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Summary. The trace of a moving object is commonly referred to as a
trajectory. This paper considers the spatio-temporal information content
of a discrete trajectory in relation to a movement prediction model for
the object under consideration. The information content is the minimal
amount of information necessary to reconstruct the trajectory, given the
movement model. We show how the information content of arbitrary tra-
jectories can be determined and use these findings to derive an approx-
imative arithmetic coding scheme for trajectory information, reaching a
level of compression that is close to the bound provided by its entropy.
We then demonstrate the practical applicability of our ideas by using
them to compress real-world vehicular trajectories, showing that this
vastly improves upon the results provided by the best existing schemes.

1 Introduction

Gathering, storing and transmitting data on the movement of objects are com-
mon parts of many applications in the area of ubiquitous computing. These
data, referred to as trajectories, basically comprise sequences of position and
time measurements. Given that storage space and transmission capacity are
valuable resources, in particular in the mobile domain, it is desirable to encode
trajectories efficiently, e.g., by means of compression.

In general, compression methods seek to identify and remove redundancies
from an input source; in this paper, we focus on redundancy within trajectories.
This redundancy results from underlying principles of object mobility, such as
kinematics or Newton’s laws of motion. It is widely accepted that these principles
cause mobility to be predictable to some degree; for example, several approaches
have been proposed that use linear models for the compression of trajectories [1,
2], though non-linear models have also been discussed recently [3, 4].

However, no previous work has regarded the general upper bound for trajec-
tory compression that is given by the information content, or entropy, of such
a movement trace. In this paper, we therefore focus on the following question:
given a prediction of how an object moves, how much information does a trajec-
tory contain and what upper compression bound does this imply? Then, we use
this knowledge to construct a compression scheme based on arithmetic coding
that comes very close to reaching this bound.
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Throughout this work we use the vehicular domain as an example to illustrate
our findings and to prove its applicability to real world data. However, the ideas
presented here can be used to analyze and compress any form of trajectory,
provided that a prediction model for the respective mobility can be constructed.

In the remainder of this paper, we present related work on trajectory com-
pression and probabilistic positioning in Section 2. We introduce our idea of
information content for trajectories and how to measure it in Section 3. In Sec-
tion 4, we discuss how to apply this idea to vehicular trajectories and briefly
describe details of an arithmetic coder implementing our model. The formal
model and the arithmetic coder are finally evaluated in Section 5.

2 Related Work

The compression of movement measurements is frequently discussed in the con-
text of Mobile Object Databases (MODs). MODs receive trajectory updates
from arbitrary mobile units and can handle spatio-temporal search requests.
For MODs, compression techniques have been proposed that either require an
already completed data collection (offline approaches, such as [5, 6]) or that com-
press data on the fly (online approaches, such as [1, 2]). For both approaches,
line simplification or linear dead reckoning algorithms have been used. The com-
pression performance of both are upper-bounded by the optimal line simplifi-
cation proposed in [7]. The authors of [3] describe trajectories using so-called
minimax polynomials, approximating a given function, so that the maximum
approximation error is minimized for the employed parameter values. Further
compression techniques that focus on vehicular trajectories use cubic splines [4]
and clothoids [8] as described in [9]; in general, these non-linear approaches
attempt to model the smoothness of vehicular movements or roadways.

In robot navigation, Probabilistic Positioning is employed for self positioning,
e. g., within office buildings [10, 11]: instead of precise positions, probabilities for
the position on a discrete map are given. We work with a similar concept by
defining a probability distribution over a limited region, but do not rely on
previously known map material.

In [12], navigation decisions of pigeons are analyzed based on the stochastic
complexity of trajectory sections by deriving the navigational confidence. The
authors of [13] propose user movement estimation for cellular networks with
Markov models. They determine state transition probabilities based on relative
location frequencies and use these to derive compressed position update mes-
sages. Both approaches are special cases for information content measurements,
but cannot directly be generalized to arbitrary movements. In this paper, we
present a formal model that not only can be seen as a generalization of these
approaches but can also be adapted to any other application area.

None of the existing approaches consider a general upper bound for trajec-
tory compression that is given by the information content, or entropy, of such
a movement trace. We will show in the following, that doing so will lead to
significant improvements in the compression ratio of trajectories.
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3 The Information Content of Trajectories

In this section, we will show what the information content of a trajectory is and
how it can be measured. To this end, we will introduce a formal model for the
entropy calculation of trajectories and discuss its components and parameters.

