the first column is 1/2. Assume that n packets of flow f
have been sampled. If B’s fill rate (and thus the false positive
bit probability) is p, then the probability π′ that the first bit in
any given row in f ’s virtual matrix is zero is

π′ = (1− 1/2m)n · (1− p) ≈ e−n/(2m) · (1− p). (13)

In analogy to above, we can expect k = m · π′ such rows.
We can determine k as shown in Algorithm 3, and obtain an
estimator for n:

n = −2m · log k/(m · (1− p)). (14)

Asked for the multiplicity estimate of a flow ID f , we must
make a choice which evaluation methodology to use: the one
from the previous subsection, or modified HitCounting. The

Algorithm 4 PMCESTIMATE(f)
1: k ←GETEMPTYROWS(f)
2: if k/(1− p) > 0.3 ·m then return −2m · log k

m·(1−p)

3: Z ← GETZSUM(f)
4: return m · 2Z/m/ϕ(p)

virtual matrix evaluation can take much more information into
account and is clearly preferable if larger multiplicities are
estimated, whereas modified HitCounting avoids the problems
with small estimates. Whang et al. [35] note that HitCounting
yields most accurate results if the fraction of non-set bits is
above 30 %. We make use of this observation and design a
hybrid evaluation algorithm. We must again take false positive
bits into account, so we adjust Whang et al.’s criterion. To this
end, we estimate the number k′ of zero first column bits if
there were no false positives. From (13) we see that k′ can
be obtained from k as k′ = k/(1 − p). If k′ > 0.3 · m, we
use modified HitCounting. This will be the case for very small
flows. Otherwise, the method from Sec. IV-C is applied.

We emphasize again that the decision between HitCounting
and the sketch-based methodology is made upon evaluation
of an individual flow multiplicity. Both algorithms are based
on the same bit field, and the procedure for collecting flow
information is identical for all packets in all flows. The final
PMC estimation procedure is summarized in Algorithm 4.

E. Parameter choices

There are a number of parameters in PMC, the choice of
which deserves discussion. These include the dimensions m
and w of the virtual matrices and the size l of the bit field
B. Fortunately, the role and impact of all these parameters
is quite straightforward, so that they can easily be used for
well-directed tradeoffs.

The least critical parameter is w. In fact, once w is large
enough, it does not have any significant impact at all: very
high values of georand(w) are extremely unlikely. So, even
for very large flows, we can do very well with, for instance,
w = 32. Because the virtual matrices are not explicitly stored,
w does not affect storage requirements either.

A larger number m of rows in the virtual matrices means
that the PMC data capture algorithm will distribute its “hits”
over a larger number of different bits for the same flow ID.
Thus, we may expect that higher values of m result in higher
accuracy, but at the same time lead to the bit field B running
full more quickly. For our evaluations, we used values between
m = 32 and m = 256, because they constitute good tradeoffs
between accuracy and resource requirements.

By the bit field size l we can adjust the total number of bits
that is available to all virtual matrices. If we use a larger bit
field, the fill rate (and thus the false positive bit probability)
will be lower after the same number of additions. This will
result in higher accuracy. However, more memory for B results
in higher cost, so practical implementations will have to find
a good tradeoff. Typically, a few megabit will constitute a
reasonable design point. When the bit field is in danger of

7

becoming too full, it is always possible to mirror B to some
background storage, and continue with an empty bit field, as
it has also been proposed for MRSCBF [2]. For continuous
operation we envision using a frame buffer-like architecture
with two identical bit fields: while PMC is streaming bits to
one bit field, the other field can be exported to an external
device for evaluation and zeroed afterwards.

Note that adjustments of l, m, or w do all not affect
the effort for collecting data—when we tune PMC for lower
memory resource usage or higher accuracy, Algorithm 1 stays
just as simple as it is. This is a very interesting property, which
distinguishes PMC from existing approaches.

