
Implementation and Evaluation of a
Mobility Model in a Peer-to-Peer Simulator

Bachelor Thesis
by

Tobias Korfmacher
born in

Düsseldorf

submitted to

Technology of Social Networks Lab
Jun.-Prof. Dr.-Ing. Kalman Graffi

Heinrich-Heine-Universität Düsseldorf

Mai 2015

Supervisor:
Jun.-Prof. Dr.-Ing. Kalman Graffi

Prof. Dr. Martin Mauve

Abstract

This bachelor thesis is about the implementation of a mobility model to a peer-to-peer simulator.

Therefore we use the simulator PeerfactSim.KOM [Pee15]. Originally it contains a simple mobile

movement model.

The original idea was to create a foundation for realistic mobility movements. In the simulator Peer-

factSim.KOM we implement a new network layer which implements the NetPosition for every host.

In order to create realistic models in the future we consider a new design of the package.

The implementation of these interfaces establishes a basis for the future. Thereby it is possible to add

some new models without changing the source code in other files. We simply have to implement the

predefined functions in the interface.

To verify the correctness of the implementation we create some basic models and evaluate them.

Conclusively we can assume that the implementation enables more realistic mobility simulations and

evaluations.

iii

Acknowledgments

First of all, I would like to give my appreciation to Jun.-Prof Dr.-Ing. Kalman Graffi who gave me the

opportunity to write my thesis.

Additionally, I would like to thank my advisor Tobias Amft. Exchanging ideas advanced my imple-

mentation and was very contributing, too.

I am also grateful to Ahmad Reza Cheragi for pushing me.

I wish to express my sincere thanks to Sandra Hodißen, Alessa Köhne and Michael Girps for their

commitment.

Finally, I thank my family and friends for being patient and supportive during the last months.

v

Contents

List of Figures ix

List of Tables xi

Listings xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Structure . 2

2 Related Work 3

2.1 PeerfactSim.KOM . 3

2.2 Mobile Network Model by Carsten Snider . 5

3 Design 7

3.1 Considerations . 7

3.2 Movement Models . 11

3.2.1 Random Walk Mobility Model . 11

3.2.2 Random Waypoint Mobility Model . 11

3.2.3 Gauss-Markov Mobility Model . 12

3.2.4 Smooth Random Mobility Model . 12

3.2.5 Graph-Based Mobility Model . 12

3.2.6 Manhattan Grid Mobility Model . 13

3.2.7 Obstacle Mobility Model . 13

3.2.8 Reference Point Group Mobility Model . 14

3.3 Routing Algorithms . 14

3.3.1 Topology - Based . 14

3.3.2 Position - Based . 15

4 Implementation 17

4.1 The Interfaces . 17

4.2 The Models . 19

vii

Contents

4.3 Broadcast Messages . 24

5 Evaluation 29

5.1 The Eval - Scenario . 29

5.1.1 Star - Overlay . 30

5.2 Results . 30

5.2.1 Simulation Time: 120 min . 30

5.2.2 Simulation Time: 240 min . 32

6 Conclusion 35

6.1 Summary . 35

6.2 Future Work . 35

6.2.1 Linklayer . 36

6.2.2 OpenStreetMap . 36

6.2.3 Visualization . 37

Bibliography 39

viii

List of Figures

2.1 PeerfactSim.KOM architecture . 3

2.2 Mapping of online hosts during a simulation . 5

2.3 Finding a final path [Car09] . 6

3.1 MobilityFactory design . 8

4.1 World interface . 18

4.2 MobilityHost interface . 18

4.3 Inverse-square law . 21

4.4 Different packetloss models with a “stop” distance at 100 m 22

4.5 Comparison between single and broadcast send messages out 26

4.6 Comparison between single and broadcast send messages in 27

5.1 Duration time 120 min . 31

5.2 Duration time 240 min . 33

6.1 Visualization of the chord overlay with 51 hosts . 37

ix

List of Tables

4.1 Average movement of 50 hosts during 120 minutes 24

xi

Listings

2.1 Example config file for MobilityNetLayer . 4

4.1 Creating random obstacles . 20

4.2 Host-Positions with EvalMovement . 23

5.1 Host-Movements.txt . 33

xiii

Chapter 1

Introduction

In section 1.1 we start with the introduction by giving the motivation for this bachelor thesis. There-

after the structure is described in section 1.2.

1.1 Motivation

Peer-to-peer networks are normally decentralized and consist of equal network nodes. That means

every participant has the same rights and takes part in the services offered, for example file sharing,

direct communication or voice over IP. These are the main differences to server - client architectures,

whereby the servers offers these services. The clients are only users. It is often centralized.

These peer-to-peer networks are more popular due to safety aspects and its possibilities.

The use of simulators for peer-to-peer networks and distributed systems allows the user to analyze

overlays, routing protocols or applications.

Nowadays mobile phones are popular devices. They contain strong processors and high bandwidth

communication possibilities. Furthermore, the cellphone providers offer increasingly high traffic vol-

ume to use internet at a low price. In order to test movement behavior, working of routing algorithms

and other services of moving nodes we use simulations. Since we have up to 10.000 nodes used,

research would be too expensive. Moreover, new protocols would have to be tested.

1

Chapter 1 Introduction

1.2 Structure

A main part of the bachelor thesis addresses the implementation of different interfaces in order to

realize the mobility model.

In chapter 2 the simulation software and the mobile model from Carsten Snider as well as its draw-

backs are presented.

Considerations regarding building a new mobility model and its advantages are described in chapter

3.

Chapter 4 includes a description of the drafted interfaces and realized models.

In chapter 5 the settings for testing the implementation are presented. The simulation results are also

given.

Ultimately, chapter 6 summarizes the results. Additionally, we discuss some ideas for possible future

work on PeerfactSim.KOM with the MobilityModel.

2

Chapter 2

Related Work

In this chapter the mentioned peer-to-peer simulator PeerfactSim.KOM is explained in section 2.1 and

the mobile network model which was implemented by Carsten Snider is described in section 2.2.

2.1 PeerfactSim.KOM

PeerfactSim.KOM [Pee15] is an open source event-based simulation software with focus on large peer-

to-peer networks. The Technical University (TU) Darmstadt [Tec15] first developed the simulator.

Continuing work and support has been done by the University of Paderborn (UPB) [Uni15] and the

Heinrich-Heine-University Düsseldorf (HHU) [Hei15]. The simulator generates different layers for

every host shown in 2.1.

Figure 2.1: PeerfactSim.KOM architecture
[Ka15]

3

Chapter 2 Related Work

It is configured in an XML - file. We have to set up all different layers by various modules. The

network layer is the relevant layer used in this thesis. We give an exemplary extract of this config

file in Listing 2.1. It sets up the configuration of the MobilityNetLayer. With the simulator and the

NetLayer it is possible to receive realistic data for delay, loss and host positions.

