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Abstract—Many applications in vehicular communications re-
quire the collection of vehicular position traces. So far this has
been done by recording and transmitting unencoded or merely
linearly filtered position samples. Depending on the sample
frequency and resolution, the resulting data load may be very
large, consuming significant storage and transmission resources.
In this paper, we propose a method based on two-dimensional
cubic spline interpolation that is able to reduce the amount of
the measurement data significantly. Our approach allows for
a configurable accuracy threshold and performs in O(n3). We
evaluate our approach with real vehicular GPS movement traces
and show that it is able to reduce the volume of the measurement
set by up to 80 % for an accuracy threshold of 20 centimeters.

I. INTRODUCTION

In vehicular (V2X) communications, applications are de-
signed to improve safety, efficiency and convenience of daily
traffic. To this end, traffic participants run applications on their
on-board computing units to collect and exchange information.

Depending on the context of the particular application,
this information ranges from mere collections of location
waypoints for map refinement [1] to detailed Floating Car
Data (FCD). The latter combines trajectory descriptions with
corresponding timestamps or sensor measurements to provide
up-to-date information about traffic conditions. Based on such
detailed measurements, sophisticated applications like traffic
information systems [2] or roadway condition monitoring [3]
can be implemented. Despite the diversity of these applica-
tions, their functionality often depends on knowledge about
the routes being driven by their particular users.

Up to now, the common way to encode trajectories is to
concatenate waypoint coordinates to position sequences [4]–
[6]. When such polygonal chain trajectory descriptions need
to be transmitted, a large amount of network resources may
be occupied. At the same time, due to the principles of kine-
matics, such polygonal descriptions contain a large amount of
redundancy and thus bear a high potential for compression.

In this paper, we focus on the problem of the efficient encod-
ing of vehicular trajectories and propose a lossy compression
scheme for this kind of information. Our approach exploits the
specific characteristics of vehicular mobility and allows for a
configurable accuracy. Even though we focus on trajectories as
mappings of a progress variable onto a position, we also briefly
look at adding non-geometrical information to this mapping.

Our core idea is to exploit the smooth nature of vehicular
movement due to the principles of kinematics and that cubic
splines are an excellent fit to approximate them. We present an
algorithm utilizing cubic splines to calculate compact vehicu-
lar trajectory descriptions for configurable accuracy thresholds.

We show that our assumptions hold and that our approach
achieves significant compression rates even for tight accuracy
bounds by an evaluation based on real GPS vehicle trajectory
measurements. An extended version of this paper including
more detailed discussions and results can be found at [7].

In the remainder of this paper, we describe the fundamentals
of vehicular trajectories and cubic splines to encode them
in Section II. We review related work in Section III before
describing an efficient encoding algorithm for vehicular move-
ment traces by spline interpolation in Section IV. Section V
evaluates our approach on the basis of extensive real-world
GPS measurements. Finally we conclude this paper in Sec-
tion VI with a summary and an outlook on future work.

II. VEHICULAR TRAJECTORIES

In this section, we discuss the nature of vehicle movement
and the characteristics of movement measurements. We then
summarize mathematical tools for the representation of vehic-
ular trajectories and assess their suitability for our demands.

A. Positioning

A wide-spread technique for self-positioning is the use of
Global Navigation Satellite Systems (GNSS), such as GPS.
GNSS position measurements, in general, do not return the
receiver’s true position. Several (e. g. shadowing) effects may
cause temporarily stable biases, while e. g. signal multipath
propagation or reflection usually causes an error which is
assumed to be Gaussian distributed in the literature [8].

However, the more information sources are being moni-
tored, the higher is the achievable measurement accuracy. For
the Differential GPS technology, for instance, a network of
GPS receivers monitors the systemic GPS error to calculate
a correction code. In this way, the error can be reduced from
more than ten meters to less than one meter [9]–[11].

Position measurements can only be taken at a specific
frequency, and thus have a snapshot character. Then, movement
measurements are merely chronologically sequenced static
measurements that can be interpreted as a progression of a
target’s position over time. The result is a polygonal chain,
whose accuracy heavily depends on the snapshot frequency.

