
Filtering Spam Email Based on Retry Patterns
Peter Lieven Björn Scheuermann Michael Stini Martin Mauve

Computer Science Institute
Heinrich Heine University, Düsseldorf, Germany

peter.lieven@uni-duesseldorf.de, {scheuermann, stini, mauve}@cs.uni-duesseldorf.de

Abstract— A central problem in today’s Internet is unsolicited
bulk email: spam. The SMTP protocol lacks a mechanism
for verifying the source of a message, and respective protocol
extensions are still far from becoming standard. Content-based
automatic spam filters are thus often used, and simple origin-
based filtering techniques like black- and whitelists are also very
common. In this paper we first analyze the retry behavior of
Internet mail sources upon delivery errors. We then propose a
novel spam filtering approach, founded on the results of this
analysis. It is based on the observed reaction of a mail source
host to temporary errors. Furthermore, evaluation results from
the production use of our filter on real mail servers are given,
underlining its very good performance in practice.

I. INTRODUCTION

Communicating via email has become fundamental to in-
teraction between human beings in business, education and
private life. It is easy, convenient, cheap and most people
do not want to miss its comfort nowadays. However, the
cheapness is also one of the biggest disadvantages in paperless
communication, since it led to a problem that many users know
well: spam. Many users receive four times more spam than
legitimate email [1]. Spam is therefore often considered one
of the big problems in current information technology.

The Simple Mail Transfer Protocol (SMTP) [2], the stan-
dard for transporting Internet email, dates back to 1982, a
time when nobody could foresee in what environment the
protocol would be used later. In particular, SMTP lacks a
standard mechanism to verify that the sending server and the
sender address match. There are approaches like SPF [3] or
SenderID [4] to fix this, but as long as no such mechanism is
generally accepted as standard, a Mail Exchanger (MX) still
needs to accept mail without such authentication.

Most of today’s spam filters examine mails after they have
been received by the mail exchanger, and classify them. This
approach usually performs rather good, but also exhibits some
disadvantages. Since the mail has to be received first and
complex classification techniques are employed, it is very
resource consuming. Futhermore, spammers adapt to cheat the
filters and this leads to a never ending competition between
the cleverness of spammers and the ability of filters to detect
them. The newest development is a heavy increase of so-called
image spam—spam that consists only of images, making the
content very hard to analyze [5].

But not only the kind of spam, even the way the spam is sent
has changed over the last years. Nowadays, the vast majority
of spam messages is sent by so-called “zombie machines” or

“spambots” [5], [6] . These are compromised end-user systems
that act as spam agents. These zombie machines typically use
very simple and non-RFC-compliant Mail Transfer Agents
(MTAs) for delivering their messages. They are primarily
designed for maximum throughput of more or less identical
copies of the same message, instead of reliable delivery of
regular email to single recipients. These SMTP implementa-
tions are often unable to do proper message queueing. In our
approach we exploit this: due to their very specific and easily
recognizable behavior it is possible to tell the spambots apart
from regular, well-behaving mail servers—before they are able
to deliver even just one single mail.

According to the SMTP RFC [2], an SMTP server that
receives a temporary error when trying to deliver a mail
should spool that mail and try again after a reasonable time.
The server should also not contact the same destination mail
exchanger to deliver some other mail during the backoff
period. By denying one or more connection attempts of a
mail server with a temporary error and observing its reaction
it is possible to tell apart throughput-optimized spambots and
regular mail servers with surprisingly high accuracy.

Since all necessary information is collected at connection
level our mechanism becomes active before the mail arrives
at the MX. The introduced filter forwards a connection only to
the real MX if it originates from a well-behaved server acting
in a resource-friendly way. This lowers the mail server’s load
significantly. The thereby saved computational resources can
then, e. g., be used to employ more sophisticated content-based
filtering techniques in order to detect the spam mail that might
have passed through the retry pattern-based filter more reliably.

If the technique proposed here becomes more widespread,
it is, of course, possible for spammers to adapt their SMTP
engines in order to behave more like regular mail servers. This,
however, would also deteriorate the spam mail throughput
that can be achieved by the zombie machines significantly.
Therefore, even in this case our proposal will help to reduce
the total amount of spam mail.

