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Abstract—The transmission of vehicular trajectory informa-
tion is one basic building block of car-to-car communication.
Frequently, this information is transmitted as raw data, i. e.,
as a sequence of location measurements. In this paper we
argue that, due to the laws of physics and the requirement to
follow a road, vehicular mobility has very specific characteristics.
Hence, vehicular trajectory information can be compressed very
efficiently using domain-specific lossy compression schemes. We
discuss and compare three promising approaches that can be used
to this end: linear approximation, cubic splines, and clothoids.

I. INTRODUCTION

Many applications in inter-vehicle communications require
the exchange of trajectory information [1]–[3]. Typically this
information is transmitted as a sequence of position measure-
ments called polygonal chains or polylines [4]–[6]. Albeit
the information given in this form is highly valuable, the
transmission of such polygonal chains may occupy a large
amount of network resources. Since vehicular movements obey
kinematic principles and are therefore predictable to a certain
extent, such descriptions contain redundancy and thus bear a
high potential for data reduction.

In this work, we investigate lossy compression schemes for
trajectory information: they allow for an error in the data once
it is decompressed. Upper bounds for this error usually serve
as input parameter for the compression schemes and influence
their performance significantly. The main focus in research, so
far, has been on the linear approximation of movement traces
by the means of line simplification or linear dead reckoning
(LDR) algorithms [7]–[10]. However, vehicular movements
are approximately linear only over very short distances or
on linear road segments; more generally, vehicles move along
curves and are thus likely to be represented more efficiently
by non-linear approximations. We have proposed this idea
recently in [11] and have shown that two-dimensional cubic
splines yield good approximations for vehicular movements.

In this paper, we extend our examination of geometrical
methods for the approximation of vehicular movement traces
and make three central contributions: we first introduce our
spline-based approach, extend it, and complement our descrip-
tion by an overhead analysis. Second, we present a detailed
comparison with two common line simplification algorithms
often used in trajectory reduction; we point out their strengths
and shortcomings. Finally, we discuss algorithms for clothoid-
based polyline sketching, derive compression schemes from
these, and analyze their performance and weaknesses. By

surveying and evaluating these approaches, we recapitulate
the previous work in the area of geometric trajectory encoding
methods and provide insights into their capabilities and limita-
tions. In doing so, we present for each of the three approaches
a basic version to clarify the fundamental idea, before we then
discuss the most promising extension.

We introduce linear, cubic spline-based, and clothoid spline-
based geometrical approaches for efficient trajectory encoding
in Sections III–V, respectively. In particular, this includes the
discussion of an extension to our own spline-based method
in Section IV. We explain our methodology and present a
compression evaluation based on real GPS movement mea-
surements in Section VI, before we close this paper with a
look on related work and a conclusion.

II. PROBLEM STATEMENT AND NOTATION

In this paper, we focus on the encoding of vehicular
trajectories by means of geometrical methods. We consider
both linear and nonlinear approaches, and therefore need a
clear problem statement that is applicable in both cases.

In the following, we will denote a position measurement
trace as sequence 〈mj〉j∈J , mapping the elements of an
(ordered) index set J to d-dimensional measurement tuples:
m : J → Rd, j 7→ mj = (a0, . . . , ad−1). The discussed tech-
niques are more generally applicable, but for the sake of
simplicity we focus on the two-dimensional case of geographic
coordinate pairs here: m : J → R2, j 7→ mj = (xj , yj). Fur-
thermore, we assume that an accuracy bound ε ≥ 0 is given.

Then, generally speaking, we aim to find a compact repre-
sentation which allows us to reconstruct the elements from
〈mj〉 with a maximum error of ε. In the following the
representation we will look at is another point sequence 〈m′j〉;
〈m′j〉 need not necessarily be a subsequence of 〈mj〉. To
find 〈m′j〉, we use different, purpose-tailored compression
and decompression algorithms; let us denote such an en-
semble by E(c, r, ε). Here, c denotes the compression map-
ping: c : (J→R2)→ (J ′→R2), c(〈mj〉)=〈m′j〉, |J ′|≤|J |.
The corresponding decompression mapping is denoted by d1:
r : (J ′→R2)→ (Ĵ→R2), r(〈m′j〉)=〈m̂j〉, |J |= |Ĵ |, so that
the sequences 〈mj〉 and 〈m̂j〉 do not differ by more than ε
element by element with a Euclidean distance metric.