B. Vehicular Trajectory Volume Reduction

Vehicle movement is usually modeled based on the prin-
ciples of kinematics [12], covering e. g. detailed calculations
of longitudinal and lateral accelerations by the target’s speed,
acceleration and steering angle. These parameters can be
described by smooth functions, since their changing rates are



continuous. This implies that vehicle trajectories can also be
expressed by smooth1 functions s ∈ C2, mapping a progress
variable to a geographical position: s : R→ R2, s(t) = (x, y)
The smoothness translates to redundancy underlying the posi-
tion measurements and we propose to utilize this to compress
the information about a vehicle’s trajectory.

We thus need a generic data structure for the trajectory
representation that exploits the identified characteristics and
can be employed for a wide set of applications. Still, this
structure has to meet two conditions: 1) the original mea-
surements need to be restorable, as they are the only directly
gathered knowledge. Anything else is, at best, a reasonably
good interpolation between those measurements. 2) Due to
the afore-mentioned GNSS measurement uncertainties, the
position measurements feature inaccuracies. For this reason, it
is perfectly acceptable to approximate the measurements with
the data structure instead of retaining them exactly. However,
as different applications require different degrees of accuracy,
the maximum error threshold for this must be configurable.

We have identified cubic splines to fit these conditions
very well: in numerics, spline interpolation is employed to
create a smooth concatenation of curves traversing a sequence
of data points (knots). To this end, polynomials are defined
between two successive knots under certain conditions, such
as Cn continuity for n+1-th degree splines at the knots.
For several reasons, cubic splines fit our demands: first, C2

continuity ensures a realistic modeling of steering behavior.
Second, cubic splines provide a minimal curvature between
two successive knots, resulting in an especially low oscillation
behavior and special smoothness of the final spline curve.
Third, since a spline definition includes the number of skipped
points between two remaining knots, these points can be
reconstructed with minimal effort. Finally, with this systematic
reconstruction, an error threshold can easily be implemented.

We will focus on the interpolation of vehicle trajectories
with cubic splines after a brief overview of related work.

III. RELATED WORK

For calculation of autonomous vehicle tracks, trajecto-
ries are modeled with Bézier curves [13], splines [14] or
clothoids [15]. Though this underlines the suitability of such
structures to approximate trajectories, these works base on
the exact knowledge of the road geometry and do not allow
conclusions for how to construct approximate representations,
given only noisy position measurements.

Such measurements form the basis of object tracking with
Mobile Objects Databases (MOD): an MOD receives position
updates from mobile units, the transmissions of which are
triggered based on time intervals or assumed position esti-
mation errors. For storage and communication load reduc-
tion, trajectory approximation mechanisms are applied during
the update process. Mobile units can employ offline update
mechanisms, such as [16], [17], thus separating the collec-
tion and compression of trajectory data. The most promising

1A function f is called smooth (i. e. f ∈ Cn), iff the first n derivatives
f ′, . . . , f (n) exist and are continuous.

offline approaches perform heuristic or optimal line simpli-
fications [18], [19] or utilize linear dead reckoning (LDR)
mechanisms. Alternatively, online update mechanisms run in
real-time (cf. [20], [21]) and mostly use LDR and simple line
approximations. However, none of these works consider using
non-linear trajectory approximations.

As far as we know, the only previous work on non-
linear trajectory approximation was presented in the context
of spatio-temporal data base indexing. In [22], the authors
motivate that a good representation for spatial vehicular tra-
jectories are so-called minimax polynomials, that approximate
an original function, such that the maximum approximation
error is minimal for the used parameter set. They suggest using
Chebyshev polynomials that are very good approximations of
optimal minimax polynomials. The authors of [23] extend
this work by adding the temporal dimension to trajectory
descriptions. Both contributions, however, use the Chebyshev
polynomial degree as only input parameter and calculate the
resulting approximation error after the approximation. They
do not present an efficient way of constructing a Chebyshev
polynomial representation for vehicular trajectories, given an
upper error bound ε only.

