
Pre-MX Spam Filtering with Adaptive
Greylisting Based on Retry Patterns

Bachelor Thesis
by

Peter Lieven

from
Düsseldorf

submitted to

Lehrstuhl für Rechnernetze und Kommunikationssysteme
Prof. Dr. Martin Mauve

Heinrich-Heine-Universität Düsseldorf

August 2006

Advisors:
Dipl.-Inf. Björn Scheuermann

Dipl.-Inf. Michael Stini

Acknowledgments

First of all I would like to send out a big thank you to all the people who supported me
during one of the worst periods of my life. Especially but not only to Matthias Dellweg,
Marion Heitmann, Lena Jansen, Patrick Kambach, Richard Lohkamp, Anika Pahl and
Dorothee Recke—without you I would not have managed to complete this work. Thanks
for listening to my problems, your patience, your consolation and the right word at the
right time!

Furthermore, I would like to thank my parents, Wilhelm and Renate Lieven, for their
continuous support and their assistance.

Last but not least I would like to express my gratitude to the people from the Department
of Computer Science at the University of Düsseldorf for their support not only during the
writing of this thesis—particulary Björn Scheuermann and Michael Stini for their advice
and understanding.

I am indebted to the staff of the companies MESH-Solutions GmbH, Kambach.Net and
DLH.Net for allowing me to test my reference filter implementation on their productive
mailservers, and their feedback during the evaluation period.

iii

Contents

List of Figures vii

List of Tables ix

List of Abbreviations xi

1 Introduction 1

1.1 History of SMTP . 1
1.2 Problem Statement . 2
1.3 Contribution . 3
1.4 Structure . 4

2 Prerequisites 5

2.1 Origin-based Filter Techniques . 5
2.1.1 Black- and Whitelisting . 5
2.1.2 DNS-based Blackhole Lists (DNSBL) 6
2.1.3 Challenge and Response Systems 7
2.1.4 Firewall-Based Filters . 7
2.1.5 Malicious Activity . 8

2.2 False Positives and False Negatives . 8
2.3 Greylisting . 8
2.4 How to Enhance Greylisting . 9
2.5 Mail Exchanger and Mail Relay . 11

3 MX Retry Behaviour 13

3.1 Collecting Data . 13
3.2 Evaluation . 15

v

Contents

3.3 Basic Filter Idea . 17
3.4 Expected Retry Time . 18
3.5 Exemplary Penalty Calculation . 20

4 Implementation 23

4.1 Connection Handler . 24
4.2 Userspace Worker . 24
4.3 Database . 26
4.4 Additional Tools . 27

5 Performance Analysis 29

5.1 Impact on the MX . 29
5.2 Filter Statistics . 31

6 Conclusion 33

6.1 But What if Spammers Adapt? . 33
6.2 Future Work . 35

Bibliography 37

vi

List of Figures

2.1 Flowchart of Greylisting Process . 9
2.2 Difference between Mail Exchanger and Mail Relay 11

3.1 Data Collector for Incoming SMTP Connections 15
3.2 Distribution of Retry Times for all Recorded Bad Senders 16
3.3 Distribution of Retry Times for all Recorded Good Senders 17
3.4 Filter Retry Time Simulation . 19
3.5 Filter Retry Time Simulation (detailed) 19

4.1 Interaction between DB, Connection Handler and Userspace Worker . . 23
4.2 Flowchart of Connection Handler . 25

5.1 Queued Mails in CRS per Day . 30
5.2 Undeliverable Mails in Local Delivery Queue per Day 30
5.3 Refused Relay Attempts from External Hosts per Day 30
5.4 Verify Attempts for Non-existing Mailboxes per Day 30

vii

List of Tables

3.1 Common SMTP Error Codes . 14
3.2 Example Penalty System . 18
3.3 Exemplary Penalty Calculation for rohrpostix.cs.uni-duesseldorf.de . . 20
3.4 Exemplary Penalty Calculation for mail.gmx.net 20
3.5 Exemplary Penalty Calculation for p54830063.dip0.t-ipconnect.de . . . 21

5.1 Statistical Breakdown of Connections per Month 32
5.2 Statistical Breakdown of Distinct Senders 32

ix

List of Abbreviations

CRS Challenge- and Response System

CSR Consecutive Short Retry

DDoS Distributed Denial of Service

DoS Denial of Service

DNS Domain Name System

DNSBL DNS-based Blackhole List

DNSWL DNS-based Whitehole List

ERT Expected Retry Time

IDS Intrustion Dectection System

MR Mail Relay

MTA Mail Transfer Agent

MX Mail Exchanger

PTR Pointer Resource Record

RBL Real-time Blackhole List

RMX Reverse Mail Exchanger

SMTP Simple Mail Transfer Protocol

SPF Sender Policy Framework

SVM Support Vector Machine

xi

Chapter 1

Introduction

Communicating via e-mail is one of the biggest changes in communication behaviour
within the last 20 years. It has become fundamental to the interaction between human
beings in business, education and private life. It is easy, convenient, cheap and most
people do not want to miss its comfort nowadays. However, the cheapness is one of
the biggest disadvantages in paperless communication. Everybody can send one another
e-mails—like it is with snail mail—but the fact that it costs almost nothing has led to a
problem that many users know well: spamming [Wike, Tem]. They receive dozens of
unwanted e-mails and they are unable to stop the flow. Many users receive four times
more spam than legitimate e-mail [Mes06]. Spam can therefore be considered as one of
the big diseases in the information technology of the 21st century.

1.1 History of SMTP

The original Simple Mail Transfer Protocol (SMTP) [Pos82], the standard for transpor-
ting e-mail over the Internet, dates back to 1982, a time when nobody could foresee in
what environment the protocol would be used later. SMTP was designed to be able to
communicate simply on a text based console, and originally it was intended to be spoken
by humans in times when there were no real mail clients. In the beginning SMTP was
used to communicate within a small user community and especially there was no thought
ahead of someone sending another unwanted e-mails. Basically every SMTP server ac-
cepted mail from everyone and even relayed it to another server if the mail recipient

1

CHAPTER 1. INTRODUCTION

was not local. While the problem of an open mail relay [Wikc] is really easy to fix by
user authentification or IP-based access lists, the problem of accepting local mail from
everyone is the root of all spam. Easily said SMTP lacks a standard mechanism to ver-
ify whether the sending server and the sender address match. There are approaches like
Sender Policy Framework (SPF) [WS06], Reverse MX (RMX) [Dan04] or Microsoft’s
SenderID [LW06] to fix this hole, but as long as there is no unified standard that every-
one has to support, a Mail Exchanger (MX) still has to accept mail from sending do-
mains not supporting this way of authentification. For example one could pretend to be
evil@hell.com and there is no standard way to check if he really is.

1.2 Problem Statement

Although the design of SMTP is the origin of the whole spam case, it would be impos-
sible to just replace the protocol at once to get rid of the spam problem. So the only
options left are legal force and intercepting the mail delivery process at the receiver’s
side.

But even if today spamming is considered illegal in many countries [Alo04], spammers
manage to hide their identity very clearly and remain undetected in most cases. There-
fore, stopping spam by law alone is no effective option [Fed05]. This leads to the trouble
that the only real mechanism to get rid of unwanted e-mails is to filter them technologi-
cally just before they enter a user’s mailbox.

Most of today’s so-called spam filters look at mail headers and bodies and classify them
by pattern or probability analysis. This approach usually works very well for plain-text
spam or mass-mailings, but has generally some big disadvantages.