3.1 What is the Information Content of Trajectories?

Any object movement, e. g., the migration patterns of flocks, the movement of
astronomical objects or the trajectories of road vehicles can be described by a
formal model. In general, such models can be used for movement predictions
of particular objects based on previous position measurements, exploiting the
redundancy and predictability of movements. Since typically not all factors in-
fluencing the mobility of an object can be modeled accurately, the actual posi-
tion of the object might differ from the prediction. This deviation is commonly
referred to as innovation, i. e., the uncertainty of the prediction process.

In this paper, we investigate the information content of the innovations. Let
us start introducing the necessary information theoretical concepts from [14]:
given an ensemble X = (x,AX ,PX), with the outcome x of a random variable
over the finite set AX={a1,. . . ,aI} and according probabilities PX={p1,. . . ,pI}:
pi = P (x = ai),∀1 ≤ i ≤ I : pi ≥ 0 and

∑I
i=1 pi = 1. We refer to AX as

the discrete alphabet and to PX as the ensemble’s probability distribution. The
Shannon information content (in bits) of x is defined as h(x) = log2(1/P (x)),
where P (x) is the probability of its occurrence. Then, the entropy H(X) refers
to the average information content of an outcome of X and is defined as
H(X) =

∑
x∈Ax

P (x)h(x) =
∑
x∈Ax

P (x) log2(1/P (x)). In other words, the
entropy is the average number of bits that is needed to represent an outcome x.

If we apply this definition to our previous discussion, we can identify the
estimation innovation as the outcome of each estimation step: it represents the
estimation uncertainty and bears the information that was missing when the
prediction was made. So, if the innovations of all position estimation steps are
regarded, we can derive the information content of a whole movement trace. On
the other hand, the ensemble’s alphabet and the probability distribution yield
the entropy of the outcome, being the average information content.

3.2 How to determine the Information Content of Trajectories

Basically, each outcome x of an ensemble X is determined by the employed
movement estimator. Therefore, we need to formalize all involved components:
the movement estimator and the parts of X, namely the alphabet of possible
values AX and the set of corresponding probabilities PX .

The movement estimator is a function θ that determines a two-dimensional
position based on an observation vector m = (m1, . . . ,mN−1) containing pre-
viously collected position measurements: θ : (R2)N−1 → R2, θ(m) = m̂N . Then,
the innovation iN is the difference between the estimation and the actual mea-
surement: iN = mN−m̂N , iN ∈ R2. So, the innovation is a two-dimensional
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real vector itself and cannot directly be used for the outcome x, because R2 is
uncountably infinite, i. e., neither countable nor bounded. To process the inno-
vation into an outcome x, we need to overcome these two issues.

The innovation domain can be made countable by simple discretization: the
real innovation vector is mapped onto a grid, with each grid node referring to a
particular symbol in AX . The grid cell width and form are accuracy parameters,
their choice is influenced by several aspects, e.g., the highest tolerable discretiza-
tion error or the highest discretization error under which the movement model
still produces reasonable results.

Once countable, the innovation domain can be bounded, while still keeping
all reasonable innovations covered by AX . That is, all possible positions within
reach in the time period since the last measurement need to be mappable to AX .
Which positions can be reached depends, e. g., on the movement model, or mea-
surement noise. The limitation of the innovation domain is important, because
the resulting alphabet needs to be valid for the whole trajectory: if the limits are
set too narrow, i. e., AX misses reasonable innovations, such innovations could
not be covered by the ensemble X. Contrariwise, too wide limits would include
implausible innovations in AX and thus would increase its entropy, which then
could be significantly higher than the actual entropy of the trajectory.

Once the movement estimator and the alphabet are known, PX is set up by
assigning a probability to each symbol in AX . Like the alphabet, the probability
distribution is crucial for the result of the entropy determination.

So, the entropy of an ensemble X = (x,AX ,PX) can be determined directly.
To measure the information content of a trajectory, the deviations between the
predicted positions and the actual position measurements are mapped to AX .
Then, the information content of each measurement can be determined.

4 Exemplary Implementation of Information Measurement

We can now apply the necessary parts for the determination of a trajectory’s
information content to a specific use case and show how to implement these
components for vehicular trajectories.

4.1 Movement Estimator

Consider position measurements p = (pxpy) ∈ R2; then, the velocity (v) and
acceleration (a) vectors of a vehicle at the position pi at the time ti are given by:
vi = (pi − pi−1)/(ti − ti−1), ai = (vi − vi−1)/(ti − ti−1). With these quantities,
simple vehicular movement models can be set up as described in [15]: the first
movement model only considers the last position and velocity vector:

θvel = piN−1 + viN−1∆t . (1)

The second model extends the first one by using the approximated acceleration:

θacc = piN−1 + viN−1∆t+
aiN−1

2
∆t2 . (2)
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Obviously, more complex movement models, e. g., using sensor data fusion,
are conceivable. We will show that these simple models already perform very
well and thus defer the investigation of other movement models to future work.