In the following, we will present different versions for the
compression and decompression mappings c and r.

1We slightly changed our notation from [11] and use 〈 bmj〉 instead of ( em′
j).



III. LINEAR MOVEMENT APPROXIMATION

In the next sections, we review a number of geometric
trajectory encoding methods, which we compare in Section VI.
We begin with common linear approaches and then increase
the complexity by turning to non-linear methods employing
cubic splines and finally clothoids.

A. The Douglas-Peucker Algorithm

The Douglas-Peucker algorithm [12] is a heuristic line
simplification algorithm that implements a divide-and-conquer
strategy: in a first step, the first and last node of a polygonal
chain are taken as end points of a line. For all points in
between, the shortest distances to this line are determined.
If any distance exceeds ε, the polygonal chain is separated
with the point with the largest distance being both end
and start point for the first and second new line segments,
respectively. Then, the algorithm starts anew for each of these
subchains. It terminates when no point-line distance exceeds
ε. Figures 1(a)–1(e) show a simple example.

As mentioned before, the Douglas-Peucker algorithm em-
ploys a heuristic, i. e., the result c(〈mj〉) = 〈m′j〉 is not neces-

(a) Initial polygonal chain.

(b) Douglas-Peucker algorithm, step 1.

(c) Douglas-Peucker algorithm, step 2.

(d) Douglas-Peucker algorithm, step 3.

(e) Douglas-Peucker algorithm, step 4.

(f) Optimal line approximation result.

Figure 1. Examples for line approximation.

sarily the global optimum. Its advantage, on the other hand, is
its runtime complexity, which is O(nk) with n = |J |, k = |J ′|
in a naive implementation, but can, for the two-dimensional
case, be improved to O(n log n) [13].

B. Optimal Line Simplification

An algorithm that finds the minimal subsequence 〈m′j〉
in O(n2 log n) time has been proposed in [14]: first, the
algorithm creates a directed graph G(V,E), where V includes
all nodes from 〈mj〉. An edge e = (i, j) ∈ E, iff i < j and
the distances of mi+1, . . . ,mj−1 to the line segment between
mi and mj are smaller than ε. Formally: ∀k : i < k < j :
dli,j

(mk) ≤ ε with the distance metric dli,j
(·) of a point to the

line segment from i to j. Once this graph has been constructed,
the minimal subsequence is determined by finding the shortest
path from m0 to mn−1. Obviously, the line simplifications
found by this approach are upper bounds for all approaches
based on linear movement approximation such as [7]–[10].

Figure 1(f) shows the minimal simplification for the exam-
ple polygonal chain from Figure 1(a). It clearly differs from
the result obtained with the Douglas-Peucker algorithm, and
is, in this example, slightly more compact.

IV. MOVEMENT APPROXIMATION WITH CUBIC SPLINES

Next, we describe the encoding of vehicular trajectories with
cubic splines. We introduce our approach from [11] and dis-
cuss its overhead, before we turn towards some modifications.

A. Basic Approach

When looking at the specific characteristics of vehicular
trajectories, in particular their smoothness and continuity,
two-dimensional cubic splines appear to be an excellent
fit: they ensure C2 continuity2, so their curvature κ =
x′(t)y′′(t)−x′′(t)y′(t)

(x′(t)2+y′(t)2)3/2 is continuous as well. Here, x(t) and y(t)
denote the parameterized functions for the two dimensions
at index t. This implies a special smoothness—in fact, cubic
splines feature a minimal curvature and thus an especially low
oscillation—that allows for realistic modeling of acceleration
and steering. Moreover, since splines are defined by the index
offsets of the given knots, which may be fragmentary, it is
straight-forward to reconstruct the omitted knots.

