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Abstract The trace of a moving object is commonly

referred to as a trajectory. This paper considers the

spatio-temporal information content of a discrete tra-

jectory in relation to a movement prediction model for

the object under consideration. The information con-

tent is the minimal amount of information necessary to

reconstruct the trajectory, given the movement model.

We show how the information content of arbitrary tra-

jectories can be determined and use these findings to

derive an approximative arithmetic coding scheme for

trajectory information, reaching a level of compression

that is close to the bound provided by its entropy. We

then demonstrate the practical applicability of our ideas

by using them to compress real-world vehicular trajec-

tories, showing that this vastly improves upon the re-

sults provided by the best state-of-the art compression
schemes for spatio-temporal data.
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1 Introduction

Gathering, storing and transmitting data on the move-

ment of objects are common parts of many applica-

tions in ubiquitous computing. These data, referred to

as trajectories, basically comprise sequences of position

and time measurements. Given that storage space and

transmission capacity are valuable resources, in partic-

ular in the mobile domain, it is desirable to encode tra-

jectories efficiently, e. g., by means of compression.

In general, compression methods seek to identify

and remove redundancies from an input source; in this

paper, we focus on redundancy within trajectories. This

redundancy results from underlying principles of object

mobility, such as kinematics or Newton’s laws of mo-

tion. It is widely accepted that these principles cause
mobility to be predictable to some degree; for exam-

ple, several approaches have been proposed that use

linear models for the compression of trajectories [17,

11], though non-linear models have also been discussed

recently [20,14].

However, no previous work has regarded the gen-

eral upper bound for trajectory compression that is

given by the information content, or entropy, of such a

movement trace. The contribution of this paper is the

cautious consideration of the following question: given

a prediction model for object movements, how much

information does a trajectory contain with respect to

this model and what upper compression bound does

this imply? Then, we use this knowledge to construct

a compression scheme based on arithmetic coding that

comes very close to reaching this bound and evaluate

the impact of the model parameters on the compression

performance.

Throughout this work we use the vehicular domain

as an example to illustrate our findings and to prove
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its applicability to real world data. However, the ideas

presented here can be used to analyze and compress any

form of trajectory, provided that a prediction model for

the respective mobility can be constructed.

This paper is an extended version of [15]. As novel-

ties, it contains more details about the code model and

its components. Also, it presents new findings on the

symbol alphabet and the probability distribution and

their impact on the arithmetic coding performance.

In the remainder of this paper, we present related

work on trajectory compression and probabilistic po-

sitioning in Section 2. We introduce our idea of infor-

mation content for trajectories and how to measure it

in Section 3. In Section 4, we discuss how to apply this

idea to vehicular trajectories and briefly describe details

of an arithmetic coder implementing our model. Both

the model and the coder are evaluated in Section 5.

2 Related Work

In the literature, the compression of movement mea-

surements is frequently discussed in the context of Mo-

bile Object Databases (MODs). MODs receive trajec-

tory updates from mobile units and can handle spatio-

temporal search requests. For MODs, compression tech-

niques have been proposed that either require an al-

ready completed data collection (offline approaches,

e. g. [8,6]) or that compress data on the fly (online

approaches, e. g. [17,11]). For these approaches, line

simplification and linear dead reckoning—both marking

the current state of the art of trajectory compression—

have been used. The compression performance of both

are upper-bounded by optimal line simplification [12].

The authors of [5,20] approximate trajectories using

so-called minimax polynomials, so that the maximum

approximation error is minimized for the employed pa-

rameter values. Further compression techniques that fo-

cus on vehicular trajectories use cubic splines [14] and

clothoids [19,3]; in general, these non-linear approaches

attempt to model the smoothness of vehicular move-

ments or roadways. [13] contains a detailed problem

statement and a comparison of the above techniques.

In robot navigation, Probabilistic Positioning is of-

ten employed for self positioning, e. g., within office

buildings [10,22]: instead of precise positions, position

probabilities for a discrete map are given. We use a sim-

ilar concept by defining a probability distribution over

a limited region, but do not require any map material.

In [21], navigation decisions of pigeons are analyzed

based on the stochastic complexity of trajectory sec-

tions by deriving the navigational confidence. The au-

thors of [4] propose user movement estimation for cel-

lular networks with Markov models. They determine

state transition probabilities based on relative location

frequencies and use these to derive compressed position

update messages. Both approaches are special cases for

information content measurements, but cannot directly

be generalized to arbitrary movements. In this paper,

we present a formal model that not only can be seen

as a generalization of these approaches but can also be

adapted to any other application area.

None of the existing approaches consider a general

upper bound for trajectory compression that is given

by the information content of a movement trace. In this

paper, we will show that doing so will lead to significant

improvements in the compression ratio of trajectories.

3 The Information Content of Trajectories

In this section, we will show what the information con-

tent of a trajectory is and how it can be measured.

To this end, we will introduce a formal model for the

entropy calculation of trajectories and discuss its com-

ponents and parameters.