Since content filters analyse the structure of a message, spam has to be already received
by the Mail Exchanger (MX). Only after reception they are able to classify the mail by
often very complex techniques. This late point of classification makes filtering spam
very resource consuming.

Furthermore, these filters should work automatically and so they can only be as good
as the kind of spam they were designed for. But spammers adapt to cheat the filters

2

1.3. CONTRIBUTION

and this leads to a never-ending competition between the cleverness of spammers and
the ability of filters to detect them. The newest development is a heavy increase of so-
called image spam—spam that only consists of images making the content very hard to
analyse [Iro06].

However, not only the kind of spam, even the way the spam is sent, has changed during
the last years. Nowadays a huge amount of spam is sent by so-called Zombie [Wikg]
machines [Iro06]—compromised end-user systems—that today do not only act as dis-
tributed denial of service platforms, but also as spam agents.

Zombie machines often use very bad and non RFC-compliant Mail Transfer Agents
(MTAs) for delivering their messages. This ratware [Wikd] behaves very resource un-
friendly and is often unable to do proper message queueing and delivery timing.

The decreased detection rate caused by hard to analyse and rapidly changing message
content and especially the fingerprints that zombies left in our mail server’s logfiles led
to the idea to analyse the behaviour of sending mail servers at connection level and trying
to find characteristics to be able to filter them at this very early, resource-saving stage of
the delivery process.

The vision is to build a filter that is completely independent of spam content and just re-
lies on the fact that spammers usually use stolen resources and are forced to send a huge
amount of spam in a small amount of time using carelessly implemented MTAs.

1.3 Contribution

In this thesis we analyse the reaction of sending mailservers on refused connections and
their timing strategies on delivery reattempts. Derived from the observations and analysis
of collected retry behaviour, we will introduce a filter idea that takes the timing between
consecutive delivery retries of a sender into account. This filter idea is then implemented
in a reference framework and put in production environment where its real life usability is
tested and evaluated. Since all necessary information is collected at connection level the
invented mechanism is able to join the mail delivery process before the mail is actually
accepted by the MX. The introduced filter acts like a proxy forwarding only those con-

3

CHAPTER 1. INTRODUCTION

nections to the real MX that belong to senders that manage to behave resource-friendly
while refusing their first connection attempts.

1.4 Structure

At first we give a short overview of other connection level spam filtering mechanisms and
some basic requirements in Chapter 2. In Chapter 3 we describe how we initially gath-
ered information about the retry behaviour, observations made and how these oberserva-
tions were incorporated in a filter model. Chapter 4 sketches our reference filter imple-
mentation. Then we give some performance analysis in Chapter 5 and follow with our
conclusion and an outlook on further work in Chapter 6.

4

Chapter 2

Prerequisites

In this chapter we first give an overview of origin-based filter systems that can also be
implemented at connection level. Then we discuss greylisting [Har03] and the disadvan-
tages of its current implementations. At last we introduce the difference between Mail
Exchanger and Mail Relay for a better understanding where a pre-MX filter has to be
installed.

2.1 Origin-based Filter Techniques

Origin-based filter techniques are the lowest level spam filtering mechanisms currently
available. They join the mail delivery process at a very early stage and are therefore very
lightweight regarding resource usage. In this Section we give a short overview of most
widespread mechanisms.

2.1.1 Black- and Whitelisting

The simplest way to filter mail is to have static filters based on the originating IP. For
example, one could maintain a blacklist and add all IP addresses that have previously
sent unwanted e-mail or which no communication is desired with. Then the mailserver
would simply not accept mail from those hosts in the future. But normally it is not
convenient to blacklist IPs manually and so this method is used only under very rare

5

CHAPTER 2. PREREQUISITES

circumstances. The general behaviour can be compared to a firewall allowing everyone
not explicitly denied.

More widely used are whitelists among closed user groups where one exactly knows
whom he wants to accept mail from. This is the opposite of blacklisting—with whitelist-
ing everything not explicitely allowed is denied. Whitelists may also be used to exclude
mail from certain IPs to be not classified as spam by higher level filters. Especially one
would normally whitelist all private and local IP addresses.

2.1.2 DNS-based Blackhole Lists (DNSBL)

A more sophisticated way of blacklists are so-called DNS-based Blackhole Lists (DNS-
BLs) [Wika]—also known as Realtime Blackhole Lists (RBLs). These lists are gener-
ated dynamically and are based on the Domain Name System (DNS) [Pos84]. The DNS
is supported everywhere, is hierarchical, allows caching with timeouts and is resource-
friendly for a blacklist provider. It can be used instantly for blacklisting purposes with-
out modifying the whole infrastructure. Therefore it is mostly preferred although other
mechanisms like regularly fetching blacklists via HTTP or rsync would be possible.
However, one has to trust the DNS which is not necessarily secure [Eis05].

If a DNSBL is configured on an MX on each incoming connection, the sender IP address
(a.b.c.d) is reversed and a DNS look-up under a well known domain (e.g. d.c.b.a.my-
dnsbl.org) is made. If the IP address is being considered evil by the DNSBL provider,
the look-up yields a predefined status code. Then the sender is locked out and no mail
will be accepted.

DNSBLs are widespread nowadays and if a spammer IP address is preknown, they are
very efficient. The problem here is that spammers mostly have a large network of com-
promised hosts they use for sending mail. As seen in our logfiles, after a new spam
rush has been sent, it takes some time (usually 2–4 hours) after the first delivery at-
tempts before the spamming IPs are entered into the DNSBLs—depending on how many
spam reports the blacklist provider receives for an IP address. Generally, DNSBLs force
spammers to send their mails in a very short timeframe before they are listed and locked
out.

6

2.1. ORIGIN-BASED FILTER TECHNIQUES

2.1.3 Challenge and Response Systems

It is very painful to maintain whitelists and blacklists by hand. A very common way of
filling whitelists automatically is the use of Challenge and Response Systems (CRSs) like
introduced in TMDA [TMD]. The idea is simple, but very effective. Every still unknown
combination of sender address and IP is considered harmful. The corresponding mail is
spooled and the sender gets a challenge sent back via e-mail. Usually the challenge is
to click a link or to enter a code. Once the system gets a valid response the address/IP-
combination is whitelisted, the corresponding mail is released and all future mail will be
directly delivered.

This way almost no spam makes it through such a system. But as we already know the
sender address of an e-mail may be false or even non-existant so there must be addi-
tional filters in front of the CRS to keep the local server’s mail queue clean from chal-
lenge mails that cannot be delivered correctly. Additionally there is a risk that the e-mail
sender does not understand the challenge or simply ignores the mail, so it is almost in-
dispensable to have regular looks at the queue of the CRS and release some mails by
hand.

2.1.4 Firewall-Based Filters

Spammers often tend to so-called hammering [Wikb]. Therefore, firewalls often fil-
ter new incoming connections and only allow a reconnection from the same IP after a
reasonable timeframe. Normally it is a good idea to also limit the overall number of in-
coming new connections to an MX to protect the system from a denial of service (DoS)
attack. There are also approaches to dynamically blacklist hosts hammering the local
system in the firewall for a certain amount of time or throttling the allowed maximum
bandwidth for resource wasting IPs [Ban05]. But since we want to analyse the retry be-
haviour and are especially interested in extremely bad behaviour like hammering we have
to disable most of the firewall filters and keep only those that would make our system
vulnerable to DoS if absent.