The remainder of this paper is structured as follows. In the
following section we review some related work in the area
of origin-based spam filtering. Afterwards, in Section III, we
present an analysis of the typical retry intervals of spambots
versus those of regular mail servers. Based on these results we
introduce our retry pattern-based filter in Section IV. Section V
is an evaluation of the performance of our filter in production
use. Finally, we conclude our paper in Section VI.

©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.

II. RELATED WORK

Spam filtering techniques can be divided into two main
groups. First, there are the content-based filters that analyze
the headers and the body of the mail and classify it using
pattern recognition techniques. This type of spam filters is
in some sense complementary to our approach, since we do
not look at the mail itself, but only at the behavior of the mail
server delivering it. Content-based techniques can then be used
to further analyze the mail coming from well-behaving mail
servers.

In this section, we will have a closer look at the second
kind of spam filters: techniques that can be implemented at
the connection level. These do not analyze the mail itself, but
consider only the connection delivering it and in particular
the origin of the mail delivery attempt, the mail source.
After discussing the connection-based techniques, we will
also have a look at greylisting [7], a technique that is not
purely connection-oriented, but shares some ideas with our
own approach.

The most simple way to filter mail is to have static blacklists
based on the originating IP. However, in practice it is neither
convenient nor viable to blacklist all known spam sources
manually. Thus, this method is used only under very rare
circumstances. More widely used are whitelists within closed
user groups, where one knows exactly whom he wants to
accept mail from. Often they are used to prevent mail from
certain (e. g., local) sources from being classified as spam by
other filters.

A more sophisticated way of blacklists are so called DNS-
based Blackhole Lists (DNSBLs) or Realtime Blackhole Lists
(RBLs). They are generated by a provider based on the
observation of mail sources. A host is added when it has been
identified as a spam source. The list is then distributed via the
Domain Name System (DNS) [8]. DNSBLs are widespread
nowadays and can be very efficient. However, it takes some
time until a spam source appears in the blacklist, in our expe-
rience usually 2–4 hours. Note that this means that DNSBLs
force spammers to send their mails in a very short timeframe—
often only in a “single shot” [6]—before they are listed and
locked out. Our approach therefore ideally complements DNS
blackhole lists: it delays mail delivery especially for aggressive
mail sources, and thereby often allows for spammers being
blacklisted before mail would be accepted.

A common way of filling whitelists automatically is the use
of Challenge and Response Systems (CRS), like introduced in
the Tagged Message Delivery Agent (TMDA) [9]. In a CR
system every yet unknown combination of sender address and
IP is initially considered harmful. The corresponding mail is
spooled and the sender gets a challenge sent back via email.
Usually the challenge is to click a link or to enter a code.
Once the system gets a valid response the mail address/IP-
combination is whitelisted, the corresponding mail is released
and all further mail will be immediately delivered. Almost no
spam makes it through such a system. However, additional
measures are necessary to prevent the local server’s mail

queue from clogging with undeliverable challenge mails to
non-existent, faked spam mail source addresses.

Spammers often tend to so-called hammering, i. e., connect-
ing repeatedly with little or no time between the connection
attempts. It has been proposed to lock out hosts hammering
the local system for a certain amount of time or to throttle the
allowed maximum bandwidth for resource wasting IPs [10].
One effect of our approach is just that: very aggressive hosts
may not connect.

A very interesting approach is detecting spammers by
malicious activities: an Intrusion Detection System (IDS) can
be coupled with the spam filter [11]. This relies on the fact that
many of the sending hosts are compromised end-user systems
that try to infect the MX itself before starting to send spam
to it. If the IDS detects malicious behavior of a host, this
is a strong hint that it is not a legitimate mail server. We
have adopted this idea as an optional extension to improve
our system further.

One of the latest developments in spam filtering is greylist-
ing [7]. Greylisting looks at a triple of sender mail address,
source IP, and destination mail address. For a fixed amount of
time starting from its first occurrence, all connections using
this triple are rejected with a temporary error. After this
fixed time has elapsed each mail with that triple is accepted.
According to the SMTP RFC the sending server should spool
that mail and try again after a reasonable amount of time.