3.1 What is the Information Content of Trajectories?

Any object movement, such as the migration patterns

of flocks, the movement of astronomical objects or the

trajectories of road vehicles can each be described by a

formal model. In general, such models can be used for

movement predictions of particular objects based on

previous position measurements, exploiting the redun-

dancy and predictability of movements. Since typically

not all factors influencing the mobility of an object can

be modeled accurately, the actual position of the object

might differ from the prediction. This deviation is com-

monly referred to as innovation, i. e., the uncertainty of

the prediction process.

In this paper, we investigate the information content

of the innovations. Let us begin with the necessary in-

formation theoretical concepts, for more details see [24,

18]: given a random variable X with a finite sample

space AX = {a1,. . . ,aI} and a probability distribution

PX = {p1,. . . ,pI}: pi =P (x= ai),∀1≤ i≤ I : pi> 0 and∑I
i=1 pi=1. In the following, we will also refer to AX as

the (discrete) alphabet. The Shannon information con-

tent (given in bits) of an event x ∈ AX is defined as

h(x) = log2(1/P (x)) ,

where P (x) is the probability of its occurrence. Then,

the entropy H(X) refers to the average information

content of an outcome of X and is defined as

H(X) =
∑
x∈Ax

P (x)h(x) =
∑
x∈Ax

P (x) log2(1/P (x)) .
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In other words, the entropy is the average number of

necessary bits to represent an outcome x ∈ AX .

If we apply this definition to our previous discus-

sion, we can identify the estimation innovation as the

outcome of each estimation step: it represents the esti-

mation uncertainty and bears the information that was

missing when the prediction was made. So, if the in-

novations of all position estimation steps are regarded,

we can derive the information content of a whole move-

ment trace. On the other hand, the alphabet AX and

the probability distribution PX yield the entropy of the

outcome, being the average information content.

3.2 How to determine the Information Content of

Trajectories

Basically, each outcome x of the random variable X

is determined by the employed movement estimator.

Therefore, we need to formalize all involved compo-

nents: the movement estimator and the parts of X,

namely the alphabet of possible values AX and the set

of corresponding probabilities PX .

The movement estimator is a function θ that deter-

mines a two-dimensional position based on an observa-

tion vector m = (m1, . . . ,mN−1) containing previously

collected position measurements:

θ : (R2)N−1 → R2 , θ(m) = m̂N .

Then, the innovation iN is the difference between the

estimation and the actual measurement:

iN = mN−m̂N , iN ∈ R2 .

So, the innovation is a two-dimensional real vector itself

and cannot directly be used for the outcome x, because

R2 is uncountably infinite, i. e., neither countable nor

bounded. To process the innovation into an outcome x,

we need to overcome these two issues.

The innovation domain can be made countable by

means of simple discretization: the real innovation vec-

tor is mapped onto a grid, with each grid node refer-

ring to a particular symbol in AX . The grid cell width

and form are accuracy parameters, their choice is in-

fluenced by several aspects, e.g., the highest tolerable

discretization error or the highest discretization error

under which the movement model still produces rea-

sonable results.

Once it is countable, the innovation domain can be

bounded, while still keeping all reasonable innovations

covered by AX . That is, all possible positions within

reach in the time period since the last measurement

need to be mappable to AX . Which positions can be

reached depends, e. g., on the movement model, or mea-

surement noise. The limitation of the innovation do-

main is important, because the most probable innova-

tions for any valid trajectory need to be mappable on it:

if the limits are set too narrow, i. e., AX misses reason-

able innovations, such innovations could not be covered

by the random variable X. Contrariwise, too wide lim-

its would include implausible innovations in AX and

thus would increase its entropy, which then could be

significantly higher than the actual entropy of the tra-

jectory.

Once the movement estimator and the alphabet are

known, PX is set up by assigning a probability to each

symbol in AX . Like the alphabet, the probability dis-

tribution is crucial for the result of the entropy deter-

mination.

So, the entropy of a random variable X over the

alphabet AX and with a probability distribution PX
can be determined directly. To measure the information

content of a trajectory, the deviations between the pre-

dicted positions and the actual position measurements

are mapped to AX . Then, the information content of

each measurement can be determined.

4 Exemplary Implementation of Information

Measurement

We can now apply the necessary parts for the determi-

nation of a trajectory’s information content to a specific

use case and show how to implement these components

for vehicular trajectories.

To this end, we state a number of assumptions,

upon which we build our model: (1) We assume that

the movement of vehicles are regular and can be ex-

pressed by the formulae from kinematics or Newton’s

laws of motion. (2) We expect that due to this reg-

ularity in movement, we can estimate a vehicle’s fu-

ture movement based on past position measurements

and limit the area around this estimate containing all

reasonable deviations. (3) We assume that, within this

area, the positions closer to the estimate are more likely

to match the vehicle’s next position than those at the

border and that the deviations from the estimate are

regular as well, so that they can be learned.

4.1 Movement Estimator

As trajectory data, we consider position measurements

p = (pxpy) ∈ R2; then, the velocity (v) and acceleration

(a) vectors of a vehicle at the position pi at the time ti
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(a) Triangular. (b) Square. (c) Hexagonal.