V. EVALUATION

In this section we evaluate the performance of PMC in
comparison to MRSCBF [2]. Unless otherwise stated, we used
m = w = 32 for PMC. The parameters of MRSCBF were
set as proposed in [2] (g = 32 or g = 64 hash groups,
r = 9 resolutions [with 3, 4, 6, 6, 6, 6, 6, 6, 6 bits per
bucket] and α = 0.25). Two evaluation methods for MRSCBF
are discussed in [2], MLE and MVE. Here we use MVE;
according to [2], the accuracy is comparable to MLE, but MVE
is much easier to evaluate.

A. Accuracy

In the course of this section, we will proceed from rather
abstract, artificial settings to increasingly realistic setups.
While abstract setups allow for a detailed understanding of
the results without non-deterministic real-world effects, more
realistic traffic patterns provide insight into the performance
that may be expected in real applications.

As a first step, we assume an infinitely large bit field, i. e.,
p = 0. We can do so by not implementing the algorithms with
a real bit field, but instead storing the hash function parameter
tuples of all set bits explicitly, so that no false positive bits
occur. This is possible for both PMC and MRSCBF. It gives
us, in some sense, a “best case” picture of the algorithms’
accuracy if the fill rate of the bit field is very small.

Figure 2 shows the standard error3 for both PMC and
MRSCBF (with g = 32) for an increasing multiplicity in such
a setting. These figures were obtained by processing flows
with a fixed number of packets and subsequently determining
the estimation error. We used 4096 samples per x value,
the y-axis error bars show the range of the relative errors
with 5 % extremal values cut off above and below. As one
might have expected, the standard error for PMC without false
positive bits equals the theoretical value of 0.78/

√
m = 0.138

found by Flajolet and Martin [30] for FM sketch PCSA sets
with identical parameters. Regardless of the multiplicity, the
standard error of MRSCBF is higher.

Based on the same implementations of PMC and MRSCBF,
we can also simulate false positive bits, by setting each zero
bit to one with a given probability p in the evaluation. This

3The standard error is a measure for the relative deviation of the estimates
from the correct value. It is defined as the standard deviation of the normalized
error samples.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10000 20000 30000 40000 50000 60000

S
ta

n
d
a
rd

 e
rr

o
r

Multiplicity (n)

MRSCBF
PMC

Figure 2. Accuracy of PMC and MRSCBF without false positive bits.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10000 20000 30000 40000 50000 60000

S
ta

n
d
a
rd

 e
rr

o
r

Multiplicity (n)

MRSCBF
PMC

Figure 3. Accuracy of PMC and MRSCBF with p = 0.5.

allows us to examine PMC’s and MRSCBF’s performance in
a deterministic setting with arbitrary false positive bit rates. In
Figure 3 we have done so with p = 0.5. It shows that PMC
and MRSCBF perform almost equally well in this setup. For
MRSCBF, the individual “resolutions” are clearly visible as
variations of the error over the multiplicity, whereas PMC’s
error is largely independent from the multiplicity.

B. Stress test

Further benefits of PMC become clear if we do a “stress
test”: we examine the performance for an increasing amount
(up to 256k flows) of artificially generated traffic with Pareto
distributed flow sizes (scale=1, shape=1.2). We give PMC and
MRSCBF a bit field of size 1 MB each.4 Figure 4(a) shows
how the bit fields fill up as this traffic is processed. The
experiment was repeated 64 times with different random seeds.
Again the y-axis error bars indicate the extremal values with
5 % cut-off (some error intervals are so small that they are
barely visible in the figures). We stopped the experiment after
256k flows have been processed. At this point, MRSCBF had
reached a fill rate of about 44 %, whereas PMC had set only
ca. 14 % of the bits to one. As we saw above, lower fill rates
increase the accuracy.

The standard error for these experiments can be seen in
Figure 4(b). Starting from about 100k flows, the mean standard
error of MRSCBF (then at about 30 % fill rate) increases

4As a side note, if we were to give up the write-only paradigm and used
one explicit 64 bit counter per flow, then, for 256k flows, these counters
would take up 2 MB of memory alone—not counting the additional space for
a lookup data structure to locate the right counter for an incoming flow ID.

8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 32k 64k 96k 128k 160k 192k 224k 256k

B
it
fi
e
ld

 f
ill

 p
a
te

 (
p
)

Number of flows sampled

 MRSCBF
PMC

(a) Fill rate for increasing number of flows.