Greylisting works under the assumption that spammers often
do no queueing or use a different sender address when trying
the next time. Greylisting performs very well at the moment
and is able to filter up to 90 percent of incoming spam
connections while generating nearly zero false positives [12].
However, greylisting uses static timers and does not care
about the senders’ behavior. For greylisting, it does not make
any difference whether the mail source connects once or one
million times during the greylisting period. Thus, it loses
valuable information that can be exploited to make decisions
faster and more accurate. Furthermore, greylisting considers
mail address pairs, whereas we concentrate on the IP address
of the mail source. We consider this more appropriate, since
a mail source will typically either be a spambot, or a regular,
well behaved mail relay. Therefore, we classify source hosts
rather than communicating users. In some sense, our approach
could be considered as a mail source-centric, much more
adaptive form of greylisting.

III. ANALYSIS OF MX RETRY BEHAVIOR

After a connection attempt has been rejected with a tempo-
rary error, mail servers wait for some time until they reconnect.
In this section, we analyze the retry behavior of real mail hosts
on the Internet, and we show that the retry pattern of spambots
is considerably different from that of regular mail servers.

All data collection and testing was done on the mail server
of dlh.net [13]. This server contains about 100 mailboxes, most
of them existing for almost ten years. These long-existing mail
addresses, that were often carelessly posted in newsgroups or
appeared in plain-text on webpages, attract a lot of spam. The

0%

2%

4%

6%

8%

10%

12%

14%

 0 30 60 90 120 150 180 210 240 270 300

P
er

ce
nt

ag
e

of
 c

on
ne

ct
io

ns

Time between consecutive connection attempts (s)

(a) Bad mail sources (interval size: 3 s).

0%

1%

2%

3%

4%

5%

6%

7%

8%

 0 300 600 900 1200 1500 1800

P
er

ce
nt

ag
e

of
 c

on
ne

ct
io

ns

Time between consecutive connection attempts (s)

(b) Good mail sources (interval size: 20 s).

Fig. 1. Distribution of retry times for good and bad hosts.

data collection phase ran over four weeks between May 5th
and June 4th 2006.

In our test setup we refused each connection from a yet
unknown IP for the first two hours after its initial connection
attempt. During these two hours we recorded the time between
successive connection attempts from the same IP address.
Afterwards every incoming connection was permitted. The
main problem that arises is to determine which of the hosts
are “good”, and which are the “bad” ones. In order to identify
these two groups in our collected data, we used additional,
independent information collected on the connecting IPs.

The most important criteria to identify a spambot were
DNS-based blackhole lists, and the DNS PTR records of
the spam sources. All IP addresses that were blacklisted by
common DNSBLs are considered to be bad. In the specific
situation of our sample data collection, the delay until some IP
is blacklisted is not a problem: if some IP for which the retry
pattern has been observed was blacklisted later, we know that
the pattern belongs to a spam source. Via their PTR record,
many dialup hosts can be identified. These are also most likely
zombies. If a host has no PTR record, or if the authoritative
DNS server is not responding, this is also a strongly negative
indication.

On the other hand, if a mail passes the challenge-response
system installed on our server, it is extremely likely that it is
not spam. Thus, we consider a mail source to be good if some
mail sent by it successfully passed the CR system.

The primary mail exchanger for dlh.net is mx.dlh.net. In
order to identify even more bad hosts, we set up a fake
secondary MX with lower priority which always denied in-
coming connections. Connection attempts to this host were
logged. According to the SMTP RFC MXs have to be con-
tacted in the order of their priority. Spambots often do not
respect this. Many implementations even seem to ignore DNS
MX information completely, and connect to mail.xyz.foo for
mail to the domain xyz.foo, without performing a real MX
lookup. So, we set up another fake server named mail.dlh.net.
Our records revealed that every single host that contacted
mx2.dlh.net or mail.dlh.net instead of mx.dlh.net first did not

pass the challenge-response system later on. This means that
there are no “good” mail servers which use the DNS MX
information incorrectly. Therefore, we consider all those hosts
bad as well.

Finally, we set up a third logging mechanism logging
all connection attempts to any ports except TCP port 25
(SMTP) and port 179 (ident). These logging facilities reveal
information about whether a mail source tries to scan or even
compromise our system before sending mail to it. Both are
strong signs for the mail source being a spambot. This idea
was partly inspired by [11].

Using the mentioned criteria we are able to identify good
and bad hosts in the recorded retry data. 39 000 mail sources
were identified as bad, 13 800 of these connected more than
once and could therefore be used for our analysis. 1 300 hosts
were classified as good. For the rest, neither our positive nor
the negative criteria apply. This was the case for 100 100 hosts,
out of which 23 000 did at least one reconnect.