Fig. 1 Regular tessellations for the discretization grid.

can be described by:

vi =
pi − pi−1
ti − ti−1

, ai =
vi − vi−1
ti − ti−1

With these quantities, some simple movement models

can be set up as described in [16]: the first model only

considers the last position and the velocity vector:

θvel = piN−1
+ viN−1

∆t . (1)

The second model extends the first one by using the

approximated acceleration:

θacc = piN−1
+ viN−1

∆t+
aiN−1

2
∆t2 . (2)

Obviously, more complex movement models, e. g.,

using sensor data fusion, are conceivable. However, for

the context of the arithmetic coding that we will face

later on, this means that all data that is used for the es-

timation needs to be transmitted to the remote receiver

side, which increases the communication load. There-

fore, we aim at a minimal data basis for the movement

estimator and thus at simple movement models.

Moreover, we will show that these simple models al-

ready perform very well and thus defer the investigation
of other movement models to future work.

4.2 The Discrete Alphabet AX

As described above, the innovation domain can be made

countable and bounded by projecting each innovation

to a grid of limited size. In this section, we will dis-

cuss possible configurations for the discretization grid;

to this end, we will discuss several grid node alignments,

how to determine reasonable grid dimensions and how

to set up the grid frame.

4.2.1 Discretization Grid Node Alignment

It is clear that the specific grid design depends on the

application context; in the vehicular domain, for exam-

ple, a uniform approximation error for any region of the

grid is desirable; this makes regularly tessellated grids—

i. e., using regular triangles, squares and hexagons as

shown in Figure 1—an interesting option. Also, the di-

mensions and the density of such grid cells can be easily

adjusted by a maximum discretization error ε that di-

rectly influences the edge length of the polygons.

The use of different tessellations has several influ-

ences on the model performance: With increasing num-

ber of cell edges, both the cell area and the average dis-

cretization error increase as well; this leads to a smaller

average discretization error of a triangular grid com-

pared to a square or hexagonal tessellation. In turn,

the smaller the average discretization error, the better

the movement estimation is likely to work. And finally,

the number of resulting cells is inversely proportional

to the cell size; this means that the alphabet size will

decrease with an increasing number of edges per cell,

resulting in a smaller entropy of X.

4.2.2 Discretization Grid Dimensions

While setting up the grid cells is a comparably straight-

forward task, the limitation of the grid scope is more

challenging, because the grid needs to cover all reason-

able (and only those!) measurement innovations. For

the use case of vehicular movements, the grid bound-

aries strongly depend on the possible movements of a

vehicle. We therefore introduce in the following a kine-

matic model to determine these boundaries.

For the determination of the discretization grid di-

mensions, we refer to a logical—not necessarily geo-

metrical—grid center, at which the grid will be aligned

along the movement direction. We set this grid center

to the estimated next position according to the non-

accelerated movement model (1), disregarding both ac-

celeration and steering. Given such a logical center, we

can calculate the maximum spatial deviations that can

be achieved under our model. We set up this range using

a straight-forward line of simple kinematic arguments:

The longitudinal dimension of the grid—i. e., the di-

mension along the movement direction—directly results

from the highest possible deceleration decmax and ac-

celeration accmax that could cause a deviation from the

predictand within one measurement interval. Then, ac-

cording to (2), the longitudinal grid dimension interval

relative to the logical grid center is [−w−lon ;w+
lon ] with

w−lon = |decmax |
2 ∆t2, w+

lon = accmax

2 ∆t2.

For the lateral grid dimensioning, we need to re-

gard an extreme steering behavior to derive the high-

est achievable lateral deviation from the estimated po-

sition. To this end, we consider the vehicle to pass

through a curve, with the vehicle’s velocity and the ra-

dius of the curve being chosen to such an extent that

the lateral deviation is maximized. This deviation is

limited, however, by the vehicle’s velocity and the ra-
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(a) Cornering > 90◦. (b) Cornering ≤ 90◦.
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Fig. 2 Discretization grid dimension analysis.

dius of the curve: given a curve radius r, a vehicle’s

speed is upper-bounded by the critical cornering speed

vc(r) =
√
al · r, where al refers to the highest possible

lateral acceleration [23]. For the determination of al, we

state according to Coulomb’s friction law: al ≤ µs · g,

where µs is the static friction coefficient and g ≈ 9.81 m
s2

is the earth’s standard gravity acceleration. For the

choice of µs, default reference values as in [16] can be

used. With the critical cornering speed, we can calcu-

late the maximum lateral deviation: at a cornering of

more than 90◦ within the time interval ∆t, the lateral

deviation equals the sum of the curve radius and the

distance that could be driven perpendicular to the as-

sumed driving direction (cf. Figure 2(a)). Otherwise,

the lateral deviation is merely the width of the curve

that has been passed so far (cf. Figure 2(b)). Formally,

the maximum lateral deviation can be expressed by the

function dl : R>0 → R ,

dl(r) =

{
r + vc(r)∆t− πr

2 vc(r)∆t > πr
2

r · (1− cos( vc(r)∆t
r )) else

As depicted in Figure 2(c), the graph of dl resembles

a square root curve: after a rapid growth with an in-

creasing curve radius of up to approximately 80m, the

curve stagnates and features merely a minor slope. The

heavy drop of all curves results from an upper bound

for vc(r) that we have set to 70 m
s . With a friction of

µ = 0.55 (tire on tar/asphalt [16]), we can derive from

(a) Grid dimension measures.