 0

 10

 20

 30

 40

 50

 60

 70

 80

0 32k 64k 96k 128k 160k 192k 224k 256k

S
ta

n
d
a
rd

 e
rr

o
r

Number of flows sampled

MRSCBF
PMC

(b) Standard error for increasing number of flows.

 0.1

 1

 10

 100

1-64
64-128

128-256

256-512

512-1K

1K-2K

2K-4K

4K-8K

8K-16K

16K-32K

32K-64K

S
ta

n
d
a
rd

 e
rr

o
r

Flow size in packets

MRSCBF
PMC

(c) Standard error of different flow sizes.

Figure 4. Results from PMC and MRSCBF in the Pareto flow stress test.

massively. The reason is that occasionally very large errors
for very small flows occur.5

In Figure 4(c), the situation after 256k flows have been
processed is analyzed in more detail. The figure shows the
standard error for different flow size ranges. Note the log scale
on both axes. For both algorithms, the errors are largest for
very small flows up to 64 packets. However, PMC outperforms
MRSCBF over the whole spectrum of flow sizes. The figure
ends with the range 32K–64K, since, due to the Pareto
distribution, there are only very few flows above that size.

C. Real-world traffic

To test PMC and MRSCBF with real-world traffic, we
monitored the traffic on our university network’s Internet
uplinks over 24 hours (on May 28th, 2009). These links have
a total bandwidth of 310 MBit/s, which still allows for exact
traffic statistics on standard hardware for comparison purposes.
We observed a total of about 1.5·109 packets. As some subnets
are charged by traffic usage, we decided to evaluate the total
amount of traffic per internal IP address, i. e., all packets with
the same internal IP belong to one flow. We felt that traffic
below 1 MB/day is negligible and focus on hosts with higher
traffic volume.

For both PMC and MRSCBF we used a single bit field of
4 MB size (without bit field swapping, one bit field for the
whole day), and parameters to maintain a reasonable fill rate
at the highest possible accuracy (exact parameter values are
stated in the figure titles). Since we want to collect statistics
on the total amount of data transferred (not the total number
of packets), we need a way to adapt PMC and MRSCBF
accordingly. For each packet, we draw a random number in
the range [1,MTU], and process the packet (i. e., set bits in the
bit field) only if its size exceeds the random number. With this
simple trick, we (probabilistically) count “MTU equivalents”
instead of packets, without a significant increase in complexity
per processed packet. The flow size estimate is obtained by
multiplying the estimate with the MTU.

5Tracking this issue down revealed that—speaking in terms of the MRSCBF
paper—sometimes very high resolutions have a smaller relative incremental
inaccuracy due to false positives, which leads to gross overestimation of small
flows. We do not see an easy way to fix this problem.

Figures 5(a) and 5(b) show the results for PMC and
MRSCBF, respectively. Each point in the figures stands for
one flow. The x value is the true flow size, the y value is the
estimate. Ideally, all points should lie on the diagonal line.
For comparison purposes, we did the same experiment with
sFlow (that is, with packet sampling). We used the highest
sample rate (and thus the highest complexity and the highest
accuracy) that the standard allows: 1 in 512 packets. Figure
5(c) shows the outcome.

From the results it can be clearly seen that packet sampling
has severe accuracy problems especially for flows up to 1 GB
traffic volume. It results in a standard error of 0.239. We also
observe that PMC (with a standard error of 0.056 at 22 %
fill rate) again outperforms MRSCBF (standard error 0.178
at 23 % fill rate). It provides much higher accuracy at lower
algorithmic complexity.

D. Complexity of the counting operations

In Table I, we compare the counting operations of PMC
and MRSCBF in terms of the required number of steps for
processing a packet. For the parametrizations used in the
previous subsections, we show how many random numbers
need to be generated in order to process a packet, how many
hash operations need to be performed, how many bits are
written, and how many conditional branch instructions are
involved. For PMC, these numbers are constant; for MRSCBF,
the exact steps vary from packet to packet, so we show the
possible range of values for each operation type. The much
simpler structure of PMC is immediately evident from these
numbers.