So, the sought-after mapping r for the approximation of
the original measurements would be a simple cubic spline
interpolation. The more interesting question is: how can the
compression mapping c that provides the minimal measure-
ment subsequence be implemented?

Finding the minimal knot sequence 〈m′j〉 for which the
interpolation 〈m̂j〉 does not exceed the error bound ε is
non-trivial. Indeed, all possible 2n subsequences have to be
considered for an optimal solution, because—different than
for linear approaches—removing one knot has a direct impact
on all knots, not only on those in the direct surrounding.

We propose a heuristic approach based on a greedy iterative
search that finds a local optimum in O(n3) steps. First, the

2A smooth function is Cd continuous, iff its first d derivatives exist and
are continuous.



algorithm checks for every but the first and last knot what the
highest resulting interpolation error would be if this particular
knot were removed from the sequence. The knot with the
smallest such error is then removed from the sequence, before
the algorithm starts over. If all of the resulting interpolation
errors exceed ε, no further knot can be removed and a local
optimum is reached.

As already mentioned, the indices of the omitted knots need
to be remembered for the interpolation. We propose the usage
of a simple bit field of length n = |J |, where each bit indicates
whether or not the respective measurement has been kept. To
achieve an overall reduction in size, enough tuples need to be
removed from 〈mj〉 to compensate for this overhead: with the
number of remaining tuples k = |J ′|, the size of the binary
representation of a tuple 2 · s, and the size of the bit field n
(both sizes in bit), we can describe an absolute size threshold
that needs to be under-run for the compression to be effective:
the sum of the overhead and the size of the reduced tuple
sequence needs to be smaller than the size of the original
tuple sequence. More formally this is:

n+ k · 2 · s < n · 2 · s ⇔ n

2 · s
< n− k (1)

B. Unseaming dimension contexts

We have previously shown in [11] that the above-described
algorithm provides very good compression ratios for real
GPS position traces. In its basic version, however, it has
a drawback that may inhibit an even better compression
performance: in the first step, we compute the interpolation
errors for possibly-removed knots. For this, the absolute eu-
clidean distance between an original knot and its interpolated
counterpart is calculated, i. e., both dimensions are compressed
simultaneously as a context. In doing so, the basic algorithm
does not take into account that one of the dimensions may be
more complex—and thus harder to compress—than the other;
in fact, the compression result of the two-dimensional context
can only be as good as the one of the more complex dimension.

To overcome this issue, we propose a modified version of
our algorithm that compresses different dimensions separately.
The first two steps of each loop cycle (determine the highest
resulting interpolation errors for each knot and remove the
knot that minimizes these errors) are applied to the dimensions
sequentially: instead of removing a knot at the same index in
both dimensions, one index for each dimension is determined
independently. The dimensions are thus compressed separately,
still regarding the threshold ε for the total interpolation error.
E. g., the index for the longitudinal (or x) dimension is deter-
mined first, and the one for the lateral (or y) dimension second.
The changes performed on the first dimension influence the
compression of the second one and therefore a changed order
of dimensions is likely to affect the overall compression, albeit
marginally. Note that it is now possible that, at some point,
one dimension cannot be compressed any more, whereas the
other one still can. The algorithm may then skip one dimension
in the remaining cycles, until the compression of the second
dimension has also reached a local optimum.
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Figure 2. Unit clothoid.

The runtime complexity of our algorithm is not affected by
this modification, since we merely multiply the quadratic effort
of determining the interpolation error by the (fixed) number
of dimensions: O(d · n3) = O(n3).