(b) Vector norm grid frame options.

Fig. 3 Discretization vector norm grid frame options.

this analytical model that the grid would need to be at

least 2 · 2.7m = 5.4m wide. Figure 3(a) shows an ex-

emplary discretization grid with previous position mea-

surements, the position estimate and the measures on

the longitudinal and lateral dimension. In the following,

we will refer to the lateral grid size as 2 · wlat .

However, though these grid dimensions are analyti-

cally set up, they do not necessarily need to be optimal.

Further influences such as increased positioning noise

levels may cause innovations to lie outside the analyti-

cally deduced boundaries. A simple countermeasure for

such situations would be to add a single extra sym-

bol to AX , representing outliers, which only minimally

increases the alphabet size and the entropy of the ran-

dom variable X. Complementary, expected or current

noise statistics, e. g., dilution of precision (DOP) values,

could be regarded for the grid dimensioning: the grid di-

mensions could be simply increased by a certain size to

set up a guard zone around the analytically determined

grid dimensions, thus allowing for a higher noise level

by increasing the alphabet. The setup of such a guard

zone is nontrivial, however, and beyond the scope of

this paper and thus remains future work.

4.2.3 Discretization Grid Frame

In Figure 3(a), we assume a rectangular grid shape.

While this is concrete and easy to model, it does at the

same time not really reflect a true analytic boundary for

the measurement deviations from the predictand. For

such a boundary, one would have to regard that due to

Coulomb’s law, vehicles cannot progress as far on the

longitudinal dimension when cornering. If this is taken

into account, the resulting grid frame would feature an

elliptic form. We approximate such an elliptic form with
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p-norms; a grid node with the metric offset (δlon , δlat)

from the logical grid center (the predictand) is mapped

to an alphabet symbol iff

(δ′lon
p

+ δ′lat
p
)

1
p ≤ 1

with

δ′lon =


δlon
w−

lon

if δlon < 0

δlon
w+

lon

else
, δ′lat =

δlat
wlat

.

Figure 3(b) shows exemplary vector norm grid frames

for p ∈ {1.0, 1.5, 2.0, 4.0, 7.0,∞}. The ∞-norm results

in a rectangular frame as shown in Figure 3(a).

4.3 The Probability Distribution PX

The probability distribution of the random variable X

assigns a probability pi to each symbol ai ∈ AX , as

described in Section 3. Choosing the correct probabil-

ity distribution that fits the actual nature of the inno-

vations is non-trivial and needs to be regarded more

closely. In the following sections, we therefore discuss

several possible distributions that we will evaluate with

our arithmetic coding scheme in Section 5.

4.3.1 Uniform Distribution

The simplest possible distribution is the uniform dis-

tribution, i. e.,

∀1 ≤ i ≤ I : pi =
1

|AX |
.

Under the assumption that the employed movement es-

timator satisfies a reasonable degree of accuracy and

therefore small deviations from the position estimate

are more likely than large ones, this distribution is not

what one would expect from PX in reality. However, it

is a good lower-bound benchmark that can be used to

validate the performance of other probability distribu-

tions.

4.3.2 Normal Distribution

Since we expect predominant accurate results from the

position estimators, we assume PX to be reasonably

close to the normal distribution which is commonly

used in the context of noisy position measurements [9].

While it is unlikely that the innovations during an esti-

mation process will be perfectly normal distributed, we

consider this to be a good approximation.

As explained above, we derive the alphabet from a

two-dimensional grid, so we need to employ a bivari-

ate normal distribution N (µ,Σ), µ = (µx, µy), Σ =

(a) Determine the position
of µ within the grid.

(b) Scale each quadrant of
the grid to size [sx; sy].

(c) Calculate the probabil-
ity pi of each grid node.

(d) Normalize probabili-
ties, so

∑
i pi = 1 applies.

Fig. 4 Skewing of the probability distribution and mapping
it to the grid nodes.

( (σ2
x, ρσxσy)T , (ρσxσy, σ

2
y)T ) with the standard devia-

tions σx, σy and the correlation coefficient ρ [25]. The

distribution’s mean is set according to the estimated

next position: while the grid is aligned using the non-

accelerated movement model (1), the mean µ of the

probability distribution can be determined using other

models, e. g., the accelerated movement model (2).