7

CHAPTER 2. PREREQUISITES

2.1.5 Malicious Activity

A very interesting approach is detecting spammers by malicious acitivities like it is done
in intrusion detection systems (IDSs) [CHMS06]. This approach relies on the fact that
many of the sending hosts are compromised end-user systems (zombies) that try to infect
the MX itself before starting to send spam to it. If recording their activity like connecting
to port 0 or scanning netbios ports we have a strong hint that they might not be legitimate
servers trying to send mail, but have a bad intention. Often they do not even perform
a real MX look-up when sending spam, but just connect to mail.mydomain.com when
trying to send spam to someone@mydomain.com. Giving the real MX a name distinct
from mail.mydomain.com and mapping mail.mydomain.com to a different IP, provides
an additional hint that the sender might be bad.

2.2 False Positives and False Negatives

When talking about spam filters and their effectiveness it is important to know how to
measure their efficiency. A good indicator is the amount of false positives—legitimate
mails that are misclassified as spam by a spam filter and consequently blocked out. Ana-
logical false negatives are those spam mails not detected by the filter and let through.
A spam filter providing less than one percent of false positives is generally considered
exceptionally good. Of course, false positives and negatives influence each other—a
filter generating less false positives is likely to generate more false negatives and vice
versa.

2.3 Greylisting

One of the latest inventions in early stage spam filtering is greylisting [Har03]. Greylist-
ing uses the ability of the SMTP protocol to deny an incoming connection with a tempo-
rary error. According to the SMTP RFC the sending server should spool that mail and try
again after a reasonable amount of time. Normal greylisting as used today uses a triple
of sender address, sender IP and destination address. This triple is stored in a database at

8

2.4. HOW TO ENHANCE GREYLISTING

Accept connection and
process mail until MAIL FROM

& RCPT TO have been sent

Triple of sender address/IP
& destination address known?

greylisting time elapsed?

yes

create DB entry

 no

accept mail

yes

reject mail w/ a temporary error

 no

O O

Figure 2.1: Flowchart of Greylisting Process

the first occurance together with a timestamp. Starting from that time every connection
matching is rejected with a temporary error for a fixed amount of time. After this fixed
time has elapsed each mail with that triple is accepted. Figure 2.1 reveals how greylisting
is implemented in most cases.

Greylisting works under the assumption that spammers often do no queueing or use a dif-
ferent sender address when trying the next time. Surprisingly greylisting performs very
well at the moment and is able to filter up to 90 percent of incomming spam connections
while generating nearly zero false positives [Sle04, Lev05].

2.4 How to Enhance Greylisting

Ordinary greylisting uses fixed timers to keep hosts out. The timer value used is gen-
erally a trade-off between keeping a sender out as long as possible to get a chance that
DNSBLs or high-level signature filters have been updated in the meantime while not

9

CHAPTER 2. PREREQUISITES

disturbing communication between users for too long. Usually a timeout value between
ten to 60 minutes is used regardless of how many delivery attempts have been made by
the sender in the meantime. This algorithm is very simple, but a lot of useful infor-
mation is lost. Normally one would expect the sending host to try again later after a
reasonable timeframe. The SMTP RFC [Kle01] suggests to try not more than two times
an hour, so normally one would expect at least 15–20 minutes between two consecu-
tive retries. This timer has to be maintained for each target MX—not for each single
mail.

The temporary error status code returned during greylisting means that the MX has a
temporary problem and cannot accept e-mail. It is impolite to try again too soon or
just ignore the error completely and reconnect immediately. So if we evaluate the be-
haviour while a sender is locked out we can get a first impression what his intention
might be. A legitimate sender would be interested in saving its and our resources and
wait while a spammer tries to deliver its mails as fast as possible not caring about re-
sources.

Considering the described trade-off the basic idea of what we call adaptive greylisting

is to let the good ones in as fast as possible while keeping the misbehaving out as long
as possible. So even if we delay transmissions for a legitimate host not caring about
the local server nobody would normally complain about that sender being ignored for a
while.

Sadly the amount of information lost in normal greylisting is even worse. As explained
greylisting uses triples and not the same information for each sender IP. This is a good
idea if we think of altering sender/destination address combinations, but if we want to
evaluate the behaviour of a host we have to evaluate the host detached from sender and
destination addresses. As explained before the sender address may be random and the
destination address is local otherwise the sending host would not have contacted the local
MX.

If there is more than one mail delivery attempt directed at the same MX running at the
same time we can even gather more information about correct behaviour. A target MX
with many mailboxes is likely to have more than one mailbox the same spamming host
is sending mail to. If the MTA on that host does not care about a per desitination MX
retry timer we have an even better chance to identify it.

10

2.5. MAIL EXCHANGER AND MAIL RELAY

The
Internet

Pre-MX
filtersincoming mail MX

Local
Mailboxes

local delivery

MR
outgoing mail

Local
Users

receive

send

filtered mail

Figure 2.2: Difference between Mail Exchanger and Mail Relay

Furthermore, greylisting is bad from the resource point of view because an MX has to
accept an incoming connection and process SMTP messages before information about
sender and destination address can be extracted. If one considers only the IP, it is possible
to refuse the connection with an error without first interacting with the sender. In business
greylisting is considered harmful by some people because it disturbs every interaction
between two users communicating for the first time. Especially if salesmen wait for an
important e-mail from a customer they are unhappy to wait for it. Considering that we
classify the sending server behaviour one will easily agree on the fact that a host that
has previously shown that he is able to do proper queueing and act resource-friendly will
likely do so for future e-mails as well.

Normally if a sender has managed to bypass greylisting he will also manage to by-
pass in the future. If we consider all hosts that previously have shown good behaviour
as whitelisted for some time a state where most good servers are whitelisted will be
reached and new communication between unknown sender/destination addresses is not
necessarily delayed. We even circumvent the problem that some MTA systems use al-
tering sender addresses for each delivery attempt which is fatal for triple-based greylist-
ing.

2.5 Mail Exchanger and Mail Relay

When analysing the retry behaviour it is very important to understand that there is a great
difference between what is called a Mail Exchanger (MX) and a Mail Relay (MR) and
where a pre-MX filter has to be installed (see Figure 2.2).

An MX acts as receiver for local mail from the Internet. For each domain one or more
MXs with optionally different priorities are defined in the DNS zone for that domain.
While an MX per definition has to accept incoming mail for local domains from every-

11

CHAPTER 2. PREREQUISITES

one a Mail Relay does not. The MR in today’s Internet is the sending MTA for local
users wanting to send mail to a foreign system. As most users do not have a permanent
connection to the Internet the MR accepts mail from its legitimate users and does the
further mail processing including spooling and retransmission if necessary. This task is
performed in the background and the user does not need to care about his e-mail after
having passed it on to the MR. In order to check if a user is legitimate he has to authen-
ticate via password or has to be in a given IP range when contacting the MR. If such an
authentication is missing the relay is considered open [Wikc].

Generally the task of an MX and an MR is performed by the same process. If the destina-
tion address is local, the mail is delivered to a local mailbox, in other cases the appropiate
MX for the destination address is looked up and the mail is then relayed to that server. If
we want to install a filter that protects us from incoming foreign mail, we have to install
this filter in front of the MX and not the MR. Otherwise we would involve users wanting
to contact the MR in the filtering process.

The easiest way to achieve this is to have a local mailing software like exim [exi],
qmail [qma] or postfix [pos] running on two different IP addresses. The process on one IP
is acting as MR with no further prefiltering attached. The other process is then acting as
MX with optional filters in the firewall or a wrapper/proxy before it.

Basically the mailing software is not even required to know this difference. It would be
enough to set up two host entries, e.g. mx.mydomain.com and relay.mydomain.com and
map them to the two different IP addresses.