But even though this context-loosened compression may
provide better results, it also causes a higher overhead in
one respect: since the dimensions are compressed in a largely
decoupled fashion, we now need to provide one bit field per
dimension to remember the removed knot indices. We verify
this by describing the absolute size threshold for the context-
loosened compression mapping analogue to (1) as follows:

2 · n+ k · 2 · s < n · 2 · s ⇔ n

s
< n− k (2)

where k is now the mean dimension knot sequence length.
The comparison to the basic algorithm according to (2) shows
that the necessary number of knots that need to be removed
from 〈mj〉 has indeed doubled.

V. CLOTHOIDAL MOVEMENT INTERPOLATION

So far we have discussed approximations using lines and cu-
bic splines. However, vehicular movements not only follow the
principles of kinematics, but also the course of the roadway.
Once it is known what kind of basic geometric elements a road
is typically composed of, one could assume that any vehicular
movements along such roadways can likewise be expressed or
at least approximated by variations of these elements.

In the design and construction of roadways, linear segments,
circular arcs, and clothoid segments—often referred to as
curve primitives—are widely used to achieve optimal traffica-
bility [15], [16]. Clothoids are special curves for which the arc
length (L) is inversely proportional to the curve radius (R), and
thus proportional to the curvature (κ): L = A2/R = κ/A2,
where A is a constant scaling factor. Figure 2 shows the
double-ended unit clothoid, i. e., A = 1.

These curve primitives reflect the nature of fundamental
vehicular movements: first, for yaw rates equal to zero, i. e.,
the steering wheel is constantly at a neutral position, a vehicle
obviously moves ahead on a straight line. With a uniformly



(a) Roadway design.

(b) Curvature plot.

Figure 3. Roadway design using lines, circular arcs and clothoids.

varying yaw rate, i. e., a constant steering wheel angle other
than the neutral position, the vehicle’s movement describes a
circular arc with a radius determined by the steering angle.
Finally, for the transition between linear and circular move-
ments or between circular movements with different curve
radii, vehicles move on clothoidal curve segments. The relation
between road segments and the resulting steering behavior is
shown in Figure 3: Figure 3(a) shows a part of a schematic, but
typical highway interchange with linear (red), clothoidal (blue)
and circular (green) road segments, and Figure 3(b) plots the
corresponding curvature κ over distance L: the road curvature
starts with zero for the line segment, linearly decreases3 to
κ=− 1

R in the clothoidal section and then remains constant
for the circular arc. Finally, the arc passes into a linear segment
via a clothoid with a linear increase of the curvature up to zero.

Since the discussed curve primitives are uniquely defined
by their curvature descriptions, a promising approach is to
derive the sought-after composition on the basis of collected
way point measurements (〈mj〉) by a curvature analysis for
this polygonal chain. We will next focus on two realizations
of this idea from computer graphics and then work out how
the compression and decompression mappings c and r from
Section II can be implemented using these approaches.

A. Basic Clothoid Curve Sketching

In [17], McCrae and Singh present an approach for the
modeling of piecewise clothoid curves (clothoid splines) to
improve the fairness of polylines originating from free-hand
drawings or other comparably noisy inputs. They propose
to approximate the curvature over the arc length by means
of linear regression to remove most of the noise in order
to fair the input data. The linear regression will, however,
rarely result in curvature approximations perfectly indicating

3Left turns feature a positive curvature, for right turns it is negative.

circular arcs or line segments; many regression line segments
corresponding to noised arcs or lines will rather feature slopes
close, but not equal to zero and will thus result in clothoids.
To alleviate this, regression line segments with a slope beneath
a threshold threshs are turned into parallels to the x-axis
and those parallels with an offset to the x-axis beneath a
threshold thresho are shifted onto the x-axis. After this step,
the curve primitive parameters can easily be read from the
curvature approximation. Using a smoothness criterion such
as G2 continuity for the complete spline, the primitives are
aligned, concatenated and scaled to fit the original polyline
with a minimal distance. Two curves meet at a joint point with
Gd (d-th order geometric) continuity, iff their parameterized
functions meet at this joint point with Cd continuity [18].