4.2 The Discrete Alphabet AX

As described above, the innovation domain can be made countable and bounded
by projecting each innovation to a grid of limited size. It is clear that the specific
design of the grid depends on the application context; for example, in the vehicu-
lar domain, a uniform approximation error for any region of the grid is desirable,
making regularly tessellated grids an interesting option. Additionally, the grid
cell dimensions and density can be easily adjusted by a maximal discretization
error ε. We will thus use regular square grids for our examination.

While setting up the grid cells is a simple task, the limitation of the scope of
the grid is more challenging, because the grid needs to cover all reasonable (and
only those!) measurement innovations. For the use case of vehicular movements,
the grid boundaries strongly depend on the possible movements of a vehicle.
Therefore, we use kinematic model to determine them.

For the dimensioning of the grid, we will refer to a logical—not necessarily
geometrical—grid center, at which the grid will be aligned along the movement
direction. We set this grid center to the estimated next position according to
the non-accelerated movement model (1), disregarding both acceleration and
steering. This enables us to dimension the grid with a simple line of kinematic
arguments: the longitudinal dimension—i. e., the dimension along the movement
direction—directly results from the highest possible deceleration decmax and
acceleration accmax that could cause a position deviation from the predictand.
We calculate the lateral dimension—i. e., the dimension perpendicular to the
movement direction—by the maximal possible change in steering since the last
measurement: with Coulomb’s friction law and common friction values [15], we
can determine the highest velocity vmax(r) that can be driven in curves with
radius r. The lateral dimension is then calculated directly based on vmax(r).

However, the grid dimensions depend, next to kinematic influences, on the
positioning noise level. In extreme cases, increased noise levels may cause inno-
vations to lie outside the analytically deduced boundaries. For such situations,
we add a single extra symbol to AX , representing outliers; this minimally in-
creases the alphabet size and the entropy of the ensemble, though. Additionally,
expected or current noise statistics, e. g., dilution of precision (DOP) values,
could be regarded for the grid dimensioning. This would result in some kind of
guard zone around the analytically set up grid that could reduce, but not com-
pletely avoid the probability of outliers. The setup of such a zone is nontrivial
and beyond the scope of this paper and thus remains future work.

These approaches can be implemented complementary, depending on the
expected or experienced noise level. Furthermore, filters can be employed to
odd out or smooth implausible position measurements. Some filters, such as the
(extended) Kalman filter, even provide probabilities or covariances of the quality
of the estimate that could be employed in dimensioning the grid.



6 Markus Koegel, Martin Mauve

Fig. 1. Skewing of the probability distribution and mapping it to the grid nodes.

4.3 The Probability Distribution PX

The probability distribution of the ensemble X assigns a probability pi to each
symbol ai ∈ AX , as described in Section 3. We expect PX to be reasonably
close to the normal distribution which is commonly used in the context of noisy
position measurements [16]. While it is unlikely that the innovations during an
estimation process will be perfectly normal distributed, we consider this to be a
good approximation. This assumption will be further evaluated in Section 5.

As explained above, we derive the alphabet from a two-dimensional grid,
so we need to employ a bivariate normal distribution N (µ,Σ), µ = (µx, µy),
Σ = ( (σ2

x, ρσxσy)
T , (ρσxσy, σ2

y)
T ) with the standard deviations σx, σy and the

correlation coefficient ρ [17]. The distribution’s mean is set according to the es-
timated next position: while the grid is aligned using the non-accelerated move-
ment model (1), the mean µ of the probability distribution can be determined
using other models, e. g., the accelerated movement model (2). We do not ex-
pect the dimensions of the innovation domain to correlate, so ρ = 0. However,
the normal distribution is symmetric, but the discretization grid may not nec-
essarily be. For simplicity, we propose a projection of the grid to implement
a skewed probability distribution, which is schematically depicted in Figure 1:
the mean µ separates the grid into four quadrants, each of which is scaled to
the dimensions [sx; sy], where sz is the number of standard deviations that are
supposed to cover the z axis of each quadrant. Due to the scaling, the stan-
dard deviation of the distribution can be set to σ = 1 and so, the probabili-
ties for the grid nodes can be determined using the simplified density function
f(x, y) = 1

2π exp(− 1
2

(
x2 + y2

)
). Afterwards, the assigned probabilities need to

be normalized to eliminate scaling effects, so that
∑I
i=1 pi = 1 applies again.

Alternatively, asymmetric probability distributions could be employed, e. g.,
the log-normal distribution.