< NetLayer
c l a s s =" org . p e e r f a c t . impl . ne twork . w i r e l e s s . impl . M o b i l i t y F a c t o r y "
downBandwidth=" 5000 " upBandwidth=" 1000 " >
<World
c l a s s =" org . p e e r f a c t . impl . ne twork . w i r e l e s s . impl . wor ld . HardWorld "
worldX = " $ world_X " worldY =" $ world_Y " / >
< M o b i l i t y S u b n e t
c l a s s =" org . p e e r f a c t . impl . ne twork . w i r e l e s s . impl . M o b i l i t y S u b n e t " / >
< Obs tac l eMode l
c l a s s =" org . p e e r f a c t . impl . ne twork . w i r e l e s s . impl . o b s t a c l e . RandomObstacle "
t a l l y =" 20 " / >
<PlacementModel
c l a s s =" org . p e e r f a c t . impl . ne twork . w i r e l e s s . impl . p l a c e m e n t . RandomPlacement " / >
< A c c e l e r a t i o n M o d e l
c l a s s =" org . p e e r f a c t . impl . ne twork . w i r e l e s s . impl . a c c e l e r a t i o n . C o n s t a n t S p e e d "
speed =" 35 " / > < !−− i n mm/ s e c−−>
< Packe tLossModel
c l a s s =" org . p e e r f a c t . impl . ne twork . w i r e l e s s . impl . s e n d i n g . p a c k e t L o s s . S q u a r e d P a c k e t L o s s "
s t o p =" 100000 " / >
<LatencyModel
c l a s s =" org . p e e r f a c t . impl . ne twork . w i r e l e s s . impl . s e n d i n g . l a t e n c y . M o b i l i t y L a t e n c y M o d e l " / >
<MovementModel
c l a s s =" org . p e e r f a c t . impl . ne twork . w i r e l e s s . impl . movement . RandomMovement " / >
< / NetLayer >

Listing 2.1: Example config file for MobilityNetLayer

We want to assign the NetLayer to every host. Therefore, we choose the string <NetLayer. Thus we

start the configuration. We choose the MobilityFactory with the variables of bandwidth.

The following interfaces are necessary for this specific factory.

We first choose the World - interface with the selected HardWorld and a dimension. The first dimen-

sion is described by world_X, the second by world_Y.

In the next step we pick MobilitySubnet for the simulation subnet. The next interface creates 20 random

obstacles. Additionally, the PlacementModel and the AccelerationModel are assigned. At this point

the moving speed is 35 mm/sec. Then we set up the SquaredPacketLoss for the simulation. At a certain

distance we decide whether the message should be sent or dropped on the bases of the value at the

variable “stop”. Finally, the LatencyModel and the MovementModel are configured.

All created interfaces and models are described in chapter 4.

4

2.2 Mobile Network Model by Carsten Snider

Furthermore, the simulations are managed by the simulation event queue. The queue contains all

planed and created events which have a time stamp. The simulator starts with the simulation and

looks for an event with the simulated time. If there is an event with the time signature the simulator

automatically executes it.

Additionally, you can select an analyzer in the XML - file, too. For example the DefaultNetAna-

lyzer which creates metrics of sent messages or online hosts during the simulated time. After the

simulation, the chosen analyzer automatically writes png-files and pdf - files containing the results if

GnuPlot [Tho15] is already installed. Figure 2.2 gives an example. It shows the online hosts during

a simulation of 120 min simulation time and 50 hosts.

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120

O
n
lin

e
 H

o
st

s
[n

u
m

b
e
r]

Time [minutes]

Sum of Online Hosts

Figure 2.2: Mapping of online hosts during a simulation

All details about PeerfactSim.KOM refer to the Community Edition released on 17.10.2013.

2.2 Mobile Network Model by Carsten Snider

An implementation of mobile movement is already given in the simulator PeerfactSim.KOM [Pee15].

It was developed by Carsten Snider during his bachelor thesis “Mobility Aware Peer-to-Peer Network-

ing” [Car09] submitted on 03.03.2009 at the Technical University (TU) Darmstadt [Tec15].

He generated a new network layer which simulates a mobile network with different hosts. This imple-

mentation computes the delay between a sender and a receiver. The delay is represented by a certain

number of hops between sender and receiver.

Here Snider’s model generates a static link between two hosts and saves the number of hops to reach

a destination. If no path has been found, the sender is set offline for the rest of the simulation.

Concerning moving hosts this procedure does not make sense. He designed a mobile movement

5

Chapter 2 Related Work

which generates a random position in the simulation area called Random Waypoint Mobility Model.

We will refer to this aspect in subsection 3.2.2. The procedure is repeated every minute during the

simulation. Thus every movement is of limited duration. If the new position cannot be reached in

time, the node moves to an intermediate position. It continues moving in the next time section.

Furthermore, Carsten Snider divided the simulation area into equal squares each called Quadrant.

With rising number of Quadrants it is easier to find the path to the receiver node.

Figure 2.3 gives a graphical example for latency calculation between node 0 and node 9. The latency

model counts the number of hops to compute the delay. Thus we also recognize that the path finding

algorithm does not necessarily find the shortest path.

Figure 2.3: Finding a final path [Car09]

The next chapter presents the design of the implementation and includes a short overview of some

movement models and routing algorithms.

6

Chapter 3

Design

We discuss the idea of building a new mobility model in section 3.1. Furthermore, we introduce some

movement models in section 3.2 and some routing algorithms in section 3.3.

3.1 Considerations

First of all, we decide to use the PeerfactSim.KOM [Pee15] for it is event based and has a hierarchical

structure. This structure allows to implement a new model of the NetLayer. As we said above this

model is chosen in the XML-file. By means of using this XML-file it is possible to select other models

for the simulation. Furthermore, new modules can be developed and tested. The MobilityModels’

structure allows to create new models, e.g. new movement models. Thereby, the source code of other

models does not have to be changed. Several models will be presented in the following chapter.

One possibility of such a movement model would be a MobilityHost asking his MovementModel for

a new position. In doing so it is possible to give various models to different nodes. Some models

calculate the new position considering the previous one. For this reason the node transmits the new

position to its MovementModel in case of request.

In his mobile movement model, Carsten Snider asks for a new position every minute. The Mobility-

Model does not aks ask for a new position before the previous prescribed position is reached. There-

fore, this new model is more realistic regarding the movements of nodes.

7

Chapter 3 Design

A short example:

A node sends a message to another node. Afterwards, the subnet asks the NetlatencyModel for the

latency of the message. This new model creates a MobileMovementManager that updates the posi-

tion of all nodes. The Snider Model can only deliver the position information in an interval of one

minute.

On the contrary, the position information in our MobilityModel are generated in real time. Here the

NetLayer is the sender. It calculates the distance towards the receiver by means of real time positions.

This procedure is more precise.

It is necessary to implement a Move_Event. The EventQueue list contains this event. The Mobili-

tyNetLayer asks its MovementModel for a new position. In relation to the recent speed it calculates

the movement time. After this calculation the simulator schedules this event with the adequate time

stamp to the event queue list. Similar to a car that stops at a traffic light, a movement pause is pos-

sible. Furthermore, this implementation enables to send messages between each other given that the

distance between sender and receiver is not too big. This decision is made by the PaketLossModel.

As soon as nodes move the distance changes. For this reason the distance can be reduced in the next

sending-receiving process and the sending is possible.

We built a new factory. The factory allows to implement new algorithms on the basis of the modular

structure. The following graphic 3.1 shows the design.

MobilityFactory

ObstacleModel
World

PlacementModel

AccelerationModel
MovementModel

LatencyModel

PacketLossModel

Figure 3.1: MobilityFactory design

This MobilityFactory issues the NetLayer and transfers all modules that have been chosen in the XML

- file to it.

Carsten snider developed the first mobile movement model for the PeerfactSim.KOM simulator. With

8

3.1 Considerations

its implementation the simulator works pretty well. Therefore, Snider describes it as a

“[...] foundation for the modelling of a mobile multi-hop network in the simulator Peer-

factSim.KOM.” 1

Nevertheless, a PaketLoss is not possible. On top this model does not feature obstacles and prohibits

the implementation of further models such as new world models or placement models.