Figure 1 shows the distribution of retry times for the
two groups of mail sources. For the bad ones, there is an
accumulation of very short retry times below 30 seconds, many
are even below one second. There are strong indications that
most unclassified hosts are also bad: good mail hosts will
typically get their mail through the CR system eventually, thus
good hosts are recognized with high probability. Furthermore,
the retry behavior of the unclassified hosts was typically very
aggressive, similar to that of the bad hosts in Figure 1(a).

Good senders on the other hand will likely reconnect after
fixed intervals forming clusters at characteristic times like 60,
600 or 900 seconds, as can be seen in Figure 1(b). However,
even a small fraction of the good senders seem to have broken
or unfriendly SMTP error code handling and reconnect quickly
after a temporary error. But as it turned out, these servers
reconnect only once after a short backoff, and do appropriate
queueing afterwards. Our approach is well able to deal with
this, and it is thus not a relevant problem in practice.

IV. RETRY-BASED FILTERING

As it has been shown in the previous section, the typical
behavior of a spam source and that of a regular mail server
differ very significantly. This is exploited by the spam filtering
mechanism proposed here. In our implementation, the filter
is realized in an SMTP proxy. This special proxy observes
and evaluates the retry behavior of each source IP. For each
incoming connection attempt it then decides whether to reject
it with a temporary error, or to forward it to the real mail
exchanger.

Our filtering technique is based on a concept which we
call the observation period. Each mail source that attempts to
establish a connection has its own observation period, which
begins at the initial connection attempt. During the observation
period, all connection attempts of the mail source are rejected
and its retry behavior is recorded. When it connects after the
observation period has elapsed, the connection is allowed.
The length of the observation period, however, is not fixed.
Instead, it is dynamically adjusted depending on the observed
behavior. Initially, it is set to 15 minutes. If bad behavior
occurs during the observation period, it is prolonged. This
has two implications. On the one hand, if a host stands out
negatively, it will be observed for a longer time, which allows
for the collection of more data on its behavior. On the other
hand, the longer observation period increases the probability
that a spambot is identified by, e. g., a blacklist provider, and
listed on a DNSBL before it would otherwise have been let
through.

A possible prolongation of the observation period (we call
this a penalty) depends on the kind of bad behavior that has
been observed. Extremely bad behavior—like, for example,
hammering or an attempt to compromise the mail host—leads
to a long penalty, while “moderately bad” attitude just prolongs
the observation period slightly. In the following, we will look
at our implementation in a little more detail. The specific times
that we use in our approach are chosen heuristically, based on
experience and an in-depth analysis of the data set that has
been described in the previous section.

The most central value in our filter is the expected retry time
tER. If a reconnection attempt is made before the expected retry
time is over, this is punished by prolongating the observation
period. The SMTP RFC proposes a value between 15 and
20 minutes between consecutive connection attempts. As our
previously described experiments show, such a long period
is unrealistic even for many friendly mail servers. We use
an expected retry time of 180 s in our implementation. Our
experiments show that with this value, well-behaving mail
servers are let through with low delay, while on the other hand
spambots are locked out quite effectively. The penalty P of the
observation period is based on the difference between tER and
the observed retry interval ∆t. Furthermore, consecutive short
retries are accounted for. We calculate the increment of the
observation period for the n-th consecutive early reconnection
attempt as

P = (tER − ∆t) · n. (1)

TABLE I
PENALTIES FOR OBSERVED MALICIOUS MAIL SOURCE BEHAVIOR.

Observation Penalty
Retry after less than 5 s 30 min
Retry after less than 1 s 2 h
Portscan 3 h
Ignoring DNS MX priority information 3 h
Ignoring DNS MX information 3 h
No DNS PTR record, or non-responding DNS server 6 h

TABLE II
PENALTY CALCULATION FOR mail.gmx.net.

Try Time ∆t n Penalty Obs. Per. Action
#1 0 s - 0 900 s 900 s deny
#2 400 s 400 s 0 - 900 s deny
#3 1200 s 800 s 0 - 900 s permit

For extremely short retry times, i. e., hammering, an ad-
ditional penalty is incurred. Furthermore, in addition to the
retry behavior, our implementation considers some additional
sources of information. First of all, it is augmented by classical
black- and whitelisting. Hosts that are blacklisted on a DNSBL
are never let through, while specific, well-known mail sources
are whitelisted; the latter applies in particular to servers that
send time-critical email (like, e. g., ebay alerts).

