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Abstract—Many applications in vehicular communications re-
quire the collection of vehicular position traces. So far this has
been done by recording and transmitting unencoded position
samples. Depending on the frequency and resolution of these sam-
ples, the resulting data may be very large, consuming significant
resources for storage and transmission. In this paper, we propose
a method based on two-dimensional cubic spline interpolation
that is able to reduce the amount of the measurement data
significantly. Our approach allows for a configurable accuracy
threshold and performs its task in O(n3). We evaluate our
approach with real vehicular GPS movement traces and show
that it is able to reduce the volume of the measurement set by
up to 80 % for an accuracy threshold of 20 centimeters.

I. INTRODUCTION

In vehicular (V2X) communications, applications are de-
signed to improve safety, efficiency and convenience of daily
traffic. To this end, traffic participants run applications on their
on-board computing units to collect and exchange information
with each other.

Depending on the context of the particular application,
these information range from mere collections of location
waypoints for map refinement [1] to detailed Floating Car
Data (FCD). The latter combines trajectory descriptions with
corresponding timestamps or sensor measurements to provide
up-to-date information about traffic conditions. Based on such
detailed measurements, sophisticated applications like traffic
information systems [2], [3] or roadway condition monitor-
ing [4] can be implemented. Despite the diversity of these
applications, their functionality often depends on knowledge
about the routes being driven by their particular users.

Up to now, the common way to encode trajectories is to
concatenate waypoint coordinates to position sequences [5]–
[8]. When a given application needs to transmit such polyg-
onal chain trajectory descriptions, a large amount of network
resources may be occupied. At the same time, due to the
principles of kinematics, polygonal descriptions of vehicular
trajectories contain a large amount of redundancy and thus
bear a high potential for compression.

In this paper, we focus on the problem of the efficient
encoding of vehicular trajectories and propose a lossy com-
pression scheme for this kind of information. Our approach
exploits the specific characteristics of vehicular mobility and
allows for a configurable accuracy. Even though we will focus

on trajectories as mappings of a progress variable onto a
position, we will also briefly look at adding non-geometrical
information to this mapping.

The core idea of our approach is to exploit the smooth and
continuous nature of vehicular movements resulting from the
principles of kinematics and that cubic splines are an excellent
fit to describe such movements. We present an algorithm
utilizing cubic splines to calculate compact descriptions of
vehicular trajectories for configurable accuracy thresholds.
We show that our assumptions hold and that our approach
achieves significant compression rates even for very tight
accuracy bounds through an evaluation based on real GPS
measurements of vehicular trajectories.

This technical report paper is an extended version of [9].
The remainder of this paper is structured as follows. We de-

scribe the fundamentals of vehicular trajectories and potential
approaches to encode them in Section II. We review related
work in Section III before presenting and describing an effi-
cient algorithm for the encoding of vehicular movement traces
by spline interpolation in Section IV. Section V evaluates our
approach on the basis of real-world GPS traces. Finally we
conclude this paper in Section VI with a summary and an
outlook on future work.

II. VEHICULAR TRAJECTORIES

In this section, we discuss the nature of vehicle movements
and the characteristics of movement measurements. On this
basis, we summarize mathematical tools for the representation
of vehicular trajectories and assess their suitability for our
demands.

A. Positioning

A wide-spread technique for self-positioning necessary for
V2X applications is the use of Global Navigation Satellite
Systems (GNSS), such as GPS, GLONASS or the upcoming
Galileo system [10]. GNSS position measurements, in general,
do not return the receiver’s true position. Disadvantageous
satellite constellations and shadowing effects, for example,
may cause measurements to be shifted by a temporarily stable
bias. At the same time, signal propagation delays and time
measurement inaccuracies due to signal multipath propagation,



scattering or reflection usually cause an error which is assumed
to be Gaussian distributed in the literature [11].

However, the more information sources are being mon-
itored, the higher is the achievable measurement accuracy.
With the Differential GPS [12] technology, for instance, users
benefit from a network of GPS receivers at well known
positions that monitor the temporal development of systemic
GPS measurement errors to calculate a correction code. In this
way, the error can be reduced from more than ten meters to
less than one meter [13]–[15].

Position measurements can only be taken at a specific fre-
quency1 and thus have a snapshot character. Then, movement
measurements are merely chronologically sequenced static
measurements that can be interpreted as a progression of
an object’s position over time. The result is a polygonal
chain with a corresponding timestamp attached to each vertex.
The accuracy of such movement measurements thus heavily
depends on the snapshot frequency, especially at increasing
velocities.