We do not expect the dimensions of the innovation

domain to correlate, so ρ = 0. However, the normal dis-

tribution is symmetric, which does not necessarily need

to apply to the grid as well. Therefore, we need to find

a mapping (skewing) of the probability distribution to

the dimensions of the grid. To this end, we propose a

projection of the grid, which is schematically depicted

in Figure 4: the mean µ separates the grid into four

quadrants (cf. Figure 4(a)), each of which is scaled to

the dimensions [sx; sy], where sk is the number of stan-

dard deviations that are supposed to cover the k axis

of each quadrant (cf. Figure 4(b)). Due to the scaling,

the standard deviation of the distribution can be set to

σ = 1 and so, the probabilities for the grid nodes can

be determined using the simplified density function

f(x, y) =
1

2π
exp(−1

2

(
x2 + y2

)
)

(cf. Figure 4(c)). Afterwards, the assigned probabilities

need to be normalized to eliminate scaling effects, so

that
∑I
i=1 pi = 1 applies again (cf. Figure 4(d)).

Alternatively, asymmetric probability (e. g., log-nor-

mal) distributions could also be employed.
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4.3.3 Trained Distributions

Under the assumption that vehicular movements, dis-

regarding the terrain or surrounding, follow a general

principle or pattern, we also suppose that there is a gen-

erally fitting distribution that can be found, or learned.

Since the alphabet is discrete and finite, we attempt to

obtain such a distribution from a collection of previ-

ously observed traces, referred to as the training set.

To this end, we map each measurement in the train-

ing set to its corresponding alphabet symbol using the

non-accelerated movement estimator (1) and the grid

as described in Section 4.2. For each symbol ai ∈ AX ,

we can then determine the occurrence count ni. The

probability pi can thus be written as

pi =
ni∑I
i=1 ni

.

According to the definition in Section 3.1, all symbol

probabilities need to be nonzero. We therefore define

n′i := max{ni, 1} and p′i analogously to pi, resulting in

a close approximation of pi that can be used for the

determination of the information content and for the

arithmetic coding of trajectories. If each symbol occurs

at least once, n′i = ni and thus p′i = pi.

4.3.4 Adaptive Distributions

In contrast predefined distributions, we also regard dis-

tributions that evolve over time. Such adaptive distri-

bution models start with an initial setup, e. g., a uni-

form distribution, and evaluate the observed symbol oc-

currences to converge towards the actual distribution.

Of course, more realistic distributions can also be used
as initial setups. Common adaptive distribution mod-

els regard n-gram relations in the symbol stream, e. g.,

simply constructing a unigram probability distribution.

The advantage of this approach is that the result-

ing distribution is an optimal match for all previously,

and at best upcoming symbol occurrences. Of course,

this will only pay off for sufficiently long trajectories,

i. e., if the ratio of trajectory length to the alphabet

size satisfies a particular threshold value. Otherwise,

the learned distribution reaches a representative ver-

sion too late so that too few position measurements in

the trajectory can benefit from the learned distribution

to compensate for the learning phase, during which the

distribution may be far from being an acceptable fit.

4.3.5 Contextual Distributions

Finally, we regard probability models that feature more

than a single probability distribution and which we re-

fer to as contextual distributions. For these, we assume

Table 1 Exemplary alphabet configurations and entropies.

entropy [bits]
∆t ε |AX | uniform normal (3σ) normal (4σ)

0.1 m 199 7.64 6.32 5.55
0.5 s 0.5 m 16 4.00 2.38 1.77

1.0 m 7 2.81 1.83 1.61
0.1 m 2761 11.43 10.25 9.47

1.0 s 0.5 m 136 7.09 5.73 4.97
1.0 m 41 5.36 3.86 3.20
0.1 m 41580 15.34 14.20 13.42

2.0 s 0.5 m 1760 10.78 9.59 8.80
1.0 m 476 8.89 7.65 6.86

that the actual distribution of measurement innovations

correlate with the measurement vehicles’ current move-

ment parameters, such as velocity or acceleration. Thus,

for each known context, there is one probability distri-

bution that can be selected for use. In doing so, dis-

tinctive situations can be taken into account for the

information content determination and for the arith-

metic coding, such as halts, accelerations after halts or

movements at constant velocities.

It is obvious that contextual distributions are ac-

tually no self-contained probability distributions but

rather a way to combine multiple distributions into a

single probability model and thus can be used as an

extension instead of a stand-alone and exclusive alter-

native. Also, there can be different kinds of distribu-

tions employed for each context in order to assemble

the optimal fit for each context.

4.4 Exemplary Alphabets and their Entropies

We can now determine the entropy of the random vari-

able X, i. e., the expected information content per po-

sition measurement for a given alphabet and probabil-

ity distribution. Table 1 shows exemplary entropies for

varying measurement intervals and accuracy bounds.

For the regular square grid setup we assumed an ac-

celeration interval [decmax; accmax] = [−11; 8] ms2 . Also,

we calculated the entropies for probability distributions

with two different standard deviations: we chose sx =

sy = 3σ and sx = sy = 4σ, thus assuming that ap-

proximately 99.7 % and 99.99 % of all measurement in-

novations will lie within the grid, respectively. Please

note that the entropy, as a predictand, solely depends

on the used movement model θ, the alphabet AX and

the probability distribution PX of the random variable

X, and not on actual measurements.

We can see from the table that even for very high

accuracy demands, the expected average information

content per symbol is very low: while off-the-shelf GPS

receivers provide position measurements as fixed-point
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Fig. 5 Movement estimation error analysis for difference movement models (urban movement).

numbers with six digital places and thus can be encoded

with 57 bits, the expected average information content

at an accuracy bound of 0.1m always lies below 16 bits.