Other criteria for imposing penalties include those that
have been used in the previous section to identify bad mail
sources in our data set. An overview of the values used
in our implementation is given in Table I. Note that the
observation period based approach is inherently extensible: if
additional information, or just an indication, on the nature of
a spam source is available, then it can easily be included by
incorporating it in the calculation of the observation period.

We have used the data collected during the MX retry
behavior analysis described in Section III to simulate how
our filtering algorithm would have reacted to the retry patterns
occuring there, and whether its reaction matches our intention.
Table II shows the retry pattern of the MX of one of Germany’s
biggest free-mail providers. This server does not contact the
secondary MX at all, but exhibits a well-behaved timing.
The table reads as follows: the first line denotes the server’s
initial connection attempt (#1). Then the observation period is
initialized with 900 s. As the second line shows, the server’s
first reconnect (connection attempt #2) happens after 400 s.
Since the observation period has not yet elapsed, but 400 s is
greater than tER, the connection is rejected, but no additional
penalty is imposed. The third connection attempt is finally let
through, because the observation period has elapsed.

Table III shows the first events during the observation period
of a typical spambot. The table shows that the secondary MX
is connected first (mx2), and that port scans are detected (ids),
causing penalties. The timing is chaotic, early reconnects and
also multiple consecutive early reconnects (see column n)
happen continuously.

We assume that a mail source that made it through the
observation period is well-behaved. Thus, such a mail source is

TABLE III
PENALTY CALCULATION FOR p54830063.dip0.t-ipconnect.de.

Try Time ∆t n Penalty Obs. Per. Action
mx2 -5 s - - 3 h 10800 s deny
#1 0 s - - 900 s 11700 s deny
ids 22 s - - 3 h 22500 s -
ids 22 s - - 3 h 33300 s -
#2 22 s 22 s 1 158 s 33458 s deny
mx2 391 s - - - 33458 s deny
#3 396 s 374 s 0 0 s 33458 s deny
ids 417 s - - 3 h 44258 s -
#4 417 s 21 s 1 159 s 44417 s deny
mx2 481 s - - - 44417 s deny
#5 486 s 69 s 2 222 s 44639 s deny
#6 507 s 21 s 3 477 s 45116 s deny
ids 508 s - - 3 h 55916 s -
ids 508 s - - 3 h 66716 s -
mx2 523 s - - - 66716 s deny
#7 528 s 21 s 4 636 s 67352 s deny
#8 549 s 21 s 5 795 s 68147 s deny
...

Fig. 2. Statistical breakdown of distinct senders on mx.dlh.net.

whitelisted for some days or weeks, before it is probed again.
Furthermore, mail hosts that have been the destination mail
exchanger for mail sent by local users are also immediately
whitelisted.

To keep the connection handler proxy as lightweight as
possible, time consuming tasks like DNS resolution or DNSBL
lookups are performed by an asynchronous worker process.
In our implementation, all dynamic information is stored
in a database. This allows for easy backups and increases
scalability. Moreover, it allows for different connection handler
proxies to share information on observed mail source behavior.
This is useful in heavy-load setups, where load balancing is
used. It also forms the basis of an infrastructure where mail
exchangers of different domains might collaborate to identify
spambots and well-behaved mail sources more quickly and
more precisely, by sharing information on the observed retry
behavior.

V. EVALUATION

We had the opportunity to evaluate our algorithm in pro-
duction use on three major mail servers since the beginning
of July 2006. Here, we discuss the results from the first weeks
of its practical use.

Analyzing a pre-MX spam filter is hard, because one cannot
tell whether a denied connection would have delivered spam
or not. Therefore, we need to rely on indirect evaluations. The

 0

 50

 100

 150

 200

 250

 300

no filter greylisting retry pattern filter

N
um

be
r

of
 m

ai
ls

Mails in CRs queue
DNSBL after reception

Fig. 3. Mails without CRS response on one mx.dlh.net account (1 day).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

no filter greylisting retry pattern filter

N
um

be
r

of
 u

nd
el

iv
er

ab
le

m
ai

ls
 in

 lo
ca

l q
ue

ue

undeliverable mails

Fig. 4. Undeliverable mails in queue of mx.dlh.net (1 day).

subjective impression of the users on the involved mail servers
(most of them were not informed about the new filter system)
was that the overall spam burden has significantly decreased,
although there was already ordinary greylisting installed on
that servers before.