4.4 Exemplary Alphabets and their Entropies

We are now able to determine the entropy of particular ensembles, i. e., the
expected information content per position measurement. Table 1 shows an
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Table 1. Exemplary alphabet configurations and resulting entropies.

entropy [bits]
∆t ε # symbols uniform normal (3σ) normal (4σ)

0.1m 199 7.64 6.32 5.55
0.5 s 0.5m 16 4.00 2.38 1.77

1.0m 7 2.81 1.83 1.61
0.1m 2761 11.43 10.25 9.47

1.0 s 0.5m 136 7.09 5.73 4.97
1.0m 41 5.36 3.86 3.20
0.1m 41580 15.34 14.20 13.42

2.0 s 0.5m 1760 10.78 9.59 8.80
1.0m 476 8.89 7.65 6.86

overview of exemplary entropies for varying measurement intervals and accuracy
bounds. For the regular square grid setup, we assumed an acceleration interval
[decmax; accmax] = [−11; 8] ms2 . Also, we calculated the entropies for probability
distributions with two different standard deviations: We chose sx = sy = 3σ
and sx = sy = 4σ, thus assuming that approximately 99.7 % and 99.99 % of all
measurement innovations will lie within the grid, respectively. Please note that
the entropy, as an expected value, solely depends on the used movement model
θ and ensemble X and not on actual measurements.

We can see from the table that even for very high accuracy demands, the
expected average information content per symbol is very low: while position
measurements are normally provided by off-the-shelf GPS receivers as fixed-
point numbers with six digital places and thus can be encoded with 57 bits,
the expected average information content at an accuracy bound of 0.1m always
lies below 16 bits. This would even be true if the probability distribution of the
alphabet was normal distributed. According to our model, the entropy becomes
smaller with the measurement interval. This is reasonable, because the more
information is provided by measurements, the lower is the missing information
for a perfect estimation.

4.5 Model Implementation: An Arithmetic Coder

The estimation results presented in Table 1 encouraged us to build an arithmetic
coder based on our formal model, since we could expect compression rates of
more than 90% even at tight accuracy bounds. For the implementation, we used
the arithmetic coding project of Bob Carpenter [18], version 1.1 as a basis.

The only modification to our formal model lies in the handling of outlier
measurements: Instead of adding an extra outlier symbol, we stop the arithmetic
encoding once an innovation cannot be mapped onto AX . This is inevitable,
because the mapping of an discretized innovation to a code symbol needs to be
bijective; this is not fulfilled in case of outliers. Once an innovation cannot be
mapped to a grid node, it would not be possible to retrieve a valid grid node in
the decoding process. Therefore, in this case the symbol stream is terminated
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Fig. 2. Movement estimation error analysis (urban movement).

with the End Of Stream symbol, the probability distribution and the estimator
are reset and a new encoding begins. This is an undesirable situation, because at
least one position needs to be transmitted uncoded; so, even with the mentioned
guard zone, using a robust estimator is crucial for the compression performance.

5 Evaluation

5.1 Movement Data

The results that we present here are based on real-world movement data from
the OpenStreetMap project [19]. Those are available under the Creative Com-
mons license BY-SA 2.0 [20]. We categorized each movement trace based on
the highest object velocity vmax as urban (8.3 m

s < vmax < 17 m
s ) or highway

(vmax ≥ 17 m
s ) movements. We then selected only those traces with 1Hz mea-

surement frequencies and more than 100 measurement points; in doing so, we
retrieved 2263 and 4946 traces for the urban and highway pattern, respectively.

5.2 Movement Estimation

Since it is essential to use an accurate and robust movement model, we performed
movement estimations with the non-accelerated and accelerated movement es-
timators. We were in particular interested in the influence of the discretization
and therefore analyzed the movement estimation inaccuracies for varying dis-
cretization steps; the results are shown as cumulative distributions in Figure 2.



Spatio-Temporal Information Content and Arithmetic Coding of Trajectories 9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2000  4000  6000  8000  10000  12000

c
d
f

symbol id

highway
urban

gaussian

(a) ε = 0.05m

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140

c
d
f

symbol id

highway
urban

gaussian

(b) ε = 0.50m

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35  40

c
d
f

symbol id

highway
urban

gaussian

(c) ε = 1.00m

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14

c
d
f

symbol id

highway
urban

gaussian

(d) ε = 2.00m

Fig. 3. Cumulative distribution analysis of the probability distribution PX .