12

Chapter 3

MX Retry Behaviour

The first step in retry pattern analysis is the gathering of appropriate test data. In this
chapter we describe how we initially sampled data, which observations we made on the
pattern collected and how we tried to incorporate all this in a filter model.

All data collection and testing was done on the mail server of DLH.Net [dlh]. This
server contains about 100 mailboxes, most of them existing for almost ten years. Long
existing mail addresses are a very good spam magnet since the addresses have often been
carelessly posted in newsgroups or appeared in plain-text on webpages making them very
easy to spider.

The MX for incoming mail was set to mx.dlh.net and the MR was configured to be au-

threlay.dlh.net. With this configuration there should be no legitimate SMTP connection
to mail.dlh.net itself.

3.1 Collecting Data

The SMTP protocol allows to delay a mail delivery with a temporary error. A short
summary of SMTP response codes used can be found in Table 3.1. Generally error
code 451 is used in normal greylisting. However, since we refuse the connection at the
initial connection we have to use 421 instead to stay RFC-compliant. After refusing a

13

CHAPTER 3. MX RETRY BEHAVIOUR

Table 3.1: Common SMTP Error Codes

Code Description Allowed after
220 Service ready conn. establishment
421 Service not available, closing transmission channel anywhere
451 Requested action aborted: local error in processing anywhere after MAIL
550 Requested action not taken: mailbox unavailable anywhere after HELO

connection with a temporary error it is the task of the sending server to spool the mail
and retry the transmission later.

To record comparable data we used a mechanism similar to normal greylisting. A simple
TCP wrapper was written that set up a database entry at the first occurrence of a new
IP address along with a timestamp. This first and each consecutive retry was rejected
with a temporary error for the first two hours after the initial occurrence. After this time
each incoming connection was permitted regardless of being evil. Within the first two
hours each connection attempt was logged with exact timing information (see Figure
3.1).

Addtionally we set up a fake secondary MX with lower priority which always denied in-
coming connections. Connection attempts to this host were also logged. Referring to the
SMTP RFC MXs have to be contacted in the order of their priority. This facility is useful
to check if an MTA contacts the MXs for a domain in correct order.

At last we set up a third logging mechanism logging all connection attempts to any ports
except TCP port 25 (STMP) and port 179 (ident). We redirected mail.dlh.net to an unused
IP and logged all connection attempts there as well. This logging facility was intended to
gather information if a sender does a valid MX look-up and/or was trying to scan or even
compromise our own system before sending mails to it. This idea was partly inspired
by [CHMS06].

14

3.2. EVALUATION

IP address known?

2 hours elapsed?

yes

create DB entry

 no

log connection

yes

log connection

 no

pass connection to real MX

O

deny connection w/ temporary error

O

Figure 3.1: Data Collector for Incoming SMTP Connections

3.2 Evaluation

The data collection phase ran over four weeks between May 5th and June 4th 2006.
During this period information about the retry behaviour of about 130,000 distinct hosts
was collected.

On the one hand, to distinguish between good and bad patterns we decided to consider
all IP addresses that were blacklisted by common DNSBLs or were originated from a
dynamic dial-up host (likely to be a zombie) as bad. Different from normal DNSBL
usage we had the big advantage that we were able to tag a pattern as bad long after it
was recorded. This way the general delay for an IP being listed in a blacklist did not
matter.

As our records revealed not a single host not performing a real MX look-up—this means
connecting to the SMTP port on mail.dlh.net instead of mx.dlh.net—ever passing the
installed CRS we decided to consider all those hosts bad as well.

15

CHAPTER 3. MX RETRY BEHAVIOUR

0%

1%

2%

3%

4%

5%

6%

7%

 0 30 60 90 120 150 180 210 240 270 300

P
er

ce
nt

ag
e

of
 c

on
ne

ct
io

ns

Time between consecutive connection attempts (s)

bad senders

Figure 3.2: Distribution of Retry Times for all Recorded Bad Senders

On the other hand, a pattern was marked good if it belonged to a host that successfully
passed the CRS. Using these criteria we had a good indication for definitely bad and
most likely good patterns.

The histogram in Figure 3.2 shows the distribution of retry times up to five minutes
for all bad MTAs recorded during the data collection phase. There is an accumula-
tion of very short retry times below 30 seconds and a cluster of retries below 1 sec-
ond.

Figure 3.3 reveals the distribution of retry times up to half an hour for all good senders.
They will likely reconnect after fixed intervals building clusters at characteristic times
like 60, 600 or 900 seconds. However, even some good senders seem to have broken
SMTP error code handling and reconnect immediately after a temporary error.

16

3.3. BASIC FILTER IDEA

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

 0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

P
er

ce
nt

ag
e

of
 c

on
ne

ct
io

ns

Time between consecutive connection attempts (s)

good senders

Figure 3.3: Distribution of Retry Times for all Recorded Good Senders

3.3 Basic Filter Idea

Derived from the patterns that were gathered during the initial data collection phase
we decided to build a filter based on a penalty system. The penalty is a timeframe in
seconds after the initial connection we definitely block a sender out. This effects that for
a connection to be permitted the whole penalty time has to be elapsed first. During the
penalty phase all connections will be refused with a temporary error while, of course,
every attempt during that time might cause additional penalty.

Inspired by the fact that most malicious senders have a very short delay between two
consecutive connection attempts (short retry) we decided to define an expected retry
time between two connection attempts and punish all too short retries with increasing
the penalty. To judge consecutive bad behaviour a counter named consecutive short

retries (CSR) was integrated which is increased for each short retry and decreased for
each connection retry time that was longer than the expected retry time. How the penalty
is increased can be seen in (3.1).

penalty += (expected_retry_time - real_retry_time) * ++consecutive_short_retries
(3.1)

17

CHAPTER 3. MX RETRY BEHAVIOUR

Table 3.2: Example Penalty System

Action Penalty increase
Initial penalty at first MX connect 900s
Malicious activity (portscan/fakeMX) +3h
No PTR set or DNS server failure +6h
Secondary MX contacted before primary +3h
Retry time below one second +2h
Retry time below five seconds +1800s
(Consecutive) short retry see (3.1)

If a sender does not care about our error code handling at all and reconnects immediately
after a refused connection (hammering) an additional penalty increase is made to honour
this extremely bad behaviour.

As discussed earlier we also want to be able to take malicious activity, wrong MX priority
handling or fake MX look-ups into account. An overview of a complete example penalty
system is shown in Table 3.2 . Most values in this penalty system are based on experience
and are more or less arbitrary.

3.4 Expected Retry Time

The most essential value in our filter is the expected retry time (ERT). Derived from
this value all dynamic penalty increase decisions are made. As the RFC proposed value
of 15-20 minutes between consecutive connection attempts would be inappropiate even
for most friendly mailservers we decided to use the data gathered during the inital data
collection phase and simulate the inital delay of good senders while altering the value
chosen for the ERT.

Figure 3.4 shows the worst case, the average case for the penalty all good senders would
get and the average delay a good message would have been delayed if the respecting
value for the ERT would have been used in the filter.

Figure 3.5 represents the equivalent simulation with the Y-Axis being linear and without
maximum delay focussed on the ETR interval between 0 and 600 seconds.