B. Vehicular Trajectory Volume Reduction

In vehicle dynamics [16], the movement of vehicles is
modeled on the basis of the principles of kinematics, covering
detailed calculations of longitudinal and lateral acceleration
forces, among others. Vehicle trajectories in these models are
directly influenced by the moving object’s speed, acceleration
and steering angle. These components can be described as
smooth functions, because their changing rates are continuous.
This implies that vehicle trajectories themselves can also be
expressed as smooth2 functions s ∈ C2, mapping a progress
variable to a geographical position3:

s : R −→ R2, s(t) = (x, y) (1)

Due to its weight and the mass inertia, for example, a
vehicle is not able to perform an instant turnaround at a high
speed but has to adjust its path and velocity continuously. With
respect to the above mentioned position measurements, this
continuity translates to redundancy: there is a pattern (based
on kinematics) underlying these measurements. We propose to
take advantage of this property to compress the information
about the vehicle’s trajectory.

To this end, we need a data structure for the trajectory
representation that exploits the identified characteristics and
is as generic as possible, so that it is employable for a
wide set of applications. Two main conditions have to be
met by the data structure: 1) the original measurements
need to be restorable, at least with a certain accuracy since
they are the only knowledge that has been gathered directly.
Anything else is, at best, a reasonably good interpolation
between those measures. 2) Due to the afore-mentioned GPS

1Current common devices provide frequencies of one to five Hertz.
2A function f is called smooth (i. e. f ∈ Cn), iff the first n derivatives

f ′, . . . , f (n) exist and are continuous.
3We reduce the geographical position to a point in R2, as it is done in the

commonly-used Universal Transverse Mercator (UTM) coordinate system, for
example.

measurement uncertainties, the positions provided by a GPS
receiver represent the true locations overlayed with an error.
For this reason, it is perfectly acceptable to use a data structure
which approximates the measurements but does not have to
retain them exactly. However, as different applications require
different degrees of accuracy, the maximum error threshold for
this must be configurable.

Following these conditions, we will discuss several methods
for the interpolation of position measurement sequences and
analyze their suitability for our problem.

a) Linear Interpolation: Long, close-to-linear progres-
sions of measurements can indeed be linearly interpolated,
using only the end points of a straight line. Also, given
the number and an approximate even distribution of the
measurements between the end points of the resulting lin-
ear interpolation, these can easily be reconstructed. An er-
ror parameter could also be implemented without problems.
However, since there is no guaranteed even distribution of
measurements due to a vehicle’s acceleration and deceleration,
a higher effort becomes necessary for the interpolation of the
omitted measurements. Even more importantly, in curves and
bends that occur frequently in real-world vehicle movements, a
linear interpolation cannot work efficiently. Finally the original
position measurements can not be retrieved directly from such
a data structure.

b) Interpolation with Circular Arcs: Over limited dis-
tances with nearly-constant steering angle, vehicle movements
can be approximated by circular arcs. Such an encoding is
very efficient, because merely a center point, a radius and
an angular interval need to be defined to describe such a
movement. It is also very simple to verify the interpolation
error, which is the difference between the calculated radius
and the distance from the regarded point to the center point.
However, again, there is no possibility to directly retrieve the
original position measurement distribution along the arc.

c) Interpolation with Clothoids: Clothoids, sometimes
referred to as Euler or Cornu spirals are curves with a linearly
increasing curvature. Due to this property, they are widely
used in the design of roads and railways, in particular in the
design of transition curves between road segments like straight
lines and circular arcs [17]–[19]. Although clothoids can be
efficiently defined by the covered curvature range, rotation
and scaling parameters, they exhibit the same disadvantages
as lines and circular arcs: the original measurements cannot
directly be retrieved, because either an equal distribution along
the clothoid curve or more additional information about the
original position measurement distribution would be necessary.

d) Spline Interpolation: In numerics, spline interpolation
is employed to create a smooth concatenation of curves that
pass through a sequence of data points, also referred to as
knots. To this end, polynomials are defined between two suc-
ceeding knots under certain conditions, such as Cn continuity
for n + 1-th degree polynomial splines at the knots between
two adjacent polynomial pieces. For several reasons, cubic
splines are well-suited to our demands: first, C2 continuity
ensures that a realistic steering behavior can be modeled (see



Section II-B). Second, cubic splines provide an especially low
oscillation behavior due to their minimal curvature between
two successive knots, resulting in a special smoothness of
the final spline curve. Third, a spline definition includes the
number of points that have been skipped between two remain-
ing knots. Thus, these points can be reconstructed with only
minimal effort. Finally, with this systematic reconstruction, an
error threshold can easily be implemented.

Due to the drawbacks that have been identified for the
other presented data structures and the properties of spline
interpolation, we will focus on the interpolation of vehicle
trajectories with cubic splines after a brief overview of related
work.