IV. TRAJECTORY INTERPOLATION

We now discuss the interpolation of pure geometric data
with two-dimensional cubic splines and present an algorithm
that finds a locally optimal solution for the error-aware reduc-
tion of a spline knot sequence. Since sophisticated V2X ap-
plications report more data, we also show that non-geometric
data can be easily and present a very efficient way to encode
spatio-temporal information sets by spline interpolation.

A. Basic Trajectory Interpolation

First, we provide an algorithm to compactly encode vehicu-
lar trajectories with cubic splines. We will describe trajectories
as measurement sequences (mi)i∈N0 , m : N0 7→ R2, mapping
an index i onto a measurement tuple, where each element mi

contains (for now) only a measurement’s geodetic information.
and is therefore referred to as position.

To encode vehicle movement, we approximate the input
dimensions separately and thus seek a two-dimensional cubic
spline that interpolates every taken position measurement.
Given an accuracy bound ε, we compress the trajectory (mi)
by removing redundant elements that can later be recon-
structed by the spline without violating the accuracy bound.
In the following, we will refer to this subset as (m′

i).
We now can state the problem as follows: given a sequence

of position measurements (mi)i∈N0 and ε ≥ 0. What is
the minimal knot subsequence (m′

i), by which (mi) can be
interpolated with cubic splines and an upper bound ε for the
interpolation error at every index i ∈ [0, |(mi)| − 1]?

To find this globally optimal solution (m′
i), one would have

to determine the interpolation error for every subsequence of
(mi) and then select the smallest one with an interpolation
error not exceeding ε. Given the measurement sequence’s
length n = |(mi)|, there are 2n mutually distinct subsequences



of (mi). Since the interpolation error calculation runs in O(n),
the overall complexity of finding the globally optimal solution
lies within O(n ·2n). In V2X communications, however, mea-
surement sequences may easily feature n > 100, making the
described naive approach unfeasible. Instead, we now present
an algorithm running in O(n3) that finds an approximation of
this optimal solution, denoted by (m̃′

i).
Our algorithm uses a greedy iterative search to reduce (mi)

down to (m̃′
i): given a measurement sequence (mi) and an

error bound ε ≥ 0, the algorithm checks in each iteration
for every but the first and last remaining element in (mi),
what the maximum resulting interpolation error will be, if
this element is removed from the sequence. The element
with the smallest maximum error is then removed from (mi).
The algorithm stops once no further element can be removed
without violating the error bound ε and returns the reduced
sequence (m̃′

i) with length n′ = |(m̃′
i)|. We denote the

reduction fraction by σ = n′

n .
To reconstruct the knots removed from (mi) at the correct

positions, we need to remember their original indices, e. g.
with a bit field of length n, where each bit indicates whether
the respective measurement has been kept. This implies a small
extra effort of only one bit per measurement.

B. Adding Non-Geometric Data

More sophisticated applications often extend the mere
knowledge about vehicular movement by e. g. the sequence
of points in time, at which the corresponding measurements
have been taken. This allows, for instance, to conclude on the
road segment’s position within a fundamental diagram or to
monitor the average speed for it as in [2]. For other projects,
such as [3], additional measurements of temperature, humidity
and friction coefficients need to be combined and transmitted.

Note that though we consider cubic splines exceedingly use-
ful for trajectory interpolation in particular, the reduction tech-
nique should always fit the particular context. For example,
friction parameters might be interpolated by a much simpler
construct than cubic splines. Furthermore, the dimensionality
d of the input data is irrelevant for the algorithm’s asymptotic
runtime complexity. As long as the error determination per
reduction step does not exceed O(n), the algorithm’s com-
plexity remains in O(n3), since a fixed dimensionality does
not affect its asymptotic behavior. The only supplement that
has to be added to the algorithm is a further error threshold
for each new dimension or combination of new dimensions.

As already mentioned earlier, the remainder of this paper
focuses on temporal information as non-geometric data due to
its special interrelation with spatial information.