18

3.4. EXPECTED RETRY TIME

100

1000

10000

100000

1000000

 180 360 540 720 900 1080

T
im

e
(s

)
[lo

ga
rit

hm
ic

]

Expected retry time (s)

Maximum penalty
Average delay

Average penalty

Figure 3.4: Filter Retry Time Simulation

600

900

1200

1500

1800

2100

2400

2700

3000

3300

3600

 180 360 540

T
im

e
(s

)

Expected retry time (s)

Average delay
Average penalty

Figure 3.5: Filter Retry Time Simulation (detailed)

19

CHAPTER 3. MX RETRY BEHAVIOUR

Table 3.3: Exemplary Penalty Calculation for rohrpostix.cs.uni-duesseldorf.de

Try t 4t CSR 4Penalty Total penalty Action
#1 0s - 0 900s 900s deny
mx2 5s - - - 900s deny
#2 1389s 1389s 0 - 900s permit

Table 3.4: Exemplary Penalty Calculation for mail.gmx.net

Try t 4t CSR 4Penalty Total penalty Action
#1 0s - 0 900s 900s deny
#2 400s 400s 0 - 900s deny
#3 1200s 800s 0 - 900s permit

Derived from the result that there is a significant gap between the calculated penalty with
an ERT of 180 and 210 seconds we decided to use an ERT of 180 seconds in our later
tests and implementation.

3.5 Exemplary Penalty Calculation

In this section we give some easy examples how penalty calculation actually works.

Table 3.3 shows the retry behaviour of our institute’s mailserver and the penalties raised.
This mailserver does correctly contact the MXs in order of their priority.

Table 3.4 reveals the retry pattern of the MX of one of Germany’s biggest free-mail
providers. This server does not contact the secondary MX at all, but has a nice timing
behaviour.

As penalty calculation for bad senders usually causes many log entries we will give
only a short example how characteristic the behaviour of a ratware MTAs is. Table
3.5 clearly shows incorrect MX priority handling, chaotic timing and port scans (ids) at
once. The table has been abbreviated since the original log had more than 300 hundred
lines.

20

3.5. EXEMPLARY PENALTY CALCULATION

Table 3.5: Exemplary Penalty Calculation for p54830063.dip0.t-ipconnect.de

Try t 4t CSR 4Penalty Total penalty Action
mx2 -5s - - 10800s 10800s deny
#1 0s - - 900s 11700s deny
ids 22s - - 10800s 22500s -
ids 22s - - 10800s 33300s -
#2 22s 22s 1 158s 33458s deny
mx2 391s - - - 33458s deny
#3 396s 374s 0 0s 33458s deny
ids 417s - - 10800s 44258s -
#4 417s 21s 1 159s 44417s deny
mx2 481s - - - 44417s deny
#5 486s 69s 2 222s 44639s deny
#6 507s 21s 3 477s 45116s deny
ids 508s - - 10800s 55916s -
ids 508s - - 10800s 66716s -
mx2 523s - - - 66716s deny
#7 528s 21s 4 636s 67352s deny
#8 549s 21s 5 795s 68147s deny
mx2 900s - - - 68147s deny
#9 905s 356s 4 0s 68147s deny
ids 926s - - 10800s 78947s -
#10 926s 21s 5 795s 79742s deny
ids 927s - - 10800s 90542s -
mx2 1131s - - - 90542s deny
#11 1137s 211s 4 0s 90542s deny
mx2 1543s - - - 90542s deny
#12 1548s 411s 3 0s 90542s deny
#13 1569s 21s 4 636s 91178s deny
ids 1570s - - 10800s 101978s -
ids 1570s - - 10800s 112778s -
mx2 1637s - - - 112778s deny
#14 1643s 74s 5 530s 113308s deny
ids 1664s - - 10800s 124108s -
ids 1664s - - 10800s 134908s -
#15 1664s 21s 6 954s 135862s deny
mx2 1903s - - - 135862s deny
#16 1909s 245s 5 0s 135862s deny
#17 1930s 21s 6 954s 136816s deny
mx2 2272s - - - 136816s deny
#18 2277s 347s 5 0s 136816s deny
mx2 2296s - - - 136816s deny
...

21

Chapter 4

Implementation

After the basic filter idea was modelled we wrote a first proof of concept implementation.
This code was a very straight forward perl [per] script run over xinetd [xin]. Since first
results were promising we decided to do a reference C implementation because the re-
sources consumed by the perl/xinetd wrapper were much too high. The whole construc-
tion (see Figure 4.1) consists of a connection handler that accepts new incoming SMTP
connections and forwards the connections to the real MX on permisson or refuses them
with an error otherwise. In the background a userspace worker is doing asynchronous
tasks like DNS look-ups or DNSBL checking. The communication between both is done
via a MySQL [MySa] database. This chapter reveals some implementation details and in-
troduces some additional tweaks to enhance the filter performance.

Database

Connection Handler

Userspace Worker

System MX
on permit

Figure 4.1: Interaction between DB, Connection Handler and Userspace Worker

23

CHAPTER 4. IMPLEMENTATION

4.1 Connection Handler

After a new incoming connection has been accepted, the IP address is first matched
against permanent whitelisting and blacklisting rules. After that the penalty time for this
IP is calculated depending on prior connection attempts if there where any. Depending
on the penalty time having passed, the host is set to permit state or the connection is
denied with a temporary SMTP error. Every first connection from a new IP address is
always rejected and will not be permitted until the userspace worker has processed the
new DB entry.

The exact behaviour of the connection handler can be studied in Figure 4.2. If the con-
nection is denied, an appropriate error code and message is returned and the connection
is closed. If the sender IP is permitted, the connection is passed on to the real MX
transparent to the sending system and the local MX.

4.2 Userspace Worker

The idea behind the userspace worker is that possible time-wasting tasks like reverse
or DNSBL look-ups can be done asynchronously from the connection handler. So the
connection with the sending server is not held open unnecessarily long caused by slow
DNS look-ups.

The userspace worker first resolves all unresolved IPs. If the DNS server fails, the look-
up is delayed and retried serveral times. After having resolved the Pointer Resource
Record (PTR)—the reverse record for an IP—the IP and PTR along with the local MX
is matched against a set of rules in the database. These rules allow to increase the initital
penalty, mask an entry as dynamic dial-up host or dynamically whitelist or blacklist a
host. With these rules it is e.g. possible to give all hosts without a valid PTR an additional
penalty or to declare a host as dynamic and blocking it depending on the local settings.
Since the PTR matching is done using Regular Expressions [MySb] one can do quite
appropriate PTR matching a lot stronger than with exisiting PTR matching mechanisms
like those in Spam Assassin [SA0]. The idea is to give potentially bad hosts a higher

24

4.2. USERSPACE WORKER

permanently whitelisted

permanently blacklisted

no

pass connection to real MX

yes

already permitted by 2+ other MXs

no

deny connection w/ permanent error

yes

IP known by local MX?

no

yes

fetch DB entry

yes

create DB entry

no

dynamically blacklisted
(DNSBL/DialUP/Rule)?

update DB to permit sender IP

deny connection w/ temporary error

already permitted?

no

yes

recalculate penalty

no

yes

IP resolved,rules applied
and DNSBL checked?

penalty time elapsed?

yes

noyes

no

O O O

Figure 4.2: Flowchart of Connection Handler

25

CHAPTER 4. IMPLEMENTATION

initial penalty so that their probation period is longer. A comprehensive list of rules can
be found in the sources attached to this paper.

With DNSBL checking enabled the userspace worker also performs a look-up on all
configured lists if a host would be permitted at its next reconnect. This way it is guar-
anteed that the check takes place at the last worker run possible. There is also a peri-
odically rechecking made for already permitted or already blacklisted hosts. If a host
gets delisted from a blacklist, the dataset is deleted and the learning process is started
over. This is done because all connections are refused with a permanent error while a
host is blacklisted and therefore there was no adequate penalty calculation during that
time.