This approach works well for short polylines with weak
noise levels as they result from free-hand sketching. However,
both higher noise levels and longer polylines affect the quality
of the computed clothoid splines: first, the errors from the
linear curvature regression are integrated twice during the
computation of the primitive parameters and thus have a
great impact on the final curve. This effect is amplified by
errors resulting from the curvature estimation process: though
relatively good statistical curvature estimation methods for
discrete curves exist [19], curvature calculation for noisy
discrete curves still implies at least small errors, especially
when the average noise exceeds the distance between adjacent
measurement points. Finally, the clothoid spline cannot be
modified once the curvature estimation is complete, regardless
of the fitting accuracy. Thus, the twice integrated curvature
or regression inaccuracies accumulate and can result in high
fitting errors that cannot be corrected; this is a critical point
especially for long and noisy polylines.

Besides these issues, the basic approach does not provide
a direct way to set up a threshold for the resulting fitting
or measurement point approximation error as demanded in
our problem statement. The problem of the incorrigibility of
a clothoid spline is resolved by the second clothoid curve
sketching approach that also provides a fitting error threshold
parameter; we will discuss this approach in the following.

B. Clothoid Curve Sketching using Shortest Paths

The approach of Baran et al. comprises a complex
seven-step algorithm to fair polylines using lines, arcs, and
clothoids [20]: first, the algorithm closes polylines for which
the distance between the first and last point falls below a
threshold. Second, the algorithm splits the polyline at corners,
i. e., positions with G0 continuity, and processes each isolated
sub-polyline separately. Each polyline is then resampled to
adapt the point distribution to the curvature situation, i. e.,
there should be a higher point density in regions with a high
curvature. Afterwards, the algorithm performs a curve fitting
on the resampled point sequence: for every subsequence of
points, curve primitives are constructed regarding an error
tolerance. So, instead of simplifying the curvature to find
one specific sequence of curve primitives as for the basic
approach, a huge number of these are created that could



possibly be used in the final spline. In the fifth step, a directed,
weighted graph is constructed from the fitted primitives: for
every curve primitive, a vertex is created; an edge is inserted
between two vertices if the respective curve primitives can be
interconnected. The edge weight indicates the quality of the
transitions and depends on the fitting errors of the connected
curve and transition primitives, and the curve primitive transi-
tion continuity (Gd: the greater d, the smaller the weight).
Unlike the fourth step, the fitting errors caused from this
step on are not ensured to stay within the error threshold;
fitting errors due to new primitive transitions that exceed the
threshold are merely penalized more severely to ensure that the
primitives from the shortest path can definitely be connected.
The shortest path through the graph is then calculated based
on the edge weights and their transitions between the curve
primitives are verified. Due to the cost function and depending
on the choice of parameters, it is in fact possible that not only
desired G2 transitions are used, but also G1 or G0 transitions,
if these imply a lower fitting error. The found path contains
the minimal sequence of curve primitives that approximate the
given polyline. In the seventh step, these are finally merged.

This algorithm constitutes a more promising approach than
the basic one, because it does not completely rely on a
curvature approximation where errors accumulate. Instead, a
sequence of curve primitives is found which takes the effective
fitting error into account already during the calculation. How-
ever, despite this advantage this algorithm cannot guarantee
compliance with the error threshold. Also, since our motivation
is to find a compression mapping which is to be executed
in vehicular on-board units with limited computational capa-
bilities, the high complexity is a clear disadvantage. Further-
more, the algorithm has numerous parameters that influence
performance and accuracy; the source code provided by the
authors [21] defines more than 30, at least five parameters
need to be chosen very carefully. Finally, both approaches
suffer from the same problem as the linear approaches pre-
sented in Section III: without any further information about
the measurement point distribution along the arc, a uniform
distribution has to be assumed, which is unlikely to match
reality. While the line simplification methods can directly take
the uniform distribution assumption into account, this is not
possible for the clothoid sketching methods. So, even if the
accuracy threshold were definitely not exceeded, assuming a
wrong point distribution would cause offset shifts along the
spline’s arc, and would thus result in approximation errors.