This would even apply if the probability distribution of

the alphabet is considered uniform. According to our

model, the entropy becomes smaller with the measure-

ment interval. This is reasonable, because the more in-

formation is provided by measurements, the lower is the

missing information for a perfect estimation.

4.5 Model Implementation: An Arithmetic Coder

The estimation results presented in Table 1 encouraged

us to build an arithmetic coder based on our formal

model, since we could expect compression rates of more

than 90 % even at tight accuracy bounds. For the im-

plementation, we used the arithmetic coding project of

Bob Carpenter [7], version 1.1 as a basis.

The only modification to our formal model lies in

the handling of outlier measurements: Instead of adding

an extra symbol toAX , the encoding stops upon an out-

lier measurement. This is inevitable, because the map-

ping of a discretized innovation to a symbol needs to

be bijective; this is not fulfilled in case of outliers. Once

an innovation cannot be mapped to a grid node, it is

not possible to retrieve a valid grid node in the decod-

ing process. Therefore, in this case the symbol stream

is terminated with the End Of Stream symbol, PX and

the estimator are reset and a new encoding begins. This

is an undesirable situation, because at least one posi-

tion needs to be transmitted uncoded; so, even with

the mentioned guard zone, using a robust estimator is

crucial for the compression performance.

5 Evaluation

5.1 Movement Data and Methodology

We evaluate the presented arithmetic coding model on

the basis of an extensive real-world movement data set

from the OpenStreetMap project [2]. These data are

available under the Creative Commons license BY-SA

2.0 [1]. To isolate the effects caused by road topologies,

we categorized each movement trace based on the high-

est object velocity vmax as urban (8.3 m
s <vmax<17 m

s )

or highway (vmax ≥ 17 m
s ) movements. We then se-

lected only those traces with 1 Hz measurement fre-

quencies; this is a very common position measurement

frequency that makes the selected database representa-

tive for a huge number of both off-the-shelf and high-

accuracy positioning devices. We furthermore excluded

traces with less than 100 measurement points to ne-

glect side effects due to very short movement periods.

In the vehicular domain, such trajectory lengths result

mostly from positioning signal loss and thus from erro-

neous situations which we do not want to regard in this

study. Finally, in doing so, we retrieved 2263 and 4946

traces for the urban and highway pattern, respectively.

For the evaluation of the trained probability distri-

butions, we also split our trace collection into a training
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Fig. 6 Movement estimation error analysis for non-acc. movements and different grid node alignments (urban movement).

set and two test sets. Since traces are classified as high-

way or urban based on the maximum velocity, highway

traces still contain a sufficient amount of urban traffic

and are thus a good choice for obtaining a trained dis-

tribution. Hence, we randomly selected 2000 highway

traces to train a distribution and used the other 2946

highway traces and all urban traces as two test sets.

For the evaluation, we compressed every collected

trace for a variety of approximation error bounds (ε) up

to 2m and analyzed important effects, i. e., the accu-

racy of the movement estimator, the goodness of fit for

the normal probability distribution and the compres-

sion performance. For the last-mentioned characteristic,

we furthermore have a closer look on the influences of

the grid node alignments, the grid frame shape, and the

probability distributions with respect to a basic coding

scheme configuration.

5.2 Movement Estimation and Discretization

Since it is essential to use an accurate and robust move-

ment model, we performed movement estimations with

the non-accelerated and accelerated movement estima-

tors. We were in particular interested in the influence

of the discretization and therefore analyzed the move-

ment estimation inaccuracies for varying discretization

steps; the results are shown as cumulative distributions

in Figure 5. Without discretization (i. e., ε = 0), the er-

ror was below 2 m in 90-95% of the cases, with slightly

worse results for the highway topologies, which we left

out for lack of space. For increasing ε, the error distribu-

tions widen, which indicates that a coarser discretiza-

tion lowers the quality of the estimator’s observation

vector. This in turn has a direct influence on the infor-

mation content and the compression performance.

Unexpectedly, the non-accelerated estimator (w/o

acc) outperforms the accelerated variant (acc), which is

more impaired by the discretization, because it derives

acceleration values from distorted velocities. To reduce

this effect, we amended the accelerated estimator by

smoothing the computed acceleration values exponen-

tially (acc exp). This improves the situation, but does

not provide the same robustness as the non-accelerated

estimator (cf. Figure 5). In all of our tests, this directly

resulted in lower compression ratios for the respective

movement models. We therefore only regard the non-

accelerated model in the remainder of our evaluation.

The discretization grid node alignment also influ-

ences the performance of the movement estimator as

discussed in Section 4.2.1. Figure 6 shows the move-

ment estimation error analysis for the non-accelerated

movement estimator and the three discussed tessella-

tion schemes. Though the estimation results are very

close to each other, the estimation works slightly best

with the triangular tessellation and worst with the hex-

agonal tessellation. However, with these two tessellation

schemes the estimator exhibits more movement under-

estimations of up to one meter on the longitudinal axis.