Table I
COMPARISON OF PMC AND MRSCBF COUNTING OPERATIONS.

PMC MRSCBF
Random number generations 2 9–18
Hash operations 1 3–49
Bit write operations 1 3–49
Conditional branches 0 8

9

2
20

2
22

2
24

2
26

2
28

2
30

2
32

2
34

2
36

2
20

2
22

2
24

2
26

2
28

2
30

2
32

2
34

2
36

E
s
ti
m

a
te

d
 b

y
te

s

Real bytes

(a) PMC (l=4 MB, m=256, w=32).

2
20

2
22

2
24

2
26

2
28

2
30

2
32

2
34

2
36

2
20

2
22

2
24

2
26

2
28

2
30

2
32

2
34

2
36

E
s
ti
m

a
te

d
 b

y
te

s

Real bytes

(b) MRSCBF (l=4 MB, g=64, r=9, α=0.25).

2
20

2
22

2
24

2
26

2
28

2
30

2
32

2
34

2
36

2
20

2
22

2
24

2
26

2
28

2
30

2
32

2
34

2
36

E
s
ti
m

a
te

d
 b

y
te

s

Real bytes

(c) sFlow (r=1/512).

Figure 5. Scatterplots of real-world traffic experiments.

VI. CONCLUSION

In this paper, we have introduced Probabilistic Multiplicity
Counting (PMC), a novel probabilistic technique to determine
the multiplicity of elements in a multiset. We showed how
it can be applied to high-performance per-flow traffic mea-
surement. We introduced the PMC algorithms for sampling
data into a bit field, and for extracting multiplicity estimates
from that bit field. Finally, we assessed PMC’s performance
in comparison to MRSCBF—a previously proposed technique
with similar aims—and to standard sFlow. It became clear that
PMC achieves superior accuracy with a very simple algorithm.

ACKNOWLEDGEMENTS

The authors are grateful to Detlef Lannert, Wolfgang Müller,
Stephan Olbrich, and Klaus Szymanski from the NOC of our
university for their support with the real-world experiments.
We furthermore thank our student helpers Adam Görtz and
Benito van der Zander for their great implementation work.

REFERENCES

[1] N. Hohn and D. Veitch, “Inverting sampled traffic,” in IMC ’03, 2003.
[2] A. Kumar, J. Xu, and J. Wang, “Space-code bloom filter for efficient

per-flow traffic measurement,” IEEE Journal on Selected Areas of
Communications, vol. 24, no. 12, pp. 2327–2339, Dec. 2006.

[3] T. Zseby, M. Molina, N. Duffield, S. Niccolini, and F. Raspall, “Sam-
pling and filtering techniques for IP packet selection,” RFC 5475, Mar.
2009.

[4] Cisco Systems, “NetFlow,” http://www.cisco.com/web/go/netflow.
[5] ——, “Sampled NetFlow,”

http://www.cisco.com/en/US/docs/ios/12 0s/feature/guide/12s sanf.html.
[6] InMon Corp., “sFlow Version 5,” http://sflow.org/sflow version 5.txt.
[7] N. Duffield, C. Lund, and M. Thorup, “Charging from sampled network

usage,” in IMW ’01, 2001, pp. 245–256.
[8] InMon Corp., “sFlow Accuracy & Billing,”

http://www.inmon.com/pdf/sFlowBilling.pdf.
[9] B.-Y. Choi and S. Bhattacharyya, “Observations on Cisco sampled

NetFlow,” SIGMETRICS Performance Evaluation Review, vol. 33, no. 3,
pp. 18–23, 2005.

[10] C. Estan and G. Varghese, “New directions in traffic measurement
and accounting: Focusing on the elephants, ignoring the mice,” ACM
Transactions on Computer Systems, vol. 21, no. 3, pp. 270–313, 2003.

[11] D. Shah, S. Iyer, B. Prabhakar, and N. McKeown, “Analysis of a
statistics counter architecture,” HOTI ’01, 2001.

[12] S. Ramabhadran and G. Varghese, “Efficient implementation of a
statistics counter architecture,” in SIGMETRICS ’03, 2003, pp. 261–271.