C. A Simple Clothoid Spline Compression Scheme

Although these clothoid sketching approaches originally
serve the purpose to fair a noisy polygonal chain, and despite
the discussed disadvantages, it is nevertheless possible to de-
rive a simple compression scheme based on clothoid sketching.
Basically, both approaches fulfill the formal requirements for
the compression mapping c: given a polygonal chain 〈mj〉,
they compute a clothoid spline, i. e., a structure consisting of
one or more G1 or G2 continuous sequences of parameterized
curve primitives as compression result. In the following, we

Topology Length # Measurements Frequency

City 8,896.56 m 2086 2.0 Hz
Highway #1 23,372.38 m 2021 2.0 Hz
Highway #2 14,883.04 m 1306 2.0 Hz

Table I
TOPOLOGY OVERVIEW.

will only refer to G1 continuous curve sequences, because
G0 ⊃ G1 ⊃ G2. However, due to the severe shortcomings
of the basic clothoid spline version, we merely consider the
shortest-path approach for a compression scheme.

To set up a compression scheme, we need to find a compact
description for such clothoid splines. Since all curve primitives
are well-defined by the curvature progression, we will use it
as one component of the spline description: every edge point
of the curvature graph is encoded as a two-dimensional point;
in case of discontinuities (e. g., for G1 clothoid splines), two
points are assigned to one arc length. Thus, in general, each
of these G1 continuous sequences can be uniquely identified
by start and end positions as reference points and a curvature
progression: by means of the curvature progression data, the
curve primitives can be defined and concatenated, before being
scaled, rotated and shifted using the start and end points.
Then, for each transition with G0 continuity, an additional
two-dimensional position needs to be stored, because in this
case, adjoining curves’ orientations are ambiguous and need
to be stored explicitly by intermediate points. Given this
information, the whole curve primitive spline can be restored,
regardless of the continuity degree or what primitives the
spline contains in detail. For a simple encoding, we propose
to store both the coordinates and curvature progression data
elements as two-dimensional points. Without restraining the
generality, let us assume that a spline is found consisting of
u primitive subsequences with G1 continuity; furthermore,
let the i-th subsequence consist of vi primitives and let its
curvature graph feature wi discontinuities. Then, there need
to be u+1 necessary two-dimensional reference points and
vi+wi+1 points for the curvature graph description of the
i-th subsequence. The overall compression result 〈m′j〉 thus
consists of (u+1)+

∑u
i=1(vi+wi+1) two-dimensional points.

The only missing information is the point distribution along
the spline that approximate the original measurement tuples in
〈mj〉. As mentioned before, an additional structure would be
necessary, such as a mapping of the original measurements’
indices to the respective arc length. There are recent publica-
tions using such mappings, such as [22], but their combination
with the clothoid sketching approaches in a data compression
manner is non-trivial and out of the scope of this paper.

VI. EVALUATION

In this section, we compare the discussed trajectory encod-
ing methods and analyze their compression performances on
the basis of extensive GPS real-world measurements.



A. Data Acquisition and Parameters

Our evaluation is based on real-world vehicular GPS mea-
surements from one city topology and two highway topologies.
Each has a length of several kilometers and several thousand
position measurements. A detailed overview is given in Ta-
ble I. Our GPS measurements had a precision of six decimal
places, which results in a discretization error of ≈ 6 cm for a
latitude of 52°, at which we performed our measurements.
For the calculations, we converted the traces to Cartesian
coordinates.

In real applications, position measurements can efficiently
be logged into static-sized buffers; once such a buffer is full,
the content is compressed and transmitted, and the logging
begins anew. To simulate such a behavior, we created static-
sized subsequences from our position traces by means of a
sliding window approach and used these as 〈mj〉: starting at
the beginning of a movement trace, we copied the window con-
tent to a subsequence, shifted the window forward by an offset
and started over. We set the offset to one fourth of the window
size to increase the number of considered subsequences and to
spread advantageous or disadvantageous effects over multiple
subsequences. We analyzed multiple window sizes and found
that there was no significant difference for window sizes larger
than 150. We therefore used a subsequence length of n = 200
for our evaluation in this paper. We evaluate all approaches
with error thresholds of 0–2 m in steps of 2 cm.