In this case a possible model would be e.g.the ObstacleModel: An obstacle is a figure that is created

in the world. The host has to pass. Obstacles can be of different shape. Furthermore, obstacles can be

created by means of a data base.

A further problem is described in the following:

If Carsten Snider’s algorithm does not find any path between sender and receiver the host turns itself

offline during the rest of the simulation. In this case it is not possible to send or receive further

messages.

Mobile nodes move. If the distance between two hosts grows too big, they are not able to send

messages to each other. But, after further movement it might be possible again. However some

overlay algorithms delete those nodes from their routing table. Thus they are not able to receive

messages for the rest of the simulation time. It happens for example in a Chord - Overlay. To avoid

this, the overlay algorithms have to be changed in the future in order to test mobile movements.

The above-mentioned mobility model design enables implementations of WayPoints. It is possible

to choose a predefined path for the movement. Furthermore, streets can be defined such as paths for

cars or pavements for human beings. OSM [osm15] uses WayPoints as well. Therefore, they are also

useful for the development of a new world namely OSM. They support waypoints in order to mark

streets. OSM will be described particularly in section 6.2.

A further implementation of the world interface is SoftWorld. SoftWorld understands the world as

a globe. Due to this implementation edges do not represent a border anymore as the nodes can go

beyond and send their messages. In comparison to the HardWorld the sending and the movement

beyond the edges happens faster. A useful algorithm that is also used by OSM converts Cartesian

coordinates to Polar coordinates (ρ,θ).

Another possibility would be to implement a position-based PlacementModel. Regarding this model

or a similar model it can be possible that nodes have to move back to their origin in case of low

1 [Car09, S. 37]

9

Chapter 3 Design

battery in order to charge it. Sending and movement processes consume electricity. It may happen

that a message cannot be sent while moving towards the origin.

In the mobility model radio masts can be defined as MobilityHost. They can be allocated all over the

simulation area as they can have higher sending ranges. This enables to reach receivers by multi hop

routing.

10

3.2 Movement Models

3.2 Movement Models

Beside the precision of the network implementation simulation a realistic simulation and evaluation

of algorithms and applications in mobile Ad-Hoc-Networks depends on the nodes’ movement. On

the one hand “real” scenarios with mobile users and their movement data can be used for simulations.

However this procedure is quite expensive as people’s movement in a large area during a long period

of time had to be acquired. As a consequence most simulations of mobile Ad-Hoc-Networks use

problematic movement models. The validity of analysis mainly depends on the closeness to reality

of the movement models as unrealistic connectivity relations can lead to false suggestions and eval-

uations. For the application in field trials they cannot be verified and might lead to a failure of the

application. During the past years several movement models developed and were used by different

scientific groups. The journal from Tracy Camp et al. [TCD02] offers a well overview. In principle

the movement models can be divided into two clusters.

• Entity Mobility Models are models where hosts move independently

• Group Mobility Models have a node-depending-movement

Often used Entity Mobility Models are Random Walk Mobility Model and Random Waypoint Mobilty

Model. The following subsections introduced them.

3.2.1 Random Walk Mobility Model

The Random Walk Mobility Model is based on a simple algorithm. With reference to the current

position a node chooses his movement direction from the interval [0,2π] and the velocity from a

predefined interval randomly. Once the direction is set the node moves either for a certain period of

time or towards a certain distance. As a host moves towards an edge it bounces off and continues

moving corresponding to the angle of incidence. In some variations of the Random Walk Mobility

Model the simulation area is set as a sphere. Here the nodes can move beyond the edges. As a node

escapes the simulation area it appears on the opposite edge.

3.2.2 Random Waypoint Mobility Model

The Random Waypoint Mobility Model [Dav01] is similar to the Random Walk Mobility Model. A

mobile node randomly selects a target position on the simulation area and a speed from an arbitrary

chosen interval. Thus the node moves on the basis of this data. For an arbitrary period of time the

11

Chapter 3 Design

node stays at the target position before it selects a new one. As a high number of nodes crosses the

center of the simulation area the density of nodes in the center is generally higher than towards the

edges [Bet01]. Therefore, the model requires a longer attack time. The longer the simulation runs

the more spreading of nodes occurs. Neglecting the attack time leads to distorted results especially

during short simulations. In [JYN] it is proofed that the average velocity decreases gradually if the

velocity interval starts at zero. The reason behind is that lower velocity can be chosen and therefore

it might take more time to reach the target position than the simulation lasts. By using the Random

Waypoint Mobility Model one has to regard these issues in order to avoid distorted results. In [YN03]

it is proven, that this problem appears in every “Random Mobility” models since target position and

velocity are chosen separately. A default construction is introduced in order to solve this problem

concerning these types of movement model.

3.2.3 Gauss-Markov Mobility Model

The Gauss-Markov Mobility Model avoids sudden changes of direction and breaks [LH03] through

changing every host’s direction and velocity at fixed points in time. The new position bases on the

previous one as they vary by two normally distributed random values. This leads to gradual, natural

movement. To assure that a host does not stay in a corner too long its movement is set up towards

the center automatically as it approaches one. At this point it should be mentioned that some move-

ments take action with particular probability. It is calculated by an algorithm like the Metropolis

criterion [BS00]

3.2.4 Smooth Random Mobility Model

A similar approach pursues the Smooth Random Mobility Model [Bet01]. Even in this model the

new chosen direction and speed is based on previous data. Additionally, the model works with target

speeds. That means that there is a given target speed for each hop to mobile nodes. From the beginning

of each hop a node tries to reach the given target speed. A suitable choice of target speeds enables to

control the break and movement periods. Nodes do not change their direction having the full speed

but rather decelerate and accelerate again afterwards. This is used for the simulation of vehicles.

3.2.5 Graph-Based Mobility Model

The Graph-Based Mobility Model [THB+02] is based on the realization that the random choice and

the direct heading for target points within the common mobility models do not refer to the circum-

12

3.2 Movement Models

stances in reality. In the real world obstacles like houses exist and prohibit a direct overcome. People

can move on paths and streets. Therefore, this model makes use of a graph. Its nodes define reliable

targets and its edges define reliable paths between these targets. The mobile hosts start on a randomly

chosen node on the graph and pick a target node coincidentally. They just move along the edges to-

wards the target node and remain for an accidentally chosen period of time before they choose the

next target node. The speed is chosen at random from a speed interval. Another imaginable routing

of target nodes and speeds would be a schedule. Each device heads for the target points given by the

schedule successively and remains for the given period of time. In this way for example the students’

behavior on an university campus attending different lectures within one day can be simulated.

3.2.6 Manhattan Grid Mobility Model

The movement of mobile nodes in metropolis are simulated in the Manhattan Grid Mobility Model [Umt].

The nodes move on checkered streets separated by squared obstacles. The hosts are only able to move

on the street. The houses cannot be negotiated. At every crossroad a node decides (with a certain prob-

ability) whether to turn left or right or to go on straightforward. Additionally the nodes can change

their velocity in a certain interval.

3.2.7 Obstacle Mobility Model

The Obstacle Mobility Model’s [AJS03] primary goal is to replace the different movements of other

mobility models by more realistic movement patterns. Polygons (for example buildings) can serve

as obstacles which can be placed on the simulation area. Between these buildings we can calculated

paths on which the node moves. In the beginning the hosts are set up randomly on the paths. Each

node chooses a target building and takes the shortest path towards it. After reaching the destination

the host pauses for an arbitrary period of time before choosing a new target building.