III. RELATED WORK

In the literature, there are several areas related to the
processing and representation of vehicle trajectories. One
of these covers the calculation and encoding of trajectories
for autonomous vehicles based on exact map material. This
is achieved using Bézier curves [20], Splines [21], [22] or
clothoids [23]. Though these publications strengthen the argu-
ment that these structures are basically suited for the efficient
expression of trajectories, they do not provide a solution to
our problems of retrieving original position measurements or
data reduction. In contrast, the basic assumptions of the work
in this field include an exact knowledge of the road geometry
and even partially equidistant points, which is contrary to the
nature of the position measurements that we can expect.

In the field of computer-aided design, the authors of [24]
describe an approach for sketching a polygonal chain with
lines, circular arcs and clothoids. The authors use linear
curvature interpolation with a line segment penalty to improve
the smoothness of the resulting curve. This penalty, however,
allows only little inference to the approximation error of
the real position measurements. Finally, the authors do not
present a way to retrieve the original measurements from the
trajectory description. In [25], cubic spline interpolation of
vehicle movements is employed for missile strafe planning.
The report focuses on the generation of additional waypoints
but does not cover the reduction of data. Thus, the intention
of this work is the complete opposite of what we are aiming
at but underlines our assumption that cubic splines are well-
suited for the approximation of vehicular trajectories.

In [26], the authors discuss the compression of ASCII-coded
NMEA-0183 log files on mobile devices. Thereby, they rather
focus on the implementation challenges due to the mobile
architecture framework than on sophisticated and context-
aware compression methods. In [27], the authors present an
approach to compress GPS data in the form of RINEX files
containing ground tracking measurements which is far from
the nature of movements that we focus on.

The works closest to our own discuss the storage and
communication data load reduction for the tracking of mobile
objects with central Mobile Objects Databases (MOD). To
this end, mobile units send position updates to the server
hosting an MOD; these transmissions may be triggered by

time or once a moving object recognizes that the MOD cannot
estimate the mobile unit’s position any longer without violat-
ing an upper uncertainty bound ε. In general, mobile objects
can update their positions in an offline or online fashion.
Offline approaches, such as [28]–[31] first collect trajectory
data and compress them in a second, post-factum step. The
most promising approaches perform heuristic or optimal line
simplifications [32]–[34] or employ linear dead reckoning
(LDR) mechanisms. On the contrary, online trajectory data
reduction mechanisms aim at reducing the measured data in
real-time as presented in [35]–[39]. Here, LDR mechanisms
are widely used, because these are less complex than perform-
ing line simplification algorithms after each new taken position
measurement. However, none of these works considers using
a non-linear movement modeling or polyline simplification.

The only previous work on trajectory data reduction with
non-linear functions has been presented in the context of
spatio-temporal data base indexing. In [40], the authors moti-
vate that a good representation for spatial vehicular trajectories
are so-called minimax polynomials, that approximate an orig-
inal function in such a way, that the maximum approximation
error is minimal for the given approximation parameters. They
propose the use of Chebyshev polynomials that have been
shown to be a very good approximation of optimal minimax
polynomials. The authors of [41] extend this work by adding
the temporal dimension to trajectory descriptions. Both contri-
butions, however, use the degree of the Chebyshev polynomial
as input parameter and calculate the resulting approximation
error after the calculation. They do not present an efficient way
of constructing a Chebyshev polynomial representation for
vehicular trajectories, for which the maximal approximation
error does not exceed a previously set up upper bound ε.

IV. TRAJECTORY INTERPOLATION

In this section, we introduce our approach for the com-
pact encoding of vehicular trajectories. We first discuss the
basic interpolation of pure geometric information with cubic
two-dimensional splines. To this end, we present a greedy
algorithm that can find a locally optimal solution for the
error-aware reduction of a spline knot sequence. Next to the
geometric information, a number of applications from the V2X
communications context require additional data to be reported
as accomplished with FCD. We therefore present subsequently
several ways to add non-geometric measurement data to the
trajectory description and present an efficient way to encode
spatial and temporal information sets together by cubic spline
interpolation.

A. Basic Trajectory Interpolation

In a first step, we provide an algorithm to efficiently encode
vehicular trajectories with cubic splines. We will describe
such trajectories below as measurement sequences (mi)i∈N0 ,
mapping an index i onto a measurement tuple mi:

m : N0 7→ R2, i 7→ mi = (mi,0,mi,1) (2)



Where i is used as an ordering criterion and the elements
mi contain the geodetic positions’ degrees of longitude and
latitude, respectively. As long as each measurement tuple
consists of pure geodetic information, we will refer to it as
position.

To represent these vehicle movements, we seek a two-
dimensional4 cubic spline that interpolates every taken position
measurement. Given an accuracy bound, we compress the
trajectory by removing elements from (mi), so that each of
the removed elements can later be reconstructed by the two-
dimensional spline without violating the accuracy bound. In
the following, we will refer to this subset as (m′i).