The user space worker is also responsible for removing obsolete entries from the host
table. Hosts are deleted if they are not permitted and have not retried for a timeframe
of four days—the usual maximum delivery time for e-mails. Old host entries for un-
permitted hosts need to be deleted to be able to evaluate the retry bevaviour for a new
delivery attempt of a new message. It is also convenient to remove all permitted hosts if
they have not sent any e-mail within the last months to keep the database from growing
endlessly.

4.3 Database

The database backend which stores the information of connecting hosts is based on the
MySQL [MySa] database engine. Currently there is a single database server storing
all information for all MXs on which we tested the filter. Generally a new dataset is
created for each unique combination of IP and MX. There is only one single row for
each IP/MX combination so the database size will not grow with each single connection
attempt.

All dynamic information is stored in the database for easy backupability. Beside the cen-
tral IP/MX database there are additional tables which hold information about statically
blacklisted or whitelisted hosts and additional rules and rejection messages.

26

4.4. ADDITIONAL TOOLS

4.4 Additional Tools

To make life with greylisting easier for users and gather even more patterns about the
hosts connecting to our servers, we wrote some additional scripts.

This includes a small fake secondary MX server that just refuses incoming connections
and logs the connection order. With this tool it is not necessary to have a complete
instance of the real MX running as secondary.

The same daemon that was introduced to scan the firewall logs for portscans also analyses
the mailserver logs and creates reverse permit entries in the host table for all servers that
local users send mails to. So if a local user sends mails to a foreign host all mail coming
back from that host are permitted immediately.

Since there are common lists of known servers that are legitimate and do no proper
queueing or send time critical e-mails (like ebay) we wrote a small script that imports the
common whitelist from PureMagic [Pur] and add them to our whitelist table.

27

Chapter 5

Performance Analysis

Since the beginning of July the reference implementation introduced in Chapter 4 is in
production environment on three major mailservers. The subjective impression of the
users on these mailservers was that the overall spam burden has significantly decreased
although there was already ordinary greylisting installed on that servers before. However,
analysis of a pre-MX filter is rather complicated because it is very difficult to distinguish
whether a denied connection belongs to a delivery attempt of a spam mail or not. Since
the mail behind a denied connection attempt cannot be classified as it is never received
by the MX, we had to find other indications and values to evaluate.

5.1 Impact on the MX

To get a first impression what our filter is able to do we decided to compare signifi-
cant values on the busiest mail exchanger (mx.dlh.net) on equal weekdays with the filter
enabled in one week and disabled in the other.

On mx.dlh.net there is a CRS installed on most mailboxes. In Figure 5.1 one can see
the number of mails remaining in the queue of the CRS for one of the busiest accounts
on that system. The number of queued mails significantly decreased with enabled filter,
and the number of entries blacklisted after being received by a background process doing
regular DNSBL checks for already queued mails dropped almost to zero. This provides

29

CHAPTER 5. PERFORMANCE ANALYSIS

 0

 50

 100

 150

 200

 250

 300

disabled enabled

N
um

be
r

of
 m

ai
ls

Filter status

Mails in CRs queue
DNSBL after reception

Figure 5.1: Queued Mails in CRS per Day

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

disabled enabled

N
um

be
r

of
 u

nd
el

iv
er

ab
le

 m
ai

ls
 in

 lo
ca

l q
ue

ue

Filter status

undeliverable mails

Figure 5.2: Undeliverable Mails in Local Delivery Queue per Day

 0

 10

 20

 30

 40

 50

 60

 70

disabled enabled

N
um

be
r

of
 r

ef
us

ed
 r

el
ay

 a
tte

m
pt

s

Filter status

refused relay attempts

Figure 5.3: Refused Relay Attempts from External Hosts per Day

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

disabled enabled

N
um

be
r

of
 v

er
ify

 e
rr

or
s

Filter status

verify errors

Figure 5.4: Verify Attempts for Non-existing Mailboxes per Day

30

5.2. FILTER STATISTICS

an evidence for us having achieved our goal that our filter delays bad senders long enough
to be listed by DNSBLs.

Associated with less entries in the queue of the CRS the number of undeliverable mails
caused by CRS-challenges sent to non-existing addresses is also noticeably smaller which
can be seen in Figure 5.2.

To check if our filter missed some misbehaving senders we also randomly checked some
mails remaining in the queue of the CRS with enabled filter by hand. All of them have
been found to have done proper queueing and timing during the greylisting process. So
there was no chance for our filter to classify them as bad and block them out before they
entered the queue.

We have also found the number of unauthorized relay attempts on mx.dlh.net caused by
spammers checking for open relays dropping to zero with our filter enabled (see Figure
5.3).

Furthermore, we saw the number of failed verify attempts caused by spammers trying to
send mail to non-existing mailboxes by using common given names als local part of the
mail address dropping enormously (see Figure 5.4). All these facts can be summed up
in the observation that the average system load on mx.dlh.net dropped almost 50 percent
with enabled filter.

5.2 Filter Statistics

To get more detailed statistical information about the filter performance we analysed the
database records generated by our reference implementation.

About one third of all spammer connections could be rejected because the filter was
able to delay the delivery long enough for common DNSBLs listing their IP address.
Furthermore, almost 98 percent of all hosts trying to connect to mx.dlh.net were never
let in for various reasons, almost 50 percent alone by our filter mechanism. Even if
all DNSBL checking was disabled, our later analysis revealed that 91.5 percent of all
blacklisted hosts would never have been permitted because their behaviour caused so

31

CHAPTER 5. PERFORMANCE ANALYSIS

Table 5.1: Statistical Breakdown of Connections per Month

Description Count Percentage
Total number of connections to mx.dlh.net 384 157 100.0%

denied temporarily 219 343 57.1%
denied permanently 137 949 35.9%

dynamic dial-up 62 261 45.1%
dns blacklisted 75 688 54.9%

initially 52 347 69.2%
during greylisting 23 341 30.8%

permitted 26 865 7.0%
obviously no spam (CRS) 14 761 54.9%
blacklisted afterwards 1 391 5.2%

Table 5.2: Statistical Breakdown of Distinct Senders

Description Count Percentage
Total number of distinct senders on mx.dlh.net 201 891 100.0%

senders never let in 197 368 97.8%
dynamic dial-up 38 266 19.4%
dns blacklisted 62 840 31.8%

initially 47 110 75.0%
during agreylisting 15 730 25.0%
bad enough behaviour 57 498 91.5%

adaptive greylisting 96 262 48.8%
senders permitted 4 523 2.2%

much penalty that they would have been blocked out in any case. Considering those
connections that have been permitted by our filter, about 55 percent were obviously no
spam because the corresponding senders managed to pass the CRS. The rest remaining
in the queue were mostly failed delivery notifications or virus alerts caused by spammers
using a local address as forged sender.

Tables 5.1 and 5.2 give some additional statistical breakdowns of the filter performance.
The data on the reference implementation was collected between June 12th and July
29th 2006. The records in Table 5.1 have been normalised to a 30-day-basis. Table 5.2
contains data for the whole period.

32

Chapter 6

Conclusion

In this thesis we have described a simple spam filter that enters the mail delivery process
at a very early stage. It is able to keep a huge amount of spam out while being very
leightweight which is usually considered a very good thing.

Beginning with the oberservation in our logfiles and changed spamming behaviour, we
have built a data collection framework to validate our initial assumptions in the later
evaluation. Based on the pattern collection we found a very easy model to honour good
and bad behaviour and lock out bad senders dynamically.