Those paths are calculated by using the Voronoi-Diagram2 which generates the corners of the build-

ings. Hereby the intuitive idea that paths run almost centered between two buildings is nearly realized.

Furthermore, this model regards the obstruction of radio beams across buildings.

2cf.: http://de.wikipedia.org/wiki/Voronoi-Diagramm

13

http://de.wikipedia.org/wiki/Voronoi-Diagramm

Chapter 3 Design

3.2.8 Reference Point Group Mobility Model

In contrary to the previously documented mobility models the node movements of the Reference Point

Group Mobility Model [XHC99] depend on each other. This model defines movements of a group on

a predefined path. This path consists of a number of checkpoints which have to be reached within a

specified time limit. By using this model a wide spread spectrum of scenarios can be executed. Every

group of nodes has a center node. This node moves on the group’s path. Every single node has its own

reference point. It moves towards the group’s path. After every step the nodes are placed nearby the

reference point. Besides the groups’ movement along paths a random behavior of the group members

can be accomplished.

Among this selection of common used mobility models there exist a multitude of other models of

different purposes. Nevertheless the development of further realistic movement models continues.

Within this thesis we implement the Random Waypoint Mobility Model. Future work deals with the

implementations of the other models.

3.3 Routing Algorithms

Contrary to static networks routing algorithms in Ad-Hoc-networks have to handle steadily changing

topologies what it aggravated by a missing central server. Routing protocols can be divided into

two groups: Position-based [Mar01] and topology-based protocols [Eli]. The latter protocol can be

subdivided into proactive and reactive protocols.

3.3.1 Topology - Based

Proactive topology - based protocols react to network-topology-changes and update the routing in-

formation permanently. The use of proactive protocols may be problematical as the steady updates

of routing information at high node mobility wastes important communication bandwidth and energy.

Examples for proactive protocols are:

• Destination Sequenced Distance- Vector Routing (DSDV) [PB94]

• Wireless Routing Protocol (WRP) [Mur96]

14

3.3 Routing Algorithms

Reactive topology - based protocols do not try to update the latest routing information constantly

but determine these information just in case of demand. Often the route is planned through network

information input. This can lead to a high appearance of messages. Searching for a suitable route can

take a longer period of time which can cause delays. One advantage is that reactive protocols just lead

to a high appearance of messages in case that a node wants to communicate. This has high effects in

case of low communication frequency. Common reactive protocols are:

• Ad Hoc On-Demand Distance Vector Routing (AODV)) [Per03]

• Temporally Ordered Routing Algorithm (TORA) [Par97]

• Dynamic Source Routing(DSR) [Dav01]

3.3.2 Position - Based

The first heuristic position-based routing protocols emerged in the mid-eighties [Hid03] and assumed

that the own position and the direct neighbor’s position is known. The direct neighbor’s position is

updated generally by periodical broadcast whereas the target node’s position is calculated by a self-

organized location service [WKM04] within the Ad-Hoc network. Instead of calculating the route

single nodes choose the route to transmit packages solely based on the target position and the position

of the direct neighbor. Possible strategies of transmission are:

• Most Forward within Radius(MFR) [Kha10]

Packages are transmitted to the neighbor which lays next to the target node within the transmit-

ting range.

• Nearest with Forward Progress(NFP) [Dio10]

Packages are transmitted to the closest neighbor towards the target node.

The following chapter describes the implemented interfaces and models.

15

Chapter 4

Implementation

This chapter presents the implementation of the MobilityModel for the p2p simulator PeerfactSim.KOM.

First, we enumerate the different interfaces used for the mobility movement in section 4.1. Afterwards,

we specify the implemented models in section 4.2. An evaluation of a simulation with broadcast mes-

sages is described in section 4.3.

Basically we extend the simulator and build a new network model. The whole MobilityModel is

implemented in the folder:

src\org\peerfact\impl\network\wireless .

The files are sorted into a folder as follows:

The “api”- folder contains whole interfaces, the “impl” - folder contains implementations. Therefore,

everyone who wants to test the model is able to do so, as one can copy the whole package into the

network of the simulator. The simulator PeerfactSim.KOM is hierarchically structured as well.

4.1 The Interfaces

World:

The world is the main component and the running surface. It is given in [mm;mm]. The MobilityFac-

tory creates a MobilityHost which is added to the World and saved in a list. During the simulation it is

possible to merely create one World. Moreover it extends the SimulationEventHandler which initiates

the hosts’ movement. As a MOVE_EVENT occurs in the simulation EventQueue the world handles it.

Figure 4.1 shows the modules. In order to build a new instance of this interface the given functions

have to be implemented.

17

Chapter 4 Implementation

Figure 4.1: World interface

ObstacleModel:

The ObstacleModel creates a number of obstacles on the world which is determined in the XML - file.

A host cannot move towards a position within a square of [100 mm;100 mm] around an obstacle.

MobilityHost:

The MobilityHost represents an element of a layer in the simulator PeerfactSim.KOM. Here it creates

a MobilityNetLayer which implements the NetLayer. The battery state is implemented. The host’s

movement reduces the battery storage. The MobilityHost executes the movement. Figure 4.2 gives an

overview of the MobilityHost’s tasks referring to the movement of nodes. Besides the MobilityHost is

extended by the Component - class.

Figure 4.2: MobilityHost interface

18

4.2 The Models

PlacementModel:

The PlacementModel sets the starting point of the MobilityHosts. Here different algorithms can be

used. Section 4.2 shows the currently implemented models.

PacketLossModel:

It computes the distance between sender and receiver and generates a packetloss through different

models. Here the decision is made whether a packet should be send or rather be dropped. In the XML

- config we can define the distance which allows the sending of a message.

The movement-strategy is implemented in two interfaces:

MovementModel:

In order to compute the new movement position, the MobilityHosts calls the MovementModel inter-

face. Thereby it conveys its current position in terms of a PositionVectorN.

AccelerationModel:

Testing different types of nodes, we create the AccelerationModel. It calculates the motion speed.

Those different types could represent humans, cars, or motorcycles. As a person starts moving her

/ his motion speed is constant. However a car needs time to accelerate until it reaches the target

speed.

4.2 The Models

The main model is the MobilityFactory. It implements a ComponentFactory in the simulator. The

Simulator is configured in the XML - file. The mobility environment sets up the Netlayer.

The DefaultConfigurator creates an instance of MobilityFactory. Then the other modules are con-

figured according to the setup. The first is the World interface. We implement an instance called

HardWorld. It represents a rectangle with fixed edges. No node can move beyond. The second model

is the MobilitySubnet which registers the NetLayer. Hereafter the ObstacleModel has to be selected.

We implement two basis models. NoObstacle does not create any obstacles. RandomObstacle cre-

ates a defined number of obstacles of random positions. Listing 4.1 shows an example call with

20 obstacles.