We now can state the problem as follows: given a se-
quence of geodetic position measurements (mi) as defined
in Statement (2) and an error threshold ε ≥ 0. What is the
minimal subsequence (m′i) that interpolates (mi) with ε as
an upper bound for the interpolation error at every index
i ∈ [0, ‖(mi)‖ − 1]?

To find this globally optimal solution (m′i), one would
have to determine the interpolation error for every possible
subsequence of (mi) and then select (m′i) as the smallest
subsequence with an interpolation error not exceeding ε. Given
the length of the original measurement sequence n = ‖(mi)‖,
there are 2n possible mutually distinct subsequences of (mi).
Since the calculation of the interpolation error has a linear
complexity in n, the overall complexity of this approach of
finding a globally optimal solution lies within O(n · 2n). In
the domain of vehicular communication, up to several hun-
dred positions can be included within a single measurement
sequence. This makes the described naive approach unfeasible.
Instead, we propose to approximate the optimal solution to
the stated problem. Following this premise, we now present
an algorithm running in O(n3) that finds such an approximate
solution, referred to as (m̃′i).

Our algorithm uses a greedy iterative search to reduce
(mi) down to (m̃′i): and is presented in Listing 1: given
a measurement sequence (mi) and an error bound ε, the
algorithm checks in each iteration for every remaining element
in (mi), what the highest resulting interpolation error will be,
if this element is removed from the knot sequence (cf. lines 6-
18) 5. Then, the element with the smallest of these resulting
interpolation errors is removed from (mi) The algorithm
terminates once no further element can be removed without
violating the error bound ε and returns the reduced knot
sequence (m̃′i).

To reconstruct the original knot sequence, we need to
remember the original indices of the elements removed from
(mi). This causes an additional overhead, e.g. in the form
of a bit field of length n, where each bit indicates whether
or not the respective measurement has been kept. To achieve
an overall reduction in size, enough position measurement
tuples need to be removed from (mi) to compensate this

4For the interpolation, we use one spline per input dimension. Since we
need to interpolate elements in R2, we refer to two-dimensional splines.

5In fact, the first and last element are not considered, (cf. line 7) because
otherwise an interpolation would not be possible any more.

Algorithm 1 Greedy Spline Reduction.
Require: sequence of position measurements (mi)i∈N0

Require: error tolerance ε ≥ 0
1: (m̃′i)← (mi)
2: Irem ← ∅
3: repeat
4: εmin ←∞
5: jmin ← −1
6: for all j such that mj ∈ (m̃′i) do
7: if i ∈ [1; ‖(mi)‖ − 2] then
8: Irem ← Irem ∪ {j}
9: remove mj from (m̃′i)

10: εj ← compare(interpolate((m̃′i), Irem), (mi))
11: if εj < εmin then
12: jmin ← j
13: εmin ← εj
14: end if
15: Irem ← Irem \ {j}
16: re-insert mj into (m̃′i)
17: end if
18: end for
19: if εjmin ≤ ε then
20: Irem ← Irem ∪ {jmin}
21: remove mjmin from (m̃′i)
22: end if
23: until no further knot could be removed
24: return reduced knot sequence (m̃′i)

overhead. How many tuples have to be removed exactly
depends on the binary representation size 2·sn in byte for each
position measurement tuple, the overhead so =

⌈
n
8

⌉
in byte

and the reduced knot sequence length n′ = ‖(m̃′i)‖. Given
these parameters, we can formally describe the requirement
that the size of the reduced knot sequence and the overhead
need to be smaller than the original sequence’s size. This
directly translates into absolute (Inequation (4)) and relative
(Inequation (5)) upper bounds for the node reduction:

n · 2 · sn > n′ · 2 · sn + so (3)

⇔ n− n′ > so

2 · sn
(4)

⇔ n′

n
< 1− so

n · 2 · sn
(5)

We will refer to the reduction fraction as σ = n′

n .

B. Adding Non-Geometric Data

The knowledge about vehicular movements is important for
a number of applications, but often just form the basis that has
to be extended to provide a more sophisticated service. A very
popular candidate for additional data is the sequence of points
in time, at which corresponding measurements have been
taken. This allows, for instance, to derive a vehicle’s speed on
a particular road segment, to conclude on the road segment’s



position within a fundamental diagram6 or to monitor the
feasible average speed for it as in [2], [3]. For other projects,
such as [4], additional measurements of temperature, humidity
and friction coefficients need to be combined and transmitted.