The linear and spline approaches have no parameters except
for the error threshold ε. In contrast, the shortest-path based
clothoid sketching software Cornucopia [21], requires about
30 parameters that are preset with default values. Amongst
others, we made the following parameter adjustments: the
costs for G0 and G1 transitions were adjusted (from ∞ to
101.0 and 51.0, respectively), because the algorithm failed
for several subsequences and error thresholds due to too high
default smoothness demands. Also, we increased the error cost
(from 5.0 to 52.0), i. e., the amplification factor for fitting
errors in the cost model, thus increasing fitting error penalties.

To validate the error threshold compliance of the clothoid
sketching approach and thus to make sure that it generates
valid compression results, we first analyze the effective fitting
error over an increasing error threshold. We need to perform
this check only for the clothoid sketching approach, because
all other algorithms regard the error threshold as a direct stop
criterion for the compression. The results of this evaluation are
shown in Figure 4 as box plots; the points show the minimum
and maximum values, the whisker ends mark the 0.02 and
0.98 percentiles, the box covers the percentiles from 0.25-0.75
and the band within the box marks the median. Dotted lines
from the whisker ends to the points merely help to assign
the points to the corresponding whiskers. The diagonal line
marks the validation criterion: for the algorithm to produce
valid compression results for a given error threshold, no part of
the particular box plot may lie above the diagonal. However,
the plots reveal an interesting behavior: the effective fitting
errors are hardly affected by the value of the error threshold for
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(b) Highway topology 1.
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(c) Highway topology 2.

Figure 4. Effective clothoid spline fitting errors.

any topology at all. In fact, it seems that the algorithm quickly
reaches an equilibrium for the trade-off between the number of
curve primitives and the total fitting cost including error penal-
ties. Thus, its results quickly stagnate. To exclude all invalid
compression results from our evaluation, we will take only
those error thresholds per topology into account that exceed
all measured fitting errors. We will assume a compression ratio
of 0 % for the results under all other error threshold conditions.
Essentially this means that if no compression is possible, then
the uncompressed data are transmitted as a fallback solution.

B. Compression Performance

We first take a closer look at the compression performance
of the discussed approaches. To this end, we evaluate the
mean compression ratio for each approach and topology, i. e.,
the mean fraction σ = 1 − |J

′|
|J| over all subsequences. The

results, visualized as mappings of the error threshold to the
compression ratio possible under this condition, are shown
in Figure 5. All approaches benefit remarkably from error
thresholds of up to 30 cm, as steep increases of all curves in
this area clearly show. For higher error thresholds, the curves



0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

c
o
m

p
re

s
s
io

n
 r

a
ti
o
 σ

error threshold ε (m)

Splines -c
Splines +c

Linear Optimum
Douglas-Peucker

Clothoids

(a) City topology.

0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

c
o
m

p
re

s
s
io

n
 r

a
ti
o
 σ

error threshold ε (m)

Splines -c
Splines +c

Linear Optimum
Douglas-Peucker

Clothoids

(b) Highway topology 1.

0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

c
o
m

p
re

s
s
io

n
 r

a
ti
o
 σ

error threshold ε (m)

Splines -c
Splines +c

Linear Optimum
Douglas-Peucker

Clothoids

(c) Highway topology 2.

Figure 5. Compression analysis for varying error thresholds.

flatten and thresholds of more than 1 m have merely a minor
impact on the compression ratio.