The later evaluation revealed that this model is able to shift a lot of load away from the
mail servers and therefore reduces the overall spam burden significantly.

The resources saved by filtering the mail at a very early stage can now be spent for more
complex, higher level filters that can then detect the spam that still managed to find its
way through our filter system.

6.1 But What if Spammers Adapt?

As with any spam filter that is newly developed an important question is: will the fil-

ter still be effective if the spammer has knowledge how it works? Filters that anal-
yse the structure of body and headers of a message might be cheated if the structure

33

CHAPTER 6. CONCLUSION

of the spam message is altered. Other filters might scan for characteristic keywords
or do probability analysis. In these cases spammers will and already do adapt heav-
ily.

Since our filter does not take any mail content or structure into account, there might be a
good chance that spammers might not be able to adapt that easily. If we categorize our
filter as a greylisting-like filter, we first might think of the ability to cheat normal greylist-
ing and then see if our implementation has the same weaknesses.

The reason why normal greylisting is quite effective is that spammers currently do not use
a unique sender address when targeting a specific recipient address. Even if a spammer
does no appropiate queueing, there is no reason why he should not be able to send two
or more spam attacks within a short timeframe. Maybe the first one is only to setup the
triple in the greylisting table and after the usual static amount of time all mails would
be permitted. It would be no big deal to build a hash function that generates a unique
sender address out of each recipient’s e-mail address. At this point storing triples is
nearly useless and normal greylisting is worn out.

The key is that spammers have to send their spam messages very fast and cannot do
appropiate queueing and timing without getting ineffective. Of course, every spammer
could use a standard RFC-compliant mail transfer agent, but there is a good reason why
he usually does not. A spammer sends millions of mails and even if only a small amount
of mails had to be queued appropiately, it would be so resource intensive that this would
lead to ineffectiveness. Normal mailservers get very high-loaded if only a few hundred
mails are queued. Considering only one percent of one million mails not being delivered
immediately, the spammer’s host would be busy with all the queueing and redelivery
attempts and not be able to send out new mails. Since spammers usually send out copies
of the same mail to millions of recipients they had to write their own MTA not queueing
the mail, but just keeping a database of already tried and temporarely delayed addresses.
Currently they do not seem to do this and hopefully they will not bring up that idea too
soon.

Spammers will likely behave non-RFC compliant for the next time and as long as they
do, our filter will be able to identify them with a good probability. However, a big
percentage of mail is filtered out because the sender gets DNSBLed while we let the
sender retry. If all servers would use our filter, there would be no content filter which

34

6.2. FUTURE WORK

is able to identify the mail sender as being a spammer and give feedback to a blacklist
provider.

Further we have to keep in mind that there will always be a way to cheat that we cannot
foresee and the filter’s effectiveness will strongly depend on how widely it is spread. It
is the same reason why there were no viruses for Linux or OSX for a long time. If it is
not necessary to do proper SMTP while still having a high delivery rate, there will be no
spammer who is eager to enhance his techniques.

However, we can definitely say that our approach is another way to force spammers to act
RFC-compliant and this automatically leads to decreased throughput on their side and is
therefore a benefit for all peaceful e-mail users. Spammers have two opportunities when
trying to improve their efficiency—they can simply improve the amount of spam sent or
they can improve the quality of spam [AF06]. If we force them to stay RFC-compliant
with filters blocking them out otherwise, their only option is to increase the quality of
their spam which is unequally harder than just compromising more hosts and sending
more spam.

6.2 Future Work

Since the first test results of our reference implementation are very promising, there
is a wide set of opportunities to get even better filter results. Some of our ideas for
improvements and further research are sketched in this section.

A first option to circumvent the listener that forks and then calls a MX process would
be a Linux iptables [ipt] module that matches against all IP addresses that are already
permitted. Connected to this module should be a userspace module that updates some
hash table from the database since a real database connection directly from a kernel
module would not be ideal. With such a module it would be possible to allow only
connections which an IP match in the hash table to connect directly to the MX. All other
connections could be redirected to the connection handler process—now being just a
connection refuser—by NAT rules.

35

CHAPTER 6. CONCLUSION

Another idea to influence the decision process would be some artificial intelligence
mechanisms for pattern classification. The penalty system currently used in our ref-
erence implementation is very simple. We followed the idea of using Support Vector
Machines (SVMs) [Wikf] for classification, but ran into trouble since these machines
need well formatted training data, and sadly our approaches led to too many cases where
our SVM was not able to classify patterns at all.

Since our filter is not the final solution to filter all spam out, it would be a good idea
to have feedback from higher level spam filters like SpamAssassin [SA0] about very
negatively scored IPs and be able to revoke a permitment of that certain IP and add
additional penalty. In our filter this could be used to alter the initial penalty value or
the expected retry time making it harder to pass the filter. If some hosts from a certain
netblock have sent a high amount of spam or behave maliciously, the values in our filter
could be adjusted for that netblock in advance making it harder for all further senders
from there to get permitted. If mechanisms like SVMs were used for classification they
could be retrained using classification from higher level filters to get better classification
results.

As mentioned before our filter is ideal for using network effects and sharing information
across multiple MXs. Currently we only implemented the ability to share information
about good IPs giving them the ability to pass our filter earlier or even at the first con-
nection attempt. It would also be possible to share information about bad behaviour and
adjust penalty and other variables therewith.

Beside sharing the information about good IPs within a cluster of MXs that have to
trust each other, there could be a new facility of DNS Whitelists (DNSWLs) similar
to DNSBLs. With such an DNSWL the information about good IPs could be dis-
tributed via the stable and widely spread DNS system and offered third parties with-
out having to trust them and grant them access to the local infrastructure. However, as
with DNSBLs one has to trust the DNS [Eis05], but this is beyond the scope of this
work.

36

Bibliography

[AF06] J. Aycock and N. Friess. Spam Zombies from Outer Space. In 15th Annual

EICAR Conference, pages 164–179, April 2006.

[Alo04] Elizabeth A. Alongi. Has the U.S. canned spam? In Arizona Law Review,
volume 462, pages 262–290, 2004.

[Ban05] Banit Agrawal and Nitin Kumar and Mart Molle. Controlling Spam E-mail
at the Routers. In IEEE International Conference on Communcations, pages
1588–1592. University of California, Riverside, May 2005.

[CHMS06] Duncan Cook, Jacky Hartnett, Kevin Manderson, and Joel Scanlan. Catch-
ing spam before it arrives: Domain specific dynamic blacklists. In Fourth

Australasian Information Security Workshop (Network Security) (AISW

2006), volume 54 of CRPIT, pages 193–202, Hobart, Australia, 2006. ACS.

[Dan04] Hadmut Danisch. The RMX DNS RR and method for lightweight
SMTP sender authorization. http://www.danisch.de/work/security/txt/draft-
danisch-dns-rr-smtp-04.txt, 2004.

[dlh] DLH.Net - the gaming people (as seen Aug 7th 2006). http://www.dlh.net/.

[Eis05] Peter Eisentraut. Consequences of Spam and Virus Filtering for the E-Mail
System. In 22nd Chaos Communication Congress, 2005.

[exi] exim Internet Mailer (version 3.36). http://www.exim.org/.

37

http://www.danisch.de/work/security/txt/draft-danisch-dns-rr-smtp-04.txt
http://www.danisch.de/work/security/txt/draft-danisch-dns-rr-smtp-04.txt
http://www.dlh.net/
http://www.exim.org/

Bibliography

[Fed05] Federal Trade Commission. Effectiveness and Enforcement of the CAN-
SPAM Act. In A Report to Congress, 2005.