Basically, every additional information that is added to the
trajectory description increases the dimensionality of the data
collection by one, so that we can generalize our previous
definition of a measurement sequence as:

m : N0 7→ Rd, i 7→ mi = (mi,0, . . . ,mi,d−1) (6)

To achieve a high overall encoding efficiency, every additional
measurement sequence should be reduced in length, as far
as possible, as we have proposed for the geometric data.
Furthermore, as already mentioned, it appears reasonable to
consider measurement tuples as the smallest entities for the
reduction process, because a separate interpolation of mea-
surement sequences increases the overhead due to additional
index bit fields for each dimension or context.

The above-stated upper performance bounds for such mea-
surement collections can as well be generalized: assuming a
measurement tuple size of d · sn, and since the overhead so

is independent of d, the inequations for the absolute (7) and
relative (8) upper bound

n− n′ > so

d · sn
(7)

n′

n
< 1− so

n · d · sn
(8)

have to hold for a successful reduction. For a generic measure-
ment tuple dimensionality d, we can thus define the general
relative upper bound β = 1− so

n·d·sn
that must not be exceeded

by the reduction fraction σ. This implies that the necessary
effective reduction ratio of the measurement set decreased for
an increasing dimensionality d of the measurement tuples.

Note that though we consider spline interpolation exceed-
ingly useful for trajectory interpolation, this has not necessarily
to be true for every possible measurement sequence. Instead,
the reduction algorithm or data structure should fit the partic-
ular context. For example, friction parameters probably do not
need to be interpolated by an extraordinary smooth function
but a much simpler construct instead.

In the code listing, we did not emphasize the dimensionality
of the input data, because it is irrelevant for the algorithm’s
asymptotic runtime complexity. Line 10 holds the interpolation
and error determination of the measurement subset, which is
the key operation in the algorithm. The interpolation of a single
spline runs on the order of O(n). If the error determination for
a reduction step for an additional parameter does not exceed
O(n), the algorithm’s complexity remains in O(n3), since a
fixed dimensionality does not affect its asymptotic behavior.
The only supplement that has to be added to the algorithm is
a further error threshold for each new dimension or context7.

6A fundamental diagram correlates the traffic flux (vehicles per hour) and
the traffic density (vehicles per kilometer) for traffic flow estimations.

7For example, we have summarized the two geometrical dimensions to a
single context with ε being the respective error threshold.

Topology Length # Measurements Frequency

City 8,896.56 m 2086 2.0 Hz
Highway #1 23,372.38 m 2021 2.0 Hz
Highway #2 14,883.04 m 1306 2.0 Hz

Table I
TOPOLOGY OVERVIEW.

As already mentioned earlier, the remainder of this paper
focuses on temporal information as non-geometric data due to
its special interrelation with spatial information.

C. Exploiting the Space-Time Interrelation

We have stated that a vehicular trajectory can be expressed
as a mapping of a progress variable onto a geographical
location. Basically, the points in time8 at which the respective
measurements have been taken can be employed as values
for such a progress variable. To fulfill the first condition set
up in Section II-B, however, all measurements must have
been taken at a strict regular basis, i. e. the temporal distance
between each to successive measurements has to be constant.
With the knowledge of this measurement frequency and the
first measurement’s timestamp, we can easily reconstruct all
measurement timestamps in the sequence. If this requirement
cannot be met, e. g. if location measurements have been lost
before being logged or have not been logged at a constant fre-
quency, the original measurements or their original positions
in time cannot be reconstructed and irregular large temporal
gaps may occur. In this case, the measurements can still be
interpolated, but the interpolation errors for the respective
knots cannot be guaranteed to lie within the bounds any more.
However, even current off-the-shelf GPS hardware provides
measurements at strictly regular intervals and contemporary
more sophisticated positioning systems, which are e. g. based
on Kalman filters [42] and inertial navigation systems [43],
can easily accomplish this task as well.

Due to the inclusion of the additional temporal information
within the index bit field, this bit field does no longer count
as an overhead but as payload, containing measurement infor-
mation. In other words, the additional encoding of temporal
data comes at the minimal cost of a time reference and a
measurement frequency value, thus setting the relative upper
bound β = 1. Thus, an effective data reduction begins with
the first removed element from the measurement sequence.

V. EVALUATION

In the previous section, we have presented our ideas not
only to encode and reduce geographical trajectory data but
also to append additional information sets such as time to this
encoding. In the following, we will evaluate our proposals on
the basis of extensive GPS real-world measurements.

A. Data Acquisition

For our evaluation, we have collected vehicular GPS mea-
surements in one city and two highway topologies. The driven

8Strictly speaking, the respective time offsets to a starting value need to be
employed for this.