C. Exploiting the Space-Time Interrelation

We have stated that a vehicular trajectory can be expressed
as a mapping of a progress variable to a position. Basically, the
particular measurement’s points in time can be employed as
such a progress variable. However, to fulfill the first condition
from Section II-B, all measurements need to be taken with a
constant measurement frequency. With this frequency and the

first measurement’s timestamp, all measurement timestamps
in the sequence can be reconstructed. Otherwise, e. g. if
location measurements have been lost before being logged or
have not been logged with a constant frequency, the original
measurements or their original positions in time cannot be
reconstructed and irregular large temporal gaps may occur. In
this case, the measurements can still be interpolated, but the
interpolation errors for the respective knots cannot be guaran-
teed to lie within the bounds any more. However, even current
off-the-shelf GPS hardware provides exact measurement fre-
quencies and more sophisticated positioning systems, using
e. g. Kalman filters [24] or inertial navigation systems [25],
can easily accomplish this task anyway.

Due to the additional temporal information contained within
the index bit field, we have turned the only overhead of our
approach into payload, containing measurement information.
In other words, an effective data reduction begins with the first
removed element from the measurement sequence.

V. EVALUATION

A. Data Acquisition

For our evaluation, we performed extensive vehicular GPS
measurements in one city (8.9 km, 2086 measurement points)
and two highway (23.4/14.9 km, 2021/1306 measurement
points) topologies with a measurement frequency of 2 Hz.

The GPS traces, stored in an NMEA-0183-like format,
provided a coordinate precision of six decimal places. This
discretization implies a maximum rounding error of ≈ 6 cm
for a latitude of 52°, at which we performed our measurements.

For real applications, static size buffers are an efficient tech-
nique to log and subsequently transmit position measurement
traces. In our case, once the buffer is full, the data is passed
to our algorithm. The output is then transmitted to a collector
and the logging starts over anew.

We simulated the static size buffer using a sliding window
approach: starting at the respective trace’s beginning, we
copied the window contents to according measurement subse-
quences. In Section IV, we have introduced such subsequences
as (mi)i∈N0 , so the window size directly translates into the
original size of a measurement subsequence n = |(mi)|. The
window was then shifted by an offset o = n

4 , thus increasing
the number of regarded subsequences and avoiding boundary
effects to make our evaluations as meaningful as possible.

We evaluated window sizes of 50-250 in steps of 50. If
we assume two 32-bit floating point position measurements
per element plus a 32-bit integer reference timestamp for the
whole measurement sequence and another 32-bit floating point
measurement frequency value, the resulting buffer sizes range
from 416 byte (n = 50) to 1.97 KB (n = 200), showing that
this approach is indeed feasible for the proposed window sizes.

B. Knot Sequence Reduction

The most meaningful performance criterion for our pro-
posed algorithm is the fraction σ = n′

n of remaining knots
after the reduction. It is shown in Figure 1 for all topologies.
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(a) City topology.
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(b) Highway topology 1.
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(c) Highway topology 2.

Figure 1. Knot reduction analysis for varying error thresholds and window sizes.
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Figure 2. GNSS signal availability for highway topology 2.

0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

fr
a

c
ti
o

n
 σ

 o
f 

re
m

a
in

in
g

 k
n

o
ts

error threshold ε (m)

Highway #2
City

Highway #1

Figure 3. Knot reduction analysis for n = 200.

Each figure shows the average fraction σ over an increasing
error threshold ε in steps of 2 cm and up to 1.5 m in total.

The first and most important visualized effects are steep
declivities of σ for error thresholds up to approximately 20 cm.
This results in an average knot sequence reduction of 70 %
to 83 % at an interpolation error tolerance of only 20 cm
and even a reduction of 83 % to 93 % for an error tolerance
of 1.5 m. The steep declivity indicates an irregularity of the
position measurements composed of the GPS noise and the
coordinate discretization, keeping them from being perfectly
smooth. Once the error threshold ε exceeds this noise level,
our approach works very well, confirming our assumption that
cubic splines are an excellent fit for vehicular trajectories.