19

Chapter 4 Implementation

C r e a t i n g new O b s t a c l e : 1 : X: 365483 Y: 120268

C r e a t i n g new O b s t a c l e : 2 : X: 318708 Y: 275218

C r e a t i n g new O b s t a c l e : 3 : X: 298772 Y: 166609

C r e a t i n g new O b s t a c l e : 4 : X: 192594 Y: 492420

C r e a t i n g new O b s t a c l e : 5 : X: 439591 Y: 470624

C r e a t i n g new O b s t a c l e : 6 : X: 137476 Y: 64448

C r e a t i n g new O b s t a c l e : 7 : X: 73300 Y: 11619

C r e a t i n g new O b s t a c l e : 8 : X: 273369 Y: 482243

C r e a t i n g new O b s t a c l e : 9 : X: 52245 Y: 312573

C r e a t i n g new O b s t a c l e : 10 : X: 205398 Y: 388156

C r e a t i n g new O b s t a c l e : 11 : X: 495361 Y: 243616

C r e a t i n g new O b s t a c l e : 12 : X: 373120 Y: 366576

C r e a t i n g new O b s t a c l e : 13 : X: 408648 Y: 419445

C r e a t i n g new O b s t a c l e : 14 : X: 263349 Y: 449667

C r e a t i n g new O b s t a c l e : 15 : X: 66969 Y: 41531

C r e a t i n g new O b s t a c l e : 16 : X: 489287 Y: 361178

C r e a t i n g new O b s t a c l e : 17 : X: 357515 Y: 71610

C r e a t i n g new O b s t a c l e : 18 : X: 231478 Y: 2242

C r e a t i n g new O b s t a c l e : 19 : X: 35749 Y: 174210

C r e a t i n g new O b s t a c l e : 20 : X: 169384 Y: 429678

Listing 4.1: Creating random obstacles

The next interface which has to be selected is the PlacementModel. We build a RandomPlacement to

generate random start positions.

Additionally, we implement the EvalPlacement for the evaluation. It sets up the start position in the

center of the world.

The hosts can have various speed and acceleration. We implement the ConstantSpeed. The velocity

has to be set up in the XML - file as well.

In order to send a MobilityNetMessages two interfaces are necessary: PacketLossModel and Latency-

Model. We create three implementations for PacketLossModel.

NoPacketLoss
This model repudiates no messages.

LinearPacketLoss
This one rejects a message as soon as the distance between two hosts is larger then the “stop”

20

4.2 The Models

distance defined in the XML - file.

SquaredPacketLoss
The last packetloss model allows to send a message up to the “stop” distance. The next 200 m

an algorithm decides whether a message is sent or dropped. If the value of
1

distance2 is lower

than a random number between zero and one the model repudiates the message. Any larger

distance leads to a packet loss. These calculations find application in physics science, see figure

4.31.

Figure 4.3: Inverse-square law

1cf.: http://en.wikipedia.org/wiki/Inverse-square_law

21

http://en.wikipedia.org/wiki/Inverse-square_law

Chapter 4 Implementation

An example for LinearPacketLoss and SquaredPacketLoss model is given in figure 4.4.

(a) LinearPacketLoss (b) SquaredPacketLoss

Figure 4.4: Different packetloss models with a “stop” distance at 100 m

The other sending models are the NoLatency and MobilityLatencyModel which implement the La-

tencyModel. The MobilityLatencyModel calculates the latency of the sending progress. The distance

between sender and receiver divided by the light speed amounts the latency. This time value is added

to the arrival-time.

The MovementModel is the last interface to be set up. Three implementations are given:

NoMovement
This model returns the old position as the new one. Thus there is hosts’ movement.

RandomMovement
By selecting this instance the host receives its new position within the world by random choice.

EvalMovement
This model is prepared for the evaluation. It returns the next position 1000 mm away from the

old one. All hosts with an odd NetID move towards the right side of the world. The others move

leftwards. By reaching an edge they turn vice versa.

EvalMovement5
Similar to the previous model its serves for evaluation. It was built for five hosts. One host

moves around the center point. The other hosts move towards the edges. Two of them sideways,

the other two in horizontal direction.

An example for host moving within the first 10 seconds with EvalMovement including two hosts is

22

4.2 The Models

given in listing 4.2 at the end of this section. Here the horizontal movement is obvious. Every second

the host moves 1000 mm to the left or right side.

We run ten simulations with RandomMovement. It includes 10 hosts and a simulation time of 120 minutes.

Table 4.1 presents the average number of movements of each and every host. The average number of

movements of each host is 56,04 movements.

If all the interfaces listed in section 4.1 are chosen, the DefaultHostBuilder calls the function create-

Component in the MobilityFactory. This creates a DefaultMobilityHost with the PlacementModel,

AccelerationModel and MovementModel selected above. With the function call a host is transfered.

It is assigned to the DefaultMobilityHost. Thereafter, the MobilityHost gets a position from its Place-

mentModel and is added to the world. Afterwards the function creates a new MobilityNetID and

accordingly to this, a MobilityNetLayer will be prepared. The netlayer sets up the PacketLossModel.

The MobilityFactory returns the MobilityNetLayer to the DefaultHostBuilder.

Further modules are essential for the implementation.

The class PostionVector is implemented in the folder:

src\org\peerfact\impl\util\positioning .

Functions are added to this file, such as:

The new PositionVectorN implements the NetPosition. Furthermore, we add a new constructor. It

permits values of type long. Concerning the future work it already includes a third dimension e.g. to

simulate mountains.

We have to add a new event to the class: SimulationEvent. We call this event MOVE_EVENT. It is

handled by the HardWorld. It extends the class SimulationEventHandler as aforementioned.

Furthermore, we have to add a new Reason called MOBILITYSEND to the Monitor - interface. It is re-

quired to evaluate the simulation and draws the graphs “Net-Messages_in” and “Net-Messages_out”.

The DefaultMonitor handles the Reason. To every sent message an action message is added in the

NetAnalyzer. The MobilitySubnet extends the AbstractSubnet. It represents the Subnet interface.

M o b i l i t y Model by T ob i a s Korfmacher

Time | NetID | X−Pos | Y−Pos | Speed | Acc

0 | 0 | 250000 | 250000 | 1000 .0 | 1 . 0

0 | 1 | 250000 | 250000 | 1000 .0 | 1 . 0

1000000 | 0 | 249000 | 250000 | 1000 .0 | 1 . 0

1000000 | 1 | 251000 | 250000 | 1000 .0 | 1 . 0

2000000 | 0 | 248000 | 250000 | 1000 .0 | 1 . 0

2000000 | 1 | 252000 | 250000 | 1000 .0 | 1 . 0

3000000 | 0 | 247000 | 250000 | 1000 .0 | 1 . 0

3000000 | 1 | 253000 | 250000 | 1000 .0 | 1 . 0

23

Chapter 4 Implementation

4000000 | 0 | 246000 | 250000 | 1000 .0 | 1 . 0

4000000 | 1 | 254000 | 250000 | 1000 .0 | 1 . 0

5000000 | 0 | 245000 | 250000 | 1000 .0 | 1 . 0

5000000 | 1 | 255000 | 250000 | 1000 .0 | 1 . 0

6000000 | 0 | 244000 | 250000 | 1000 .0 | 1 . 0

6000000 | 1 | 256000 | 250000 | 1000 .0 | 1 . 0

7000000 | 0 | 243000 | 250000 | 1000 .0 | 1 . 0

7000000 | 1 | 257000 | 250000 | 1000 .0 | 1 . 0

8000000 | 0 | 242000 | 250000 | 1000 .0 | 1 . 0

8000000 | 1 | 258000 | 250000 | 1000 .0 | 1 . 0

9000000 | 0 | 241000 | 250000 | 1000 .0 | 1 . 0

9000000 | 1 | 259000 | 250000 | 1000 .0 | 1 . 0

10000000 | 0 | 240000 | 250000 | 1000 .0 | 1 . 0

10000000 | 1 | 260000 | 250000 | 1000 .0 | 1 . 0

Listing 4.2: Host-Positions with EvalMovement

Simulation Number of movements
Average number of
movements per host

1. 2796 55,92
2. 2805 56,1
3. 2813 56,26
4. 2825 56,5
5. 2792 55,84
6. 2828 56,56
7. 2789 55,78
8. 2796 55,92
9. 2811 56,22
10. 2765 55,3

Average number of movement
of all simulations

2802 56,04

Table 4.1: Average movement of 50 hosts during 120 minutes

4.3 Broadcast Messages

For future work it is proposed to implement routing algorithms. For this reason we implemented a

function which allows the host to send broadcast messages. If the receiver’s NetID in the message

equals the broadcastID the host sends the message to all nodes within its radius. The broadcastID is

the value of Integer.MAX_VALUE viz 2147483647. It is the highest number that type Integer is able

24

4.3 Broadcast Messages

to display and apply. The value of Integer.MAX_VALUE is similar to the broadcast address. In general

the broadcast address is the highest IP in the network.