The reasons for this effect are not completely under-

stood and are subject to further investigation.
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Fig. 7 Cumulative distribution analysis of the probability distribution PX .

5.3 Gaussian Probability Distribution

To evaluate the goodness of fit for the assumed Gaus-

sian probability distribution, we compare it to the ac-

tual cumulative distribution functions (cdf) for both

topologies over the respective AX in Figure 7. To this

end we serialized the two-dimensional distributions over

the grid to one-dimensional distributions over the or-

dered symbol set to gain a better overview: we concate-

nated the symbols from cross-sections along the lateral

grid axis, causing stepped curves, where each “step”
refers to one such cross-section. The cdf graphs for

the normal distribution resemble the empirically deter-

mined ones, though the distributions for both the urban

and highway topologies are denser, especially for lower

values of ε. This basically confirms our assumption that

the Gaussian distribution is reasonable approximation

for PX , though it is also quite obvious that there is

room for improvements. We will evaluate the impact of

the other distribution models in Section 5.4.4.

5.4 Compression

5.4.1 Basic Configuration and Benchmarks

At first, we want to evaluate the compression perfor-

mance of our proposed arithmetic coding scheme in a

basic configuration: the vehicle movement is estimated

using the non-accelerated movement model, and we use

a rectangular shaped discretization grid with a grid

node alignment following a square grid cell tessellation.

Additionally, we use the current state-of-the-art com-

pression algorithms for spatio-temporal data as bench-

mark algorithms. As discussed in [13], these cover the

compression schemes based on optimal line simplifica-

tion and cubic spline interpolation.

The spline-based approach runs in O(n3) and was

designed for relatively short trajectories of ∼250 ele-

ments; so, we selected typical trajectories of 1000-1300

positions and cut them to slices of 250 elements, each

slice overlapping the previous one by 100 elements, and
thus gained 318 and 327 shorter traces for the urban

and highway topologies, respectively. In doing so, we

avoid side effects and spread both advantageous and

disadvantageous effects on multiple slices.

Both the line simplification and the arithmetic cod-

ing are capable of handling trajectories of several thou-

sand measurements, so we additionally apply these to

uncut traces in order to gain a broader basis for the

analysis and to examine the ability of these approaches

to handle data streams of variable length.

As an optimal probability distribution configuration

for the arithmetic coder, we performed compressions us-

ing a posteriori knowledge: we measured the empirical

distributions of the code symbols for each trajectory

and used these as stochastic models for the arithmetic

coder. This is only a theoretical optimum, because for a

productive operation, this distribution would have to be

transmitted along with the code bit stream and would

cause a serious and non-acceptable overhead.
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Fig. 8 Basic compression ratio comparison.
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Fig. 9 Grid node counts over increasing error bound.

Figures 8(a) – 8(d) depict the average compression

ratios against the error bound ε. For all configurations,

the same ranking of compression techniques is visible:

the optimal line simplification—representing the upper

bound for the performance of current state-of-the-art

movement compression—performs worst, being outper-

formed by the cubic spline approach (only for the tra-

jectories with 250 elements in Figures 8(a) and 8(b)).

The arithmetic coding performs best, especially for very

tight accuracy bounds of ε < 1.0 m and even if a uni-

form probability distribution is used for PX as refer-

ence. When a normal distribution is used, the com-

pression ratios improve by another 20-30%. The results

for using a posteriori knowledge are significantly bet-

ter for ε < 0.5 m, but thereafter are almost reached by

the compression ratios with the normal distribution as-

sumption. This underlines our findings from the prob-

ability distribution analysis that for growing ε, the im-

pact of the probability distribution decreases. Because

the basic arithmetic coding configuration outperforms

the current state-of-the-art compression schemes, we

will use it as benchmark for all enhanced code model

configurations.

An interesting effect are the visible drops of the com-

pression ratios for very high ε that occur for all distri-

butions and topologies alike. These originate from the

discretization grid that is getting coarser for growing ε.

This can be seen in Figure 9 that depicts the number

of discretization grid cells per dimension over increasing

accuracy threshold values.
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Fig. 10 Compression ratio comparison for different grid node alignments.
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Fig. 11 Compression ratio comparison for different grid frames.

5.4.2 Impact of Discretization Grid Nodes Alignments

Figure 10 depicts the urban and highway compression

performances for discretization grid node alignments

with triangular, square and hexagonal grid cell tessella-

tion. For the urban topologies, the hexagonal grid node

alignment performs slightly best for low ε, while for

ε > 1.0m, its performance drops to the lowest of the

three regarded tessellation models. The triangular grid

node alignment achieves slightly worse results than the

square tessellation, but in the end, it exceeds the com-

pression ratio of the square tessellation. This can be ex-

plained with the results presented in Section 5.2: the tri-

angular tessellation has a positive impact on the move-

ment estimation, but on the other hand, it increases

the alphabet size, causing a slightly worse compression

performance. Also, the bad influence of the hexagonal

tessellation on the movement estimator cannot be alle-

viated by the smaller alphabet.