Second, Figures 1(a) – 1(c) show that the window size has
only a minor effect on σ. The results for n = 50 differ only
marginally from the ones achieved with larger window sizes.
Especially, there is no distinct difference for window sizes
n > 150. We therefore fixed n = 200 for further evaluations.

Finally, the results for highway topology 2 are still very
good but worse than the others. This is due to partial high-
way roofings that heavily impaired the GPS signal recep-
tion. Figure 2 depicts the number of used satellites over
covered distance for this topology: the number of satellites
is heavily unstable and even drops below four, which is
the minimum number of satellites necessary for reasonably
exact self-positioning. This caused a high positioning noise

and a poor smoothness and continuity of the trajectory. For
many subsequences in this topology, a good reduction is
thus only achievable at a larger ε. This can also be seen in
Figure 3, depicting our reduction results for n = 200 with
95 % confidence interval corridors. Solely the second highway
topology has very wide confidence intervals which confirms a
high variation of the achieved results.

C. Interpolation Error

We have seen that even small interpolation error thresholds
allow for high knot amount reductions. Next, we take a closer
look on the nature and distribution of this interpolation error.
Due to shortage of space, we use the first highway topology
as an example, being representative for the other topologies.

Figure 4(a) shows the cumulative distribution of the relative
interpolation error ρ (i. e. the ratio of the occurred interpolation
error and ε.) for a selection of interpolation error thresholds.
Negative interpolation errors occur, if the original point lies on
the left hand side of the spline curve, in movement direction.
The figure shows that positive and negative interpolation errors
are distributed alike. This is also true for the other topologies,
thus excluding topology-specific error behaviors. Second, we
see that with increasing ε, the distribution’s compactness grows
around 0.005 ≤ |ρ| ≤ 0.4. This is because the interpolation
errors are not spread uniformly, but only few measurement
points are interpolated with a close-to-maximum and close-
to-minimum interpolation error. The latter results from a base
noise and the discretization of position measurements.

The total interpolation error distribution is a good quality
indicator for the trajectory interpolation. However, for a more
thorough understanding, the interpolation error components
need to be differentiated. We regard the longitudinal and lateral
parts for our considerations: Figure 4(b) shows a gray polyg-
onal chain and its black spline approximation as well as the
error components for the interpolated knot m̃′

j of the original
position measurement mj . While the longitudinal interpolation
error describes the divergence along the movement direction,
the lateral error refers to the part perpendicular to it.

Since cubic splines provide a minimum curvature, systemic
errors are possible to occur in relation to the spline’s curvature.
In this case, curves and bends would be interpolated tighter
than they originally are and a clear correlation between the
spline’s curvature and the lateral error would exist.

To this end, Figure 4(c) depicts the lateral error in relation
to the spline’s curvature κ. Since κ is the inverse of the curve
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Figure 4. Error analysis using the representative example of the first highway topology.

radius, a high absolute curvature value translates into a tight
curve or bend. The figure covers κ ∈ [−0.04; 0.04], resulting
in (for the considered velocities tight) curve radii of down to
25 m. However, no systemic errors are recognizable, but the
errors seem to distribute arbitrarily, instead. This leads us to
the assumption, that splines with their minimal oscillation may
even reduce the lateral noise attached to GPS measurements.
This is still subject to further investigations.

VI. CONCLUSIONS

In vehicular communications, a number of applications
depend on the exchange of vehicular trajectory data. Up to
now, mere position measurement concatenations (polygonal
chains), that contain a high degree of redundancy and are
thus far from being optimal, have been used for this. In this
paper, we propose an encoding approach based on cubic spline
interpolation and present a greedy algorithm that filters out
redundant position measurements in O(n3) for a adjustable
error threshold ε. The omitted measurements can afterwards
be retrieved by simple cubic spline interpolation with a guaran-
teed maximum interpolation error ε. We applied our algorithm
to a large number of real-world GPS measurements and see
that with an error tolerance of only 20 cm up to 80 % of the
measurements can be removed in this way. The resulting error
is not systemic, but it even appears that the spline interpolation
can reduce the lateral noise from GPS measurements instead.
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