Topology
n = 50 n = 100 n = 150 n = 200 n = 250
o = 13 o = 25 o = 38 o = 50 o = 63

City 157 80 51 38 30
Highway #1 152 77 50 37 29
Highway #2 97 49 31 23 17

Buffer Size 416 B 816 B 1.19 KB 1.58 KB 1.97 KB

Table II
NUMBER OF INPUT FILES AND NECESSARY BUFFER SIZE (IN BYTE AND

KILOBYTE) FOR VARYING WINDOW SIZES.

tracks had lengths of several kilometers and consisted of up to
several thousand position measurements. A detailed overview
is given in Table I.

The GPS traces, stored in an NMEA-0183-like format,
provided a precision of six decimal places for the geographical
coordinate measurements. This discretization implies a max-
imum rounding error of approximately 6 cm for a latitude of
52°, at which we have performed our measurements.

For real applications, static size buffers are an efficient tech-
nique to log and subsequently transmit position measurement
traces. In our case, once the buffer is full, the data is passed
to the reduction module based on Algorithm 1. The output
is then transmitted to a collector and the logging starts over
anew.

We have simulated this behavior using a sliding window
approach for window sizes of 50 up to 250 measurements in
steps of 50: starting with a window position at the respective
measurement trace’s beginning, we took all measurements
within the window and copied them to measurement subse-
quences. In this way, various snapshots from during our test
runs could be made that conform to the above-mentioned static
size buffer’s content. In Section IV, we have introduced such
subsequences as (mi)i∈N0 and the window size thus directly
translates into the original size of a measurement subsequence
n = ‖(mi)‖. The window was then shifted by an offset o = n

4 .
Moving the window by only a fourth of its size allowed us to
increase the number of regarded subsequences and to spread
both advantageous and disadvantageous measurements onto
multiple subsequences to make our evaluations as meaningful
as possible.

Table II gives an overview on the number of input files
and necessary buffer sizes for varying window sizes. For the
buffer size approximation, we assumed two 32-bit floating
point position measurements per element in addition to a 32-
bit integer reference timestamp for the whole measurement
sequence and another 32-bit floating point measurement fre-
quency value. The resulting low buffer sizes show that this
approach is indeed feasible for the proposed window sizes.

B. Knot Sequence Reduction

The most meaningful performance criterion for the reduc-
tion by means of spline interpolation is the fraction σ = n′

n of
remaining knots after the reduction has been applied. This is
depicted in Figure 1 for all topologies. The figure shows the
average fraction σ of remaining knots over an increasing error
threshold ε for values in steps of 2 cm and up to 2 m in total.
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Figure 1. Knot reduction analysis for varying error thresholds and window
sizes.

The first remarkable observation that can be made is that
there is a steep declivity of σ for error thresholds up to
approximately 20 cm. This results in an average knot sequence
reduction of 70 % to 83 % at an interpolation error tolerance
of only 20 cm and even a reduction of 83 % to 93 % for
an error tolerance of 1.5 m. The steep declivity indicates
a slight noise or irregularity of the position measurements
composed of the GPS noise and the coordinate discretization,
keeping them from being perfectly smooth. Once the error
threshold ε exceeds this noise level, our spline interpolation
approach works very well. This observation clearly confirms
our assumption that vehicular traces can be represented very
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Figure 2. Number of satellites in use over driven distance.
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Figure 3. Knot reduction analysis for n = 200.

well by cubic splines.
Second, we see that the window size n has only a minor

effect on the result of the reduction algorithm. Though the
algorithm performs worst for each topology at n = 50, the
results differ only marginally from the ones achieved with
larger window sizes. It appears that a larger context bears
a higher potential for reduction. Also, there is no distinct
performance difference for window sizes greater than 150
elements visible in the results. For this reason, we will focus
on a window size of n = 200 elements in our further analyses.

Finally, we notice that though the knot sequence reduction
gives very good results for all topologies overall, the results

for the second highway topology are not as good as for the
other two. The reason for this is the setting of the second
highway topology: roofings over parts of the highway heavily
constrained the field of vision to the sky and thus impaired
the GPS signal availability. This can be seen in Figure 2 that
depicts the number of satellites in use over the driven distance
for the three topologies. While there is a very good and stable
satellite reception for the city and the first highway topology,
the number of satellites for the second highway topology de-
scends below four, which is the minimum number of satellites
necessary for a reasonably exact GPS position determination.
This threshold is visualized by dashed horizontal lines in the
figures. This unstable reception behavior results in a higher
dilution of precision (DOP), causing the measured positions
to feature a high noise and only a poor smoothness and
continuity. Due to this, a good reduction is only achievable at a
higher error threshold for many subsequences in this topology.
This can also be seen in Figure 3, showing the reduction results
from Figure 1 for n = 200 with 95 % confidence interval
corridors. In contrast to the other two topologies, the second
highway topology has a very wide confidence interval which
confirms a high variation of the achieved results.