This pattern is basically the same for all topologies, only
the slopes of the curves during the initial increase vary and
the compression ratios converge to different values. Generally,
all approaches perform best for the first highway topology
and worst for the second. This can be attributed to the
following causes: first, partial roofings over the roadway of
the second highway topology as well as trees and buildings in
the city topology impaired the reception of satellite signals for
navigation, partially resulting in heavy positioning noise. For
these settings, the error tolerance needed to be larger for the
tested approaches to overcome the noise and approximate the
underlying smooth movements. Second, vehicular movements
in city scenarios appear to be not as well compressible as
on highways. The reason for this trait might be that unsteady
steering is usually filtered by on-board electronics at higher
velocities, thus causing smoother trajectories.

Also, all topologies show similar compression performance
rankings: generally, line simplification performs worst, which
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Figure 6. Relative compression analysis for varying error thresholds.

confirms our anticipation that linear methods do not repre-
sent vehicular movements as good as non-linear approaches
can. The spline-based approaches perform significantly bet-
ter, providing mean compression ratios of 75–85 % for an
error threshold of 20 cm with the context-loosened approach
(’Spline -c’) achieving clearly better compression ratios than
the basic version. The compression results of the clothoid
sketching method show that once no effective fitting error
exceeds the threshold, the compression is comparable to those
of the line simplification algorithms for every topology. Please
note that for the clothoid-spline-based approaches, we can
merely plot the results for ε constraining the fitting error,
not the approximation error; for the necessary encoding of
the measurement distribution over the arc length, a signif-
icant additional overhead is anticipated, the exact amount
of which depends on the employed encoding scheme. Both
one-dimensional linear or spline-based approaches could be
employed and thus the missing clothoid overhead is assumed
to be half as large as the compression results (〈m′j〉) of the
respective approach.

Figure 6(a) shows the relative compression performances
compared to the linearly optimal approach. It visualizes the
ratios σcmp

σlinOpt
with σcmp taking over the values plotted in

Figure 5, again for an increasing error threshold. The figure
shows that the spline-based algorithms outperform the linearly
optimal solution by up to 50 % and more. They converge with
increasing error threshold, though, because a decreasing num-
ber of remaining spline knots in 〈m′j〉 results in subsequences
retaining only a fraction of their initial smoothness. Thus,
the key feature on which spline-based compression is based
deteriorates, while linear approaches are less affected.



Finally, the relative performance of the spline-based com-
pression technique is plotted in Figure 6(b). This analysis
shows that for all topologies and unaffected by the error
threshold, unseaming the dimension context indeed enables
a further performance gain of approximately 20 %.

VII. RELATED WORK

We have already reviewed the most relevant previous work,
i. e., vehicular movement approximation by linear approxi-
mation [7]–[10] and clothoids [17], [20] in the course this
paper. We also compared the compression performances of
the employed mechanisms. Besides that, Bézier curves [23],
Splines [24] or clothoids [25] were previously used for model-
ing vehicular trajectories for autonomous vehicles using map
material, but not based on position measurements. The only
previous work on trajectory data reduction with non-linear
functions has been presented in the context of spatiotempo-
ral databases [26], [27]. There, Chebyshev polynomials are
used as approximations of so-called minimax polynomials;
their maximum approximation error is minimal for the given
approximation parameters. However, both approaches use the
polynomial degree as an input parameter and determine the
approximation error after the calculation.

VIII. CONCLUSIONS

In this work we investigate lossy compression schemes for
the encoding of vehicular trajectories, using linear approxima-
tion, cubic splines, or clothoids. Linear approximation turns
out to be the least computationally expensive form of lossy
compression; it also provides reasonable compression ratios
and does not rely on the specific mobility pattern of vehicles.
Using cubic splines, on the other hand, extensively exploits
these smooth vehicular movements. This approach provides
higher compression ratios, in particular if only a small loss
in accuracy can be tolerated. This advantage comes at the
cost of a higher computational complexity. Finally, clothoid-
based approaches prove their potential for very competitive
compression ratios. However, the reliance of current clothoid-
based approaches on a large parameter set and their very
high complexity prevents their direct application to vehicular
communication at this time. It is entirely possible, though, that
future work on clothoid-based approaches could change this.
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