[13] Q. Zhao, J. Xu, and Z. Liu, “Design of a novel statistics counter
architecture with optimal space and time efficiency,” SIGMETRICS
Performance Evaluation Review, vol. 34, no. 1, pp. 323–334, 2006.

[14] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter braids: a novel counter architecture for per-flow measurement,”
in SIGMETRICS ’08, 2008, pp. 121–132.

[15] N. G. Duffield and M. Grossglauser, “Trajectory sampling for direct
traffic observation,” IEEE/ACM Transactions on Networking, vol. 9,
no. 3, pp. 280–292, 2001.

[16] A. Kumar and J. Xu, “Sketch guided sampling – using on-line estimates
of flow size for adaptive data collection,” in INFOCOM ’06, 2006.

[17] C. Hu, S. Wang, J. Tian, B. Liu, Y. Cheng, and Y. Chen, “Accurate and
efficient traffic monitoring using adaptive non-linear sampling method,”
in INFOCOM, 2008, pp. 26–30.

[18] L. A. Adamic and B. A. Huberman, “Zipf’s law and the Internet,”
Glottometrics, vol. 3, pp. 143–150, 2002.

[19] G. S. Manku and R. Motwani, “Approximate frequency counts over data
streams,” in VLDB ’02, 2002, pp. 346–357.

[20] R. M. Karp, S. Shenker, and C. H. Papadimitriou, “A simple algorithm
for finding frequent elements in streams and bags,” ACM Transactions
on Database Systems, vol. 28, no. 1, pp. 51–55, 2003.

[21] X. Dimitropoulos, P. Hurley, and A. Kind, “Probabilistic lossy counting:
an efficient algorithm for finding heavy hitters,” SIGCOMM Computer
Communications Review, vol. 38, no. 1, pp. 5–5, 2008.

[22] S. Cohen and Y. Matias, “Spectral bloom filters,” in SIGMOD ’03, 2003.
[23] B. H. Bloom, “Space/time trade-offs in hash coding with allowable

errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.
[24] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:

A survey,” Internet Mathematics, 2005.
[25] G. Cormode and S. Muthukrishnan, “An improved data stream summary:

The count-min sketch and its applications,” Journal of Algorithms,
vol. 55, pp. 29–38, 2004.

[26] R. Donghua, L. Chuang, C. Zhen, N. Jia, and P. D. Ungsunan, “Handling
high speed traffic measurement using network processors,” in ICCT ’06,
2006, pp. 1–5.

[27] B. Ribeiro, T. Ye, and D. Towsley, “A resource-minimalist flow size
histogram estimator,” in IMC ’08, 2008, pp. 285–290.

[28] A. Kumar, M. Sung, J. J. Xu, and E. W. Zegura, “A data streaming
algorithm for estimating subpopulation flow size distribution,” in SIG-
METRICS ’05, 2005, pp. 61–72.

[29] N. Duffield, C. Lund, and M. Thorup, “Estimating flow distributions
from sampled flow statistics,” IEEE/ACM Transactions on Networking,
vol. 13, no. 5, pp. 933–946, 2005.

[30] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data
base applications,” Journal of Computer and System Sciences, vol. 31,
no. 2, pp. 182–209, Oct. 1985.

[31] G. Marsaglia, “Random number generators,” International Journal of
Applied Mathematics & Statistics, vol. 2, no. 1, pp. 2–13, May 2003.

[32] ——, “Xorshift RNGs,” Journal of Statistical Software, vol. 8, no. 14,
pp. 1–6, 2003.

[33] C. Henke, C. Schmoll, and T. Zseby, “Empirical evaluation of hash
functions for multipoint measurements,” SIGCOMM Computer Commu-
nications Review, vol. 38, no. 3, pp. 39–50, 2008.

[34] B. Scheuermann and M. Mauve, “Near-Optimal Compression of Prob-
abilistic Counting Sketches for Networking Applications,” in Dial M-
POMC ’07, Aug. 2007.

[35] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A linear-
time probabilistic counting algorithm for database applications,” ACM
Transactions on Database Systems, vol. 15, pp. 208–229, 1990.