Figure 2 provides some hints on the filter performance.
It shows a statistical breakdown of the distinct mail sources
connecting to one of the evaluation hosts, mx.dlh.net. Only
2.2 % of the senders were permitted at all. Of the rest, 48.8 %
never made it through the observation period, and 31.8 % were
blacklisted. It is interesting to note that out of the latter, the
vast majority of 91.5 % would anyway not have been let in
because of their retry pattern.

To gain a deeper insight into the performance of our filter,
we have disabled all filters for one week, and compare some
statistics to those of the following week with our filter enabled.

On mx.dlh.net there is a challenge-response system installed
on most mailboxes. In Figure 3 one can see the number of
mails arriving on one day that did not make it through the
CRS, for one of the busiest accounts on that system. The
number of such mails heavily decreased with our filter, also
in comparison to greylisting. The mails still remaining were
mainly vacation autoresponder messages or delivery failure
notifications sent by regular mail servers. The number of mails
whose source was blacklisted after their reception dropped
almost to zero. This provides an evidence for us having
achieved our goal that our filter delays bad senders long
enough to be listed by DNSBLs.

Associated with the number of mails waiting for the CRS
response is the number of undeliverable mails caused by CRS
challenges, if those are sent to non-existing addresses. This
number is also noticeably smaller, as Figure 4 shows.

0%

5%

10%

15%

20%

25%

30%

35%

 0 3 6 9 12 15 18 21 24

P
er

ce
nt

ag
e

of
 g

oo
d

m
ai

l s
en

de
rs

Delivery delay in hours

Fig. 5. Delay of first mail delivery.

To check if our filter missed some misbehaving mail sources
we also randomly checked some spam mails by hand, if they
had been let through. All the respective sources had done
proper queueing and timing during the observation period. So,
there was no chance for our filter to classify them as bad.

In our approach as well as with common greylisting a delay
can occur until a mail is delivered, because the respective
mail source is not immediately let through. This delay is,
however, much less severe for our approach. To demonstrate
this treat of retry pattern-based filtering, we have analyzed how
long the delay is in practice. Recall that all the processing is
done per mail source. Therefore, different from greylisting that
works on a mail address pair basis, only the first mail coming
from the same mail server is delayed, while all future ones
are delivered immediately—independently from sender and
destination email addresses. In our production environment
this applies to about 94% of all emails, thus only six percent
of the incoming mail is delayed at all. Since our data is from
the initial time of use, we expect this number to drop even
further, as more good mail sources are being learned over
time.

For the six percent of delayed mail, Figure 5 shows a
histogram of the delays. It is obvious that the delay is typically
very small, even less than one hour for 65 % of the mails.
This is below the fixed delay of greylisting in a typical
configuration. The long delays typically occur for non-spam
mass mailings like, e. g., newsletters. MXs delivering such
mail are typically configured for maximum throughput and
are thus generally well-behaved, but rather aggressive.

One last, but very important observation is that the average
system load on the mail server dropped by almost 50 percent
with retry pattern-based filtering. The newly free CPU time can
be used for more powerful, computationally expensive content-
based filters.

VI. CONCLUSION

In this paper we have described a simple, lightweight,
but very effective spam filter intercepting the mail delivery
process at an early stage. It is based on connection-oriented
analysis of mail source retry patterns, observed by temporarily

rejecting their delivery attempts. An evaluation revealed that
this approach is able to avoid receiving huge amounts of spam
at the mail server.

The resources saved by filtering the mail with our approach
can be spent for more complex higher level filters. This can
increase the probability to identify spam that still managed
to find its way through the origin-based filter. As a future
extension, it might be possible to utilize the information
obtained by observing the retry behavior of a mail source in
the content-based filtering. This could yield a holistic spam
filtering approach.

Proper queueing implies a relatively high cost at the side
of the mail source, if it has to be done for a large number of
mails. The key concept of our approach arises from the fact
that spammers need to send many spam messages as fast as
possible, in order to be effective. So, it is very hard for them
to perform RFC compliant timing, without largely decreasing
their efficiency. As a consequence, spammers will most likely
behave non-RFC compliant for the forseeable future. If they
adapt and start using proper timing, their throughput will
significantly decrease. If they don’t, our filter will be able to
identify them with the shown high probability.