[Har03] Evan Harris. The Next Step in the Spam Control War: Greylisting.
http://projects.puremagic.com/greylisting/whitepaper.html, 2003.

[ipt] The netfilter/iptables Project (as seen Aug 7th 2006).
http://www.netfilter.org/.

[Iro06] IronPort Systems. Spammers Continue Innovation: IronPort Study Shows
Image-based Spam, Hit & Run, and Increased Volumes Latest Threat
to Your Inbox. http://www.ironport.com/company/ironport_pr_2006-06-
28.html, 2006.

[Kle01] J. Klensin. Simple Mail Transfer Protocol. RFC 2821 (Proposed Standard),
April 2001.

[Lev05] John R. Levine. Experiences with Greylisting. In Second Conference on

E-mail and Spam, Mountain View, California, July 2005.

[LW06] J. Lyon and M. Wong. Sender ID: Authenticating E-Mail. RFC 4406 (Ex-
perimental), April 2006.

[Mes06] Messaging Anti-Abuse Working Group. Email Metrics Program - 1st Quar-
ter 2006. http://www.maawg.org/about/
FINAL_1Q2006_Metrics_Report.pdf, 2006.

[MySa] MySQL AB. MySQL – The world’s most popular open source database
(version 4.1). http://www.mysql.com/.

[MySb] MySQL AB. Regular Expressions in MySQL (version 4.1).
http://dev.mysql.com/doc/refman/4.1/en/regexp.html.

[per] Practical Extraction and Report Language (version 5.8.4).
http://www.perl.com/.

[pos] Postfix (as seen Aug 7th 2006). http://www.postfix.org/.

38

http://projects.puremagic.com/greylisting/whitepaper.html
http://www.netfilter.org/
http://www.ironport.com/company/ironport_pr_2006-06-28.html
http://www.ironport.com/company/ironport_pr_2006-06-28.html
http://www.maawg.org/about/FINAL_1Q2006_Metrics_Report.pdf
http://www.maawg.org/about/FINAL_1Q2006_Metrics_Report.pdf
http://www.mysql.com/
http://dev.mysql.com/doc/refman/4.1/en/regexp.html
http://www.perl.com/
http://www.postfix.org/

Bibliography

[Pos82] J. Postel. Simple Mail Transfer Protocol. RFC 821 (Standard), August 1982.
Obsoleted by RFC 2821.

[Pos84] J. Postel. Domain name system implementation schedule - revised. RFC
921, October 1984.

[Pur] PureMagic Software. List of common manual whitelist entries (revision

1.16). http://cvs.puremagic.com/viewcvs/*checkout*/greylisting/schema/
whitelist_ip.txt.

[qma] qmail: Second most popular MTA on the Internet (as seen Aug 7th 2006).
http://www.qmail.org/top.html/.

[SA0] The Apache Spamassassin Project (as seen Aug 7th 2006).
http://spamassassin.apache.org/.

[Sle04] Tor Slettnes. Spam Filtering for Mail Exchangers.
http://ftp.linuxarkivet.se/pub/linuxdoc/HOWTO/other-formats/pdf/Spam-
Filtering-for-MX.pdf, 2004.

[Tem] Brad Templeton. Origin of the term "spam" to mean net abuse (as seen Aug

7th 2006). http://www.templetons.com/brad/spamterm.html.

[TMD] Tagged Message Delivery Agent (TMDA) (as seen Aug 7th 2006).
http://tmda.net/.

[Wika] Wikipedia, the free encyclopedia. DNS-based Blackhole Lists (revision

07:15, 7 August 2006). http://en.wikipedia.org/wiki/DNSBL.

[Wikb] Wikipedia, the free encyclopedia. Hammering (revision 23:41, 19 February

2006). http://en.wikipedia.org/wiki/Hammering.

[Wikc] Wikipedia, the free encyclopedia. Open mail relay (revision 20:08, 31 July

2006). http://en.wikipedia.org/wiki/Open_mail_relay.

[Wikd] Wikipedia, the free encyclopedia. Ratware (revision 20:46, 17 July 2006).
http://en.wikipedia.org/wiki/Ratware.

39

http://cvs.puremagic.com/viewcvs/*checkout*/greylisting/schema/whitelist_ip.txt
http://cvs.puremagic.com/viewcvs/*checkout*/greylisting/schema/whitelist_ip.txt
http://www.qmail.org/top.html/
http://spamassassin.apache.org/
http://ftp.linuxarkivet.se/pub/linuxdoc/HOWTO/other-formats/pdf/Spam-Filtering-for-MX.pdf
http://ftp.linuxarkivet.se/pub/linuxdoc/HOWTO/other-formats/pdf/Spam-Filtering-for-MX.pdf
http://www.templetons.com/brad/spamterm.html
http://tmda.net/
http://en.wikipedia.org/wiki/DNSBL
http://en.wikipedia.org/wiki/Hammering
http://en.wikipedia.org/wiki/Open_mail_relay
http://en.wikipedia.org/wiki/Ratware

Bibliography

[Wike] Wikipedia, the free encyclopedia. Spam (electronic) (revision 10:01, 6 Au-

gust 2006). http://en.wikipedia.org/wiki/Spamming.

[Wikf] Wikipedia, the free encyclopedia. Support Vector Machine (revision 09:32,

1 August 2006). http://en.wikipedia.org/wiki/Support_vector_machine.

[Wikg] Wikipedia, the free encyclopedia. Zombie computer (revision 18:43, 27 July

2006). http://en.wikipedia.org/wiki/Zombie_computer.

[WS06] M. Wong and W. Schlitt. Sender Policy Framework (SPF) for Authorizing
Use of Domains in E-Mail, Version 1. RFC 4408 (Experimental), April
2006.

[xin] xinetd–a secure replacement for inetd (version 2.3.14).
http://www.xinetd.org/.

40

http://en.wikipedia.org/wiki/Spamming
http://en.wikipedia.org/wiki/Support_vector_machine
http://en.wikipedia.org/wiki/Zombie_computer
http://www.xinetd.org/

Ehrenwörtliche Erklärung

Hiermit versichere ich, die vorliegende Bachelorarbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt zu haben. Alle Stellen,
die aus den Quellen entnommen wurden, sind als solche kenntlich gemacht worden.
Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgele-
gen.

Düsseldorf, 11. August 2006 Peter Lieven

41

	Titelseite
	Danksagung
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 History of SMTP
	1.2 Problem Statement
	1.3 Contribution
	1.4 Structure

	2 Prerequisites
	2.1 Origin-based Filter Techniques
	2.1.1 Black- and Whitelisting
	2.1.2 DNS-based Blackhole Lists (DNSBL)
	2.1.3 Challenge and Response Systems
	2.1.4 Firewall-Based Filters
	2.1.5 Malicious Activity

	2.2 False Positives and False Negatives
	2.3 Greylisting
	2.4 How to Enhance Greylisting
	2.5 Mail Exchanger and Mail Relay

	3 MX Retry Behaviour
	3.1 Collecting Data
	3.2 Evaluation
	3.3 Basic Filter Idea
	3.4 Expected Retry Time
	3.5 Exemplary Penalty Calculation

	4 Implementation
	4.1 Connection Handler
	4.2 Userspace Worker
	4.3 Database
	4.4 Additional Tools

	5 Performance Analysis
	5.1 Impact on the MX
	5.2 Filter Statistics

	6 Conclusion
	6.1 But What if Spammers Adapt?
	6.2 Future Work

	Bibliography