C. Interpolation Error

We have seen that even a relatively small interpolation
error threshold allows for high knot amount reductions for
measurement sequences. In the next step, we take a closer
look on the nature and distribution of this interpolation error.

Figure 4 shows the cumulative distribution of the relative
interpolation error of the three topologies for a selection of
interpolation error thresholds. The relative interpolation error
describes the ratio of the occurred interpolation error and the
interpolation error threshold. A negative interpolation error
occurs, if the original point lies on the left hand side of the
interpolation, in the direction of progress. The results show for
all topologies a symmetric interpolation error distribution, i. e.
positive and negative interpolation errors are distributed alike.
This means that there is no topology-specific error behavior.
Second, we see that with an increasing error tolerance, the
distribution’s compactness grows in the area of 5-40 %. This
is because the interpolation errors are not spread evenly, but
that only few measurement points are interpolated at a close-
to-maximum and close-to-minimum interpolation error. The
latter circumstance results from a base noise and the above-
mentioned discretization of position measurements.

Though the total interpolation error distribution is a good
indicator for the quality of the trajectory interpolation, it is
not enough to make clear statements. A more thorough under-
standing can be provided by differentiating the components of
the interpolation error, instead. Therefore, we will regard its
longitudinal and lateral parts for our considerations as well:
Figure 5 shows a polygonal chain as a dotted gray line and
its spline approximation as a solid black curve. Additionally,
the mentioned error components for the interpolated knot m̃′j
of the original position measurement mj are depicted. While
the longitudinal interpolation error describes the divergence
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Figure 5. Longitudinal and lateral error components.

along the movement direction, the lateral error refers to the
part perpendicular to it.

As mentioned in Section II-B, cubic splines provide an
especially low oscillation behavior due to a minimal curvature
between two successive knots. Therefore, it is surely possible
that systemic errors in relation to the curvature of the spline
interpolation occur, so that curves and bends are interpolated
tighter than they originally are. In this case, a clear correlation
between the curvature of the spline and the lateral error
would exist. This is why especially the lateral error is a good
metric for the accuracy for the spline interpolation of vehicle
movements.

Figure 6 shows the lateral error in relation to the spline’s
curvature for all of our topologies. Since the curvature κ = 1

R
is the inverse of the curve radius R, a high absolute curvature
value translates into a tight curve or bend. The figure covers
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Figure 6. Lateral error over curvature (summary).

curvatures of up to |κ| = 0.04, resulting in curve radii of up
to 25 m, which corresponds to tight curves for the considered
velocities. For all regarded interpolation error thresholds and
topologies, no systemic errors are recognizable, but the errors
seem to distribute arbitrarily, instead. This leads us to the
assumption, that splines with their minimal oscillation even
reduce the lateral noise attached to GPS measurements. This
is still subject to further investigations.

VI. CONCLUSIONS

In vehicular communications, a number of applications
depend on the exchange of vehicular trajectory data. Up to
now, this task has been achieved by merely concatenating
position measurements to polygonal chains. These chains con-
tain a high degree of redundancy and are thus far from being
optimal, especially when trajectory data should be transmitted
over a channel with limited bandwidth. In this paper, we
have proposed an encoding scheme based on cubic spline
interpolation and have presented a greedy algorithm that filters
out redundant position measurements in O(n3) for a given
error threshold ε. The omitted measurements can afterwards



be retrieved by means of cubic spline interpolation with ε
denoting the guaranteed maximum interpolation error. We have
applied our algorithm to a large number of real-world GPS
measurements. Our results show that the amount of data that
is necessary to encode a vehicular trajectory with an accuracy
of 20 cm can be reduced by more than 80 %. The resulting
interpolation error is not systemic, but it even appears that
spline interpolation can reduce the lateral noise from GPS
measurements instead, which will be subject to future work.
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linear trajectory generation for autonomous vehicles via parameterized
maneuver classes,” Journal of Guidance, Control and Dynamics, vol. 29,
pp. 289–302, 2006.

[22] S. Kehl, “Querregelung eine Versuchsfahrzeugs entlang vorgegebener
Bahnen,” Ph.D. dissertation, University of Stuttgart, Institute for System
Dynamics, Nov. 2007, in German.

[23] L. Labakhua, U. Nunes, R. Rodrigues, and F. S. Leite, “Smooth
trajectory planning for fully automated passengers vehicles - spline and
clothoid based methods and its simulation,” Aug. 2006, pp. 89–96.

[24] J. McCrae and K. Singh, “Sketching piecewise clothoid curves,” Com-
puters & Graphics, vol. 33, no. 4, pp. 452–461, 2009.

[25] A. C. Jolly, “Trajectory generation by piecewise spline interpolation,”
US Army Research, Development and Engineering Laboratory: Missile
Command, Redstone Arsenal, Alabama 35809, Tech. Rep. RG-76-56,
1976.