REFERENCES

[1] Messaging Anti-Abuse Working Group, “Email Metrics Program – 1st
Quarter 2006,” June 2006. [Online]. Available: http://www.maawg.org/
about/FINAL_1Q2006_Metrics_Report.pdf

[2] J. Postel, “Simple Mail Transfer Protocol,” RFC 821 (Standard),
Aug. 1982, obsoleted by RFC 2821. [Online]. Available: http:
//www.ietf.org/rfc/rfc821.txt

[3] M. Wong and W. Schlitt, “Sender Policy Framework (SPF) for
Authorizing Use of Domains in E-Mail, Version 1,” RFC 4408
(Experimental), Apr. 2006. [Online]. Available: http://www.ietf.org/rfc/
rfc4408.txt

[4] J. Lyon and M. Wong, “Sender ID: Authenticating E-Mail,”
RFC 4406 (Experimental), Apr. 2006. [Online]. Available: http:
//www.ietf.org/rfc/rfc4406.txt

[5] IronPort Systems, “Spammers Continue Innovation: IronPort Study
Shows Image-based Spam, Hit & Run, and Increased Volumes
Latest Threat to Your Inbox,” June 2006. [Online]. Available:
http://www.ironport.com/company/ironport_pr_2006-06-28.html

[6] A. Ramachandran and N. Feamster, “Understanding the Network-Level
Behavior of Spammers,” in SIGCOMM ’06: Proceedings of the 2006
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, Sept. 2006, pp. 291–302.

[7] E. Harris, “The Next Step in the Spam Control War: Greylisting,”
Whitepaper, Aug. 2003. [Online]. Available: http://projects.puremagic.
com/greylisting/whitepaper.html

[8] P. V. Mockapetris, “Domain names – concepts and facilities,” RFC
1034 (Standard), Nov. 1987, updated by RFCs 1101, 1183, 1348, 1876,
1982, 2065, 2181, 2308, 2535, 4033, 4034, 4035, 4343, 4035, 4592.
[Online]. Available: http://www.ietf.org/rfc/rfc1034.txt

[9] “Tagged Message Delivery Agent (TMDA),” http://tmda.net/.
[10] B. Agrawal, N. Kumar, and M. Molle, “Controlling Spam Emails at the

Routers,” in ICC ’05: Proceedings of the IEEE International Conference
on Communications, May 2005, pp. 1588–1592.

[11] D. Cook, J. Hartnett, K. Manderson, and J. Scanlan, “Catching Spam
Before it Arrives: Domain Specific Dynamic Blacklists,” in AISW-
NetSec ’06: Proceedings of the Australasian Information Security Work-
shop (Network Security), Hobart, Australia, Jan. 2006, pp. 193–202.

[12] T. Slettnes, “Spam Filtering for Mail Exchangers,” Version 1.0, Linux
Documentation Project HOWTO, Sept. 2004. [Online]. Available:
http://www.tldp.org/HOWTO/text/Spam-Filtering-for-MX

[13] “DLH.Net.” [Online]. Available: http://dlh.net/

http://www.maawg.org/about/FINAL_1Q2006_Metrics_Report.pdf
http://www.maawg.org/about/FINAL_1Q2006_Metrics_Report.pdf
http://www.ietf.org/rfc/rfc821.txt
http://www.ietf.org/rfc/rfc821.txt
http://www.ietf.org/rfc/rfc4408.txt
http://www.ietf.org/rfc/rfc4408.txt
http://www.ietf.org/rfc/rfc4406.txt
http://www.ietf.org/rfc/rfc4406.txt
http://www.ironport.com/company/ironport_pr_2006-06-28.html
http://projects.puremagic.com/greylisting/whitepaper.html
http://projects.puremagic.com/greylisting/whitepaper.html
http://www.ietf.org/rfc/rfc1034.txt
http://tmda.net/
http://www.tldp.org/HOWTO/text/Spam-Filtering-for-MX
http://dlh.net/

	I Introduction
	II Related Work
	III Analysis of MX Retry Behavior
	IV Retry-Based Filtering
	V Evaluation
	VI Conclusion
	References