Without discretization (i. e., ε = 0), the error was below 2m in 90-95% of the
cases, with slightly worse results for the highway topologies, which we left out
for lack of space. For increasing ε, the error distributions widen, which indicates
that coarser discretizations lower the quality of the estimator’s observation vec-
tor. This in turn has a direct influence on the information content and the
compression performance.

Unexpectedly, the non-accelerated estimator (w/o acc) outperforms the ac-
celerated variant (acc). The latter is more impaired by the discretization, since
it derives acceleration values from distorted velocities. To reduce this effect, we
amended the accelerated estimator by smoothing the acceleration values expo-
nentially (acc exp). Though this really improves the situation, it does not provide
the same robustness as the non-accelerated estimator as shown in Figure 2.

5.3 Probability Distribution

To evaluate the probability distribution, we compare the assumed (gaussian) and
actual cumulative distribution functions for both topologies over the respective
AX in Figure 3. To this end, we serialized the two-dimensional distributions over
the grid to one-dimensional distributions over the ordered symbol set to gain
a better overview: we concatenated the symbols from cross-sections along the
lateral grid axis, causing stepped curves, where each “step” in the curves refers
to one such cross-section. The cdf graphs for the normal distribution resemble the
empirically determined ones, though the distributions for both the urban and
highway topologies are denser, especially for lower values of ε. This basically
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Fig. 4. Compression ratio comparison.

confirms our assumption for PX , though it is also quite obvious that there is
room for future research to improve the probability distribution and thereby the
information content estimation and compression performance.

5.4 Compression

For the evaluation of the compression performance, we use the compression
schemes based on optimal line simplification and cubic spline interpolation dis-
cussed in [9] as benchmarks for the work presented here.

The spline-based approach runs in O(n3) and was designed for relatively
short trajectories of ∼250 elements; so, we selected typical trajectories of 1000-
1300 positions and cut them to slices of 250 elements, each slice overlapping the
previous one by 100 elements, and thus gained 318 and 327 shorter traces for
the urban and highway topologies, respectively. In doing so, we avoid side effects
and spread both advantageous and disadvantageous effects on multiple slices.

Both the line simplification and the arithmetic coding are capable of handling
trajectories of several thousand measurements, so we additionally apply these
to uncut traces in order to gain a broader basis for the analysis and to examine
the ability of these approaches to handle data streams of variable length.
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As an optimal benchmark for the arithmetic coder, we have performed com-
pressions using a posteriori knowledge: we measured the empirical distributions
of the code symbols for each trajectory and used these as stochastic models for
the arithmetic coder. This is only a theoretical optimum, because for a produc-
tive operation, this distribution would have to be transmitted along with the
code bit stream and would cause a serious overhead.

Figures 4(a) – 4(d) depict the average compression ratios against the dis-
cretization threshold ε. For all configurations, the same ranking of compression
techniques is visible: the optimal line simplification algorithm performs worst,
being outperformed by the approach driven by cubic splines (only for the tra-
jectories with 250 elements in Figures 4(a) and 4(b)). The arithmetic coding
approach performs best, especially for very tight accuracy bounds of ε < 1.0m
and even if a uniform probability distribution is used for PX as reference. When
a normal distribution is used, the compression ratios improve by another 20-30%.
The results for using a posteriori knowledge are significantly better for ε < 0.5m,
but thereafter are almost reached by the compression ratios with the normal dis-
tribution assumption. This underlines our findings from the probability distri-
bution analysis that for growing ε, the impact of the probability distribution de-
creases. We only plot the compression results achieved with the non-accelerated
movement estimator for a better overview. According to Section 5.2, it yielded
slightly better compression ratios than the accelerated models.

An interesting effect are the visible drops of the compression ratios for very
high ε that occur for all distributions and topologies alike. These originate from
the discretization grid that is getting coarser for growing ε.

6 Conclusions

In this paper we determined the information content and entropy of trajectories
with respect to a prediction model. Further, by using these findings we were able
to specify a compression scheme based on arithmetic coding. We demonstrated
the practical applicability of our ideas by using them to compress vehicular tra-
jectories and applied this to a large number of heterogeneous real-world vehicular
movement traces. The results from this evaluation show that our approach is far
superior to the best existing compression scheme for vehicular trajectories.

There are two aspects of the work presented here that could be improved
further. First, the prediction model we use is rather simple. It might make sense
to investigate other models. After all, the more accurate the prediction is, the
lower will be the information content of the trajectory in relation to that model.
Second, we have used a normal distribution to assign probabilities to the alpha-
bet. While this is an acceptable approximation it might pay off to investigate
other ways to assign those probabilities.

Acknowledgments. The authors wish to thank Dennis Dobler for his work on
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thank Bob Carpenter for the source code of his arithmetic coder and his support.
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