[26] R. Lever, A. Hinze, and G. Buchanan, “Compressing gps data on
mobile devices,” in OTM Workshops (2), ser. Lecture Notes in Computer
Science, vol. 4278. Springer, Nov. 2006, pp. 1944–1947.

[27] A. Villafranca, I. Mora, P. Ruiz, J. Portell, and E. García-Berro,
“Optimizing gps data transmission using entropy coding compression,”
in SDCCP ’10: Proceedings of the 6th SPIE Conference on Satellite
Data Compression, Communications, and Processing, Aug. 2010.

[28] A. Leonhardi and K. Rothermel, “A comparison of protocols for updat-
ing location information,” Cluster Computing: The Journal of Networks,
Software Tools and Applications, vol. 4, no. 4, pp. 355–367, October
2001.

[29] N. Meratnia and R. A. de By, “Spatiotemporal compression techniques
for moving point objects,” in EDBT ’04: Proceedings of the 9th
International Conference on Extending Database Technology, Heraklion,
Crete, March 2004.

[30] A. Civilis, C. S. Jensen, and S. Pakalnis, “Techniques for efficient
road-network-based tracking of moving objects,” IEEE Transactions on
Knowledge and Data Engineering, vol. 17, no. 5, pp. 698–712, May
2005.

[31] H. Cao, O. Wolfson, and G. Trajcevski, “Spatio-temporal data reduction
with deterministic error bounds,” The VLDB Journal, vol. 15, no. 3, pp.
211–228, September 2006.

[32] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature,”
Canadian Cartographer, vol. 10, no. 2, pp. 112–122, December 1973.

[33] H. Imai and M. Iri, “Computational-geometric methods for polygonal
approximations of a curve,” Computer Vision, Graphics, and Image
Processing, vol. 36, no. 1, pp. 31–41, 1986.

[34] W. Chan and F. Chin, “Approximation of polygonal curves with mini-
mum number of line segments,” Proceedings of the 3rd International
Symposium on Algorithms and Computation, in: Lecture Notes in
Computer Science, vol. 650, pp. 378–387, 1992.

[35] G. Trajcevski, H. Cao, P. Scheuermann, O. Wolfson, and D. Vaccaro,
“Online data reduction and the quality of history in moving objects
databases,” in MobiDE ’06: Proceedings of the 5th ACM Interna-
tional Workshop on Data Engineering for Wireless and Mobile Access,
Chicago, IL, USA, June 2006.

[36] R. Lange, F. Dürr, and K. Rothermel, “Online trajectory data reduction
using connection-preserving dead reckoning,” in MobiQuitous ’08: Pro-
ceedings of the 5th International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services, Dublin, Ireland, July
2008.

[37] N. Hönle, M. Gromann, D. Nicklas, and B. Mitschang, “Preprocessing
position data of mobile objects,” in MDM ’08: Proceedings of the 9th
IEEE International Conference on Mobile Data Management, Apr. 2008.

[38] R. Lange, T. Farrell, F. Dürr, and K. Rothermel, “Remote real-time
trajectory simplification,” in PerCom ’09: Proceedings of the 7th IEEE
International Conference on Pervasive Computing and Communications,
Galveston, TX, USA, march 2009, pp. 184–193.

[39] N. Hönle, M. Groddmann, S. Reimann, and B. Mitschang, “Usabil-
ity analysis of compression algorithms for position data streams,” in



GIS ’10: Proceedings of the 18th ACM SIGSPATIAL international
conference on Advances in Geographic Information Systems, Nov. 2010.

[40] Y. Cai and R. Ng, “Indexing spatio-temporal trajectories with Chebyshev
polynomials,” in SIGMOD ’04: Proceedings of the ACM SIGMOD
International Conference on Management of Data, Jun. 2004, pp. 599–
610.

[41] J. Ni and C. V. Ravishankar, “Indexing Spatio-Temporal Trajectories
with Efficient Polynomial Approximations,” IEEE Trans. on Knowl. and
Data Eng., vol. 19, pp. 663–678, May 2007.

[42] E. Brookner, Tracking and Kalman Filtering Made Easy. Wiley-
Interscience, April 1998.

[43] O. J. Woodman, “An introduction to inertial navigation,” University
of Cambridge, Computer Laboratory, Tech. Rep. UCAM-CL-TR-696,
August 2007.


	Introduction
	Vehicular Trajectories
	Positioning
	Vehicular Trajectory Volume Reduction

	Related Work
	Trajectory Interpolation
	Basic Trajectory Interpolation
	Adding Non-Geometric Data
	Exploiting the Space-Time Interrelation

	Evaluation
	Data Acquisition
	Knot Sequence Reduction
	Interpolation Error

	Conclusions
	References