For the highway scenario, the situation is different:

due to a better movement predictability and the small-

est alphabet, the coding with the hexagon grid performs

significantly better than with the square grid. For the

triangular tessellation, the higher grid node resolution

causes also a better compression performance compared

to the basic configuration benchmark.

However, based on this strongly different impact of

the discretization node alignments, one cannot simply

state a generally optimal choice of the discretization
node alignments. However, we prefer the square grid

tessellation for practical implementations due to its al-

gorithmic simplicity and its good performance.

5.4.3 Impact of Discretization Grid Frame Shapes

Figure 11 depicts the compression ratios for different

grid vector frame parameters. It can clearly be seen

that the compression performance improves with in-

creasing p, i. e., with a grid frame more and more simi-

lar to the rectangular shape of the basic configuration.

Since a larger p causes a larger alphabet, this result

is a good indicator that a more tolerant choice of the

grid frame (and thus the alphabet) size is rather benefi-

cial than disadvantageous. This is an interesting result,

because it shows that a higher tolerance for outlier mea-

surements is more important to the overall compression

performance than an exact determination and dimen-

sioning of the code symbol alphabet.
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Fig. 12 Compression ratio comparison for enhanced probability distribution models.
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Fig. 13 Compression performance comparison for enhanced probability distribution models, relative to the Gaussian arith-
metic compression scheme within lower and upper compression bounds.

5.4.4 Impact of Probability Distributions

In this section we will analyze the compression perfor-

mance of the trained, adaptive, and contextual distri-

butions described in Section 4.3. As mentioned above,

we created the symbol distribution based on a train-

ing set of 2000 highway traces and used the trained

distributions for the arithmetic coding for all traces in

the two test sets. For the contextual distributions, we

used 10 individually trained distributions for different

velocity ranges. We assigned each measurement in the

training set to the distribution Di with

i = min

(⌊
|v|
3m

s

⌋
+ 1, 10

)
where v is the previously observed velocity. We then

used the same formula to obtain the correct distribution

during the arithmetic coding of the test data.

Figure 12 shows the compression results of the ad-

vanced distributions compared to the basic configura-

tion. Though on the first sight, the compression re-

sults seem to be quite close to each other, it is worth

to focus on the relative compression performance with

respect to the interval between the upper and lower

compression bound, given by the a posteriori and uni-

form distribution results; this is depicted in Figure 13:

in this figure, a zero value means that a compression

equals the achievement with a uniform distribution and

a value of one means that a compression ratio as good

as with a posteriori knowledge could be achieved. In

general, the relative performance plots are very similar

for the urban and highway traces; at first, it is clear

to see that the trained distributions achieve the best

compression results. For the highway traces, however,

the trained distributions regarding velocity classes even

exceed what we referred to as the upper performance

limit. This is possible, because of the multitude of dis-

tributions that are selected depending on the current

movement class and that are optimized views on the

symbol distributions. Of course, if an a posteriori dis-
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Fig. 14 Comparison of probability distributions at low and
high speeds for ε = 0.2.

tribution with velocity classes would have been used,

this could not have been exceeded. The arithmetic cod-

ing using an adaptive distribution performs worst for

ε < 1.3m. The main reason for this is that the num-

ber of grid nodes for small ε is very large and thus it
needs many samples to actually learn the actual sym-

bol distribution; however, the trajectories are too short

most of the time, so these necessary samples can not

be collected timely. Of course, this situation improves

for smaller alphabets, the probability distributions of

which are easier to be learned. The relative compres-

sion performance again underlines that the Gaussian

distribution is a reasonably good fit for PX ; however,

these plots also emphasize the heavy drop of compres-

sion performance for ε ≥ 1.3m due to the coarseness of

the discretization grid. The trained and adaptive distri-

butions are naturally only marginally affected by this

effect.

For highway topologies, the compression ratios are

slightly better. This is most likely due to the more lim-

ited steering behavior at higher velocities, as switching

between lanes becomes more prevalent. This is in fact

shown by symbol distributions in Figure 14: longitu-

dinal variations are lower than with smaller velocities,

while the lateral variations nearly remain the same.

6 Conclusion

In this paper we determined the information content

and entropy of trajectories with respect to a prediction

model. Further, by using these findings we were able to

specify an arithmetic coding/compression scheme. We

demonstrated the practical applicability of our ideas by

using them to compress vehicular trajectories and ap-

plied this to a large number of heterogeneous real-world

vehicular movement traces. The results from this eval-

uation show that our approach is superior to the best

existing compression scheme for vehicular trajectories.

Two open aspects from [15] are addressed in this

paper: first, we analyzed both the impact of different

discretization grid parameters, namely the grid node

alignment and the shape of the grid frame. We found

out that for the grid node alignment, no clear statement

can be made regarding a benefit for the compression

performance, but that more realistic and elliptic grid

frames do not pay off but that a frame should increase

fault tolerance instead. Second, we have investigated

trained and adaptive symbol probability distributions.

It showed that trained models, especially those provid-

ing distributions for particular velocity classes, improve

the arithmetic coding performance significantly for all

regarded topologies.
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