During the message process the host calls the function updateNeighbors(). It examines the distance

between the sender host and every other node in the world. A potential host is added to the Neighbor

list in the MobilityNetLayer in case the distance is verified by the PacketLossModel. If the distance

between sender and potential host is too far the sender netlayer deletes the potential host from the

neighbor list. Although the neighbor list has to contain the potential host. In case the list does not

contain it the MobilityNetLayer moves on to the next potential host. The broadcast message sender

repeats the procedure.

Figure 4.5 and figure 4.6 show the expected results of NetMessages_out(4.5) and NetMessage_in(4.6).

The referring setup contains five hosts. The simulation time is configured at 120 min. All other mod-

ules are set up as in listing 2.1 except the MovementModel. For this simulation we use EvalMove-

ment5.

Broadcast message(figure 4.5b) provides five times more NetMessages_out compared to direct com-

munication presented in figure 4.5a.

Accordingly the number of NetMessages_in is higher, too. Just to remind us:

If a host sends a ping and the message reaches the receiver it sends a pong back to the sender.

The subsequent chapter is about the scenario of evaluating and gives the results.

25

Chapter 4 Implementation

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100 120

M
es

sa
ge

s
ou

t [
nu

m
be

r]

Time [minutes]

Sum of Messages out

(a) Single send NetMessages out

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100 120

M
es

sa
ge

s
ou

t [
nu

m
be

r]

Time [minutes]

Sum of Messages out

(b) Broadcast NetMessages out

Figure 4.5: Comparison between single and broadcast send messages out

26

4.3 Broadcast Messages

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100 120

M
es

sa
ge

s
in

 [n
um

be
r]

Time [minutes]

Sum of Messages in

(a) Single send NetMessages in

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100 120

M
es

sa
ge

s
in

 [n
um

be
r]

Time [minutes]

Sum of Messages in

(b) Broadcast NetMessages in

Figure 4.6: Comparison between single and broadcast send messages in

27

Chapter 5

Evaluation

In order to evaluate the MobilityModel we build a special implementation. It is presented in section

5.1. In subsection 5.1.1 we briefly explain the Star - Overlay used for the evaluation. The results are

introduced in section 5.2.

5.1 The Eval - Scenario

For testing the implementation we build the following scenario.

There exist two hosts. They are placed in the middle of the world. In the “eval-config” the position is

[250000,250000]. We remind ourselves that the world is created in mm. Both hosts move rectilinear

at a speed of 35 mm/s. We run two simulations. The first simulation endures 120 minutes, the second

runs 240 minutes. At a speed of 35 mm/sec both hosts reach the edges of the world within the first

two hours. As the second simulation continues two more hours the hosts, as they reach the edges,

return to the middle of the world. Just as a reminder: The world size is defined by a rectangle of

[0,0] and [500000,500000]. The first host moves towards the left edge, the other vice versa. During

the movement the nodes send messages between each other as long as the distance between them is

below the limit configured in the SquaredPacketLoss model. Increasing the pingInterval in the Star -

Overlay to 1 Ping - Message/second we achieve significant results. In addition we modify the StarNode. It

sends a message only if it is not the receiver. If both hosts are located in the middle of the world, their

distance is 0 mm. Thus the ping messages reaches the receiver immediately. As the movement starts

the distance increases. It follows that the probability to repudiate the message is rising, too.

Beyond the value of “stop” + 200000 defined in the XML - config the message is dropped. Those

kinds of simulations display the behavior of mobility nodes using wireless communication.

29

Chapter 5 Evaluation

5.1.1 Star - Overlay

The Star - Overlay has already been implemented by Mr. Tobias Amft (HHU [Hei15]) in the Com-
munity Edition of the simulator PeerfactSim.Kom [Pee15].

A node asks the StarBootstrapManager for the CenterNode. The StarBootstrapManager registers this

node as the CenterNode, in case it has not yet registered one. The StarBootstrapManager conveys this

CenterNode to every node which joins the network. Every new node saves the CenterNode and sends

a ping message to the CenterNode periodically. In general the period takes one minute time. The

periodic interval can be varied in the class PingPongOperation. The variable is pingInterval. If the

CenterNode receives a ping message it sends back a pong message. Otherwise, the nodes keep sending

ping messages.

Here, the difference compared to other overlays are revealed.

5.2 Results

The following figures display the results of the “Eval-scenario” described in section 5.1.

5.2.1 Simulation Time: 120 min

In figure 5.1 two hosts are placed in the middle of the world. The distance between them is 0 mm.

At minute three they start sending messages, each one ping message per second. Plot 5.1a shows the

sum of NetMessages_out. The host with the NetID “0” sends a ping message. During the sending

process the distance between them stays lower than calculated in the SquaredPacketLoss. Therefore,

the receiver sends back a pong message. The hosts’ motion speed is set at 35 mm/sec. The distance

towards the edges is 250000 mm. It takes the host
250000mm

35 mm/sec
= 7142,86sec⇒ 7142,86sec

60
≈ 119,3min

to reach the edges.

The packet loss distance is assigned to 100000 mm. The packet loss calculation starts at 50000 mm

movement as the hosts move in opposite directions.

Thus
50000mm
35 mm/sec

= 1428,57sec the set distance exceeded. Hence the packet loss model SquaredPack-

etLoss generates packet loss using the following formula:
1

(distance)2 < randomvalue ∈ [0,1]⇒ packet loss.

30

5.2 Results

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120

M
es

sa
ge

s
ou

t [
nu

m
be

r]

Time [minutes]

Sum of Messages out

(a) NetMessage Out

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120

M
es

sa
ge

s
in

 [n
um

be
r]

Time [minutes]

Sum of Messages in

(b) NetMessage In

Figure 5.1: Duration time 120 min

This formula is valid up to a distance of 350000 mm between the hosts. They go beyond after

5001 seconds of simulated time.

Calculation:
1
2
·350000mm

35 mm/sec
=

175000mm
35 mm/sec

= 5000sec⇒ 5000
60

sec≈ 83min

After this time, the hosts still send a ping message every second but do not receive a pong message,

see figure 5.1b. It displays the sum of Messages_in.

The sending method is realized by the following algorithm.

Note: In order to raise the readability of this thesis we name the sender - NetLayer ‘sender’ and the

receiver - NetLayer ‘receiver’.

1. The sender receives the sending call from the overlay-layer. It includes the message, the receiver

31

Chapter 5 Evaluation

- NetID and the NetProtocol.

2. If the protocol is supported (currently it is IPv4), the sender creates a MobilityNetMessage

including the sender - NetID and the contents mentioned above.

3. The sender checks its network-state. In the case of being online, it calculates the distance

towards the receiver.

a) In case the hosts do not move, the sender calls the function getDistance(DefaultMobilityHost

receiver). The function returns the euclidean distance between sender and receiver:

distance =
√
(|senderX − receiverX |)2 +(|senderY − receiverY |)2

b) If the sender or the receiver moves, they call the function getPositionAt(long time). It

returns the position at the time of “time”. The new position is computed with following

trigonometric operations:

ϕ = arctan(
newPositionY −oldPositionY

newPositionX −oldPositionX
)

CurrentPositionX = cosϕ · |CurrentTime−MovementStartTime| · speed
1000000

+oldPositionX ;

CurrentPositionY = sinϕ · |CurrentTime−MovementStartTime| · speed
1000000

+oldPositionY ;

The events in the simulator are schedule in nanosec. Therefore it is necessary to divide by

1000000 to get the correct position.

4. The resulting distance is divided by the velocity of light, which is 299792458000 mm/sec.

5. Now the sender calls the function repudiateMsg from his packetloss model to receive the deci-

sion whether the message should be sent or dropped.

5.2.2 Simulation Time: 240 min

The sum of in and outgoing message during the 4 hours - simulation is shown in figure 5.2.

The graphics demonstrate the hosts movement as they first move towards the edges and then return to

the center. This behavior is express by the sum of sent messages.

After the simulation is completed the MobilityAnalyzer generates a file called “Host-Movements.txt”.

The file includes the number of movements. See listing 5.1.

32

5.2 Results

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250

M
es

sa
ge

s
ou

t [
nu

m
be

r]

Time [minutes]

Sum of Messages out

(a) NetMessage_Out

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250

M
es

sa
ge

s
in

 [n
um

be
r]

Time [minutes]

Sum of Messages in

(b) NetMessage_In

Figure 5.2: Duration time 240 min

M o b i l i t y Model by T ob ia s Korfmacher

Host : 0 had 505 movements .

Host : 1 had 505 movements .

Listing 5.1: Host-Movements.txt

The next chapter summarizes the bachelor thesis and gives several ideas for future work.

33

Chapter 6

Conclusion

After summarizing the results in section 6.1, some ideas for possible future work with the simulator

PeerfactSim.KOM and this MobilityModel follow in section 6.2.

6.1 Summary

The main aim of this bachelor thesis was to implement a mobility model in a peer-to-peer simulator

successfully. After having done the work, it becomes obvious that choosing the PeerfactSim.KOM

simulator was the right decision. In this simulator we built up a new NetLayer. We began the thesis

describing the mobile movement model of Carsten Snider and reasoning the decision why it was better

to create a new version instead of extending the old one. The next chapter contains the evaluation of

the network layer and settings that have been built only for the purpose of this thesis. The results

confirm that the MobilityModel was implemented correctly and worked as expected. They clearly

express that the step of creating a new environment was right as it supports an easy adding and testing

of new models. Furthermore, it is able to evaluate routing protocols or to analyze further topics in

connection with moving hosts.

6.2 Future Work

Now, we discuss the ideas for future work with this MobilityModel and the peer-to-peer simulator

PeerfactSim.KOM.

35

Chapter 6 Conclusion

6.2.1 Linklayer

One possibility for the future would be the creation of a new layer representing a LinkLayer. This step

enables to choose a host via mac address instead of its NetID. Hence routing in mobile network would

be possible. Corresponding models are described in section 3.3. A data storage for messages that did

not reach the receiver would be imaginable, too.

6.2.2 OpenStreetMap

OpenStreetMap [osm15] is a licence-free project with the aim to create a free world map. It either

presents the data unwrought or in calculated maps and can be used on the Java ME platform [Ora15].

OSM allocates the so called OSM-ways, -nodes and –tags in a XML-file. For the future of Peerfact-

Sim.KOM the creation of waypoints would be possible. During the simulation the hosts can choose

their next destination in correspondence with these waypoints. Thereof, a movement along a prede-

fined route is conceivable.

36

6.2 Future Work

6.2.3 Visualization

Another future application could be the visualization of movements by using the created “Host-

Positions.txt” that permanently lists the position of every hosts in one file. This scenario was shown

in section 4.2. Maybe it would be possible to create a database with all positions or save the position

of each host in a separate file. Indeed, this would arise the question how to show the positions in

parallel to the simulation. The faster and therefore more effective method would be a visualization

subsequent to the simulation. It could be handled like the visualization of the chord overlay in a new

GUI as presented in figure 6.1.

Figure 6.1: Visualization of the chord overlay with 51 hosts

Finally, the MobilityModel provides a better basis for simulating and testing peer-to-peer overlays on

moving hosts with a multi-hop network in the PeerfactSim.KOM simulator than the Snider model.

Applying the ideas for future work described beforehand, it would be possible to investigate the be-

havior of different peer-to-peer overlays in association with a mobility network and to compare the

liability of each overlay.

37

Bibliography

[Ka15] KALMAN GRAFFI UND MATTHIAS FELDOTTO: PeerfactSim.KOM - The

Peer-to-Peer System Simulator - Community Edition Getting Started. http:

//peerfact.com/wp-content/uploads/2015/04/PeerfactSim.KOM_

_Getting-Started.pdf, 2015

[AJS03] AMIT JARDOSH, Kevin C. A. Elizabeth M. Belding-Royer ; SURI, Subhash: Towards

Realistic Mobility Models for Mobile Ad Hoc Networks. In: Proceedings of the 9th

Annual International Conference on Mobile Computing and Networking, 2003 (MobiCom

’03)

[Bet01] BETTSTETTER, Christian: Smooth is Better than Sharp: A Random Mobility Model for

Simulation of Wireless Networks, 2001

[BS00] BEICHL, Isabel ; SULLIVAN, Francis: The Metropolis Algorithm, 2000

[Car09] CARSTEN SNIDER: Mobility Aware Peer-to-Peer Networking. 2009

[Dav01] DAVID B. JOHNSON, DAVID A. MALTZ AND JOSH BROCH: Ad Hoc Networking.

2001, Kapitel DSR: The Dynamic Source Routing Protocol for Multihop Wireless Ad

Hoc Networks

[Dio10] DIONYSIOS EFSTATHIOU, ANDREAS KOUTSOPOULOS AND SOTIRIS NIKOLETSEAS:

Analysis and Simulation for Parameterizing the Energy-latency Trade-off for Routing in

Sensor Networks. In: Proceedings of the 13th ACM International Conference on Model-

ing, Analysis, and Simulation of Wireless and Mobile Systems, 2010 (MSWIM ’10)

[Eli] ELIZABETH M. ROYER AND CHAI-KEONG TOH: A Review of Current Routing Proto-

cols for Ad-Hoc Mobile Wireless Networks .

[Hei15] HEINRICH-HEINE-UNIVERSITÄT DÜSSELDORF: Universität Düsseldorf: Startseite.

http://www.uni-duesseldorf.de/, 2015

39

http://peerfact.com/wp-content/uploads/2015/04/PeerfactSim.KOM__Getting-Started.pdf
http://peerfact.com/wp-content/uploads/2015/04/PeerfactSim.KOM__Getting-Started.pdf
http://peerfact.com/wp-content/uploads/2015/04/PeerfactSim.KOM__Getting-Started.pdf
http://www.uni-duesseldorf.de/

Bibliography

[Hid03] HIDEAKI TAKAGI AND LEONARD KLEINROCK: Optimal Transmission Ranges

for.Randomly Distributed Packet Radio Terminals. 2003

[JYN] JUNGKEUN YOON, Mingyan L. ; NOBLE, Brian: Random Waypoint Considered Harm-

ful. In: Proceedings IEEE INFOCOM 2003, The 22nd Annual Joint Conference of the

IEEE Computer and Communications Societies, San Franciso, CA, USA, March 30 - April

3, 2003

[Kha10] KHALED AHMED ABOODOMER: Analytical Study of MFR Routing Algorithm for Mo-

bile Ad Hoc Networks. In: J. King Saud Univ. Comput. Inf. Sci. 22 (2010), Januar

[LH03] LIANG, Ben ; HAAS, Zygmunt J.: Predictive Distance-based Mobility Management for

Multidimensional PCS Networks. In: IEEE/ACM Trans. Netw. 11 (2003), Oktober, Nr. 5

[Mar01] MARTIN MAUVE AND JÖRG WIDMER AND HANNES HARTENSTEIN: A Survey on

Position-Based Routing in Mobile Ad-Hoc Networks. In: IEEE Network Magazine 15

(2001), November, Nr. 6, S. 30–39

[Mur96] MURTHY, SHREE AND GARCIA-LUNA-ACEVES, J. J.: An Efficient Routing Protocol

for Wireless Networks. In: Mob. Netw. Appl. 1 (1996), Oktober, Nr. 2

[Ora15] ORACLE CORPORATION: JAVA PLATFORM, MICRO EDITION (JAVA ME). http://

www.oracle.com/technetwork/java/embedded/javame/index.html,

2015

[osm15] OpenStreetMap - Deutschland. http://www.openstreetmap.de/, 2015

[Par97] PARK, VINCENT D. AND CORSON, M. SCOTT: A Highly Adaptive Distributed Rout-

ing Algorithm for Mobile Wireless Networks. In: Proceedings of the INFOCOM ’97.

Sixteenth Annual Joint Conference of the IEEE Computer and Communications Societies.

Driving the Information Revolution, 1997 (INFOCOM ’97)

[PB94] PERKINS, Charles E. ; BHAGWAT, Pravin: Highly Dynamic Destination-Sequenced

Distance-Vector Routing (DSDV) for Mobile Computers. In: Proceedings of the Confer-

ence on Communications Architectures, Protocols and Applications, 1994 (SIGCOMM

’94)

[Pee15] PEERFACTSIM.KOM: PeerfactSIM.KOM. https://sites.google.com/site/

peerfactsimkom/, 2015

40

http://www.oracle.com/technetwork/java/embedded/javame/index.html
http://www.oracle.com/technetwork/java/embedded/javame/index.html
http://www.openstreetmap.de/
https://sites.google.com/site/peerfactsimkom/
https://sites.google.com/site/peerfactsimkom/

Bibliography

[Per03] PERKINS, C. AND BELDING-ROYER, E. AND DAS, S.: Ad Hoc On-Demand Distance

Vector (AODV) Routing. 2003

[TCD02] TRACY CAMP, Jeff B. ; DAVIES, Vanessa: A Survey of Mobility Models for Ad Hoc

Network Research. In: Wireless Communications & Mobile Computing (WCMC): Special

issue on Mobile Ad Hoc Networking: Research, Trends and Applications 2 (2002), Nr. 5

[Tec15] TECHNISCHE UNIVERSITÄT DARMSTADT: Home – Technische Universität Darmstadt.

http://www.tu-darmstadt.de/, 2015

[THB+02] TIAN, Jing ; HÄHNER, Jörg ; BECKER, Christian ; STEPANOV, Illya ; ROTHERMEL, Kurt:

Graph-Based Mobility Model for Mobile Ad Hoc Network Simulation. In: Proceedings

35th Annual Simulation Symposium (ANSS-35 2002), San Diego, California, USA, 14-18

April 2002, 2002, S. 337–344

[Tho15] THOMAS WILLIAMS, COLIN KELLEY, RUSSELL LANG, DAVE KOTZ, JOHN CAMP-

BELL, GERSHON ELBER, ALEXANDER WOO ET AL.: gnuplot homepage. http:

//www.gnuplot.info/, 2015

[Umt] UMTS: Selection procedures for the choice of radio transmission technologies of the

UMTS (UMTS 30.03 version 3.1.0) / UMTS. – Forschungsbericht

[Uni15] UNIVERSITÄT PADERBORN: Universität Paderborn. http://www.

uni-paderborn.de/, 2015

[WKM04] WOLFGANG KIESS, Jörg W. Holger Füßler F. Holger Füßler ; MAUVE, Martin: Hier-

archical Location Service for Mobile Ad-hoc Networks. In: SIGMOBILE Mob. Comput.

Commun. Rev. 8 (2004), Oktober, Nr. 4

[XHC99] XIAOYAN HONG, Guangyu P. Mario Gerla G. Mario Gerla ; CHIANG, Ching-Chuan: A

Group Mobility Model for Ad Hoc Wireless Networks. In: Proceedings of the 2Nd ACM

International Workshop on Modeling, Analysis and Simulation of Wireless and Mobile

Systems, 1999 (MSWiM ’99)

[YN03] YOON, Liu M. Jungkeun ; NOBLE, Brian: Sound Mobility Models. In: Proceedings

of the 9th Annual International Conference on Mobile Computing and Networking, 2003

(MobiCom ’03)

41

http://www.tu-darmstadt.de/
http://www.gnuplot.info/
http://www.gnuplot.info/
http://www.uni-paderborn.de/
http://www.uni-paderborn.de/

Ehrenwörtliche Erklärung

Hiermit versichere ich, die vorliegende Bachelorarbeit selbstständig verfasst und keine anderen als die

angegebenen Quellen und Hilfsmittel benutzt zu haben. Alle Stellen, die aus den Quellen entnommen

wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in gleicher oder ähnlicher Form

noch keiner Prüfungsbehörde vorgelegen.

Düsseldorf, 18.Mai 2015 Tobias Korfmacher

43

.

This CD contains:

• A pdf Version of this bachelor thesis

• All LATEX and graphic files that have been used, as well as the corresponding scripts

• The source code of the software that was created during the bachelor thesis

• The measurement data that was created during the evaluation

• The referenced websites and papers

	Title Page
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Motivation
	1.2 Structure

	2 Related Work
	2.1 PeerfactSim.KOM
	2.2 Mobile Network Model by Carsten Snider

	3 Design
	3.1 Considerations
	3.2 Movement Models
	3.2.1 Random Walk Mobility Model
	3.2.2 Random Waypoint Mobility Model
	3.2.3 Gauss-Markov Mobility Model
	3.2.4 Smooth Random Mobility Model
	3.2.5 Graph-Based Mobility Model
	3.2.6 Manhattan Grid Mobility Model
	3.2.7 Obstacle Mobility Model
	3.2.8 Reference Point Group Mobility Model

	3.3 Routing Algorithms
	3.3.1 Topology - Based
	3.3.2 Position - Based

	4 Implementation
	4.1 The Interfaces
	4.2 The Models
	4.3 Broadcast Messages

	5 Evaluation
	5.1 The Eval - Scenario
	5.1.1 Star - Overlay

	5.2 Results
	5.2.1 Simulation Time: 120 min
	5.2.2 Simulation Time: 240 min

	6 Conclusion
	6.1 Summary
	6.2 Future Work
	6.2.1 Linklayer
	6.2.2 OpenStreetMap
	6.2.3 Visualization

	Bibliography

