
Global Grassroots WiFi Sharing
Wolfgang Kiess, Till Elsner, Björn Scheuermann, and Martin Mauve

Computer Networks Research Group, Heinrich Heine University, Düsseldorf, Germany
{kiess, elsner, scheuermann, mauve}@cs.uni-duesseldorf.de

Abstract— Access point sharing communities are an attractive
solution for low-cost global mobile Internet access. However,
existing communities all require a central authority in form
of a certificate authority or an authentication server. In this
paper, we show how such a community network can be created
without a central entity. We introduce a mechanism called remote
station approval; a host can use it to offer Internet access
without requiring a central instance and without the risk of legal
responsibility for the guests’ traffic. We discuss how our system
preserves the anonymity of its users and present a prototype
implementation and some first performance figures.

I. INTRODUCTION

The availability of broadband Internet connections in com-
bination with flatrate pricing models and cheap WiFi hardware
has made sharing this connectivity via WiFi an attractive solu-
tion for mobile Internet access. This approach has the potential
to provide high bandwidths at low or even no deployment and
usage costs. Access point (AP) sharing communities make
use of this fact: a mobile user (called guest) may use the
access point of another user (the host) at its current location
to establish a connection to the Internet.

Existing access point sharing approaches [8], [12], [18], [21]
are built around a central authority, the community operator.
The operator manages user accounts, issues certificates, and is
generally in charge of community membership. Consequently,
all existing approaches require a host to trust the community
operator when it comes to verifying the permission of guests to
access the Internet. Because a guest could generate malicious
traffic which would appear to originate from the host, making
Internet access available to other people may incur certain risks
for the host [18]. As a consequence, the commitment to trust
the community operator when it comes to granting Internet
access is problematic as it can have legal consequences. This
may deter potential hosts from participating in the community.
We therefore look at a system where the host himself can
make an autonomous, safe decision whether access should
be granted or not. Consequently, such a system does not
need a central managing entity: it is a loose peer-to-peer
community without formal membership, formed solely by de-
facto participation and adherence to a set of open protocols.

Obviously, such an approach contrasts with the quid pro quo
principle of existing WiFi sharing systems which requires each
member to provide Internet access to others in exchange for
being allowed to use other APs. However, such a regulation
is virtually impossible to enforce also in a centralized system.
How should any possible mechanism decide whether an access
point is intentionally unavailable or if the operating user’s
Internet access is located in an electromagnetically shielded

location? How to distinguish between a host who does not
service any guests intentionally and one who lives in a rural
region where simply nobody demands its service? But despite
the lack of enforcement, a lot of access points are made
available [9]. We therefore conjecture that many potential hosts
are willing to altruistically share their Internet access even if
this were not required to use other APs. Furthermore, we even
suspect that there might be many more open APs if currently
existing negative incentives—first and foremost the need to
trust the operator—can be overcome. Interestingly, a similar
effect was observed in the design of the Tor anonymization
overlay: by allowing each onion router to freely decide on
its exit policy (defining addresses and ports reachable via the
router), contributors can avoid legal and organizational risks—
resulting in a larger number of routers and better service [4].

The central question that therefore arises is one of trust
and authentication. Can we build a system in which the host
need not trust anyone, and can still decide that forwarding
an (unknown and untrusted) guest’s traffic is safe? Here,
we will introduce a design that overcomes this seemingly
paradoxical situation, by a mechanism called remote station
approval. The key idea is that a communication partner on
the Internet (the remote station) can disburden the host from
worries about potentially malicious guest traffic by explicitly
agreeing to receive that traffic. Only after approval has been
obtained, the guest is allowed to communicate with this one
specific communication partner. This protects the mediating
host from being made responsible for the guest’s actions. The
remote station will typically be a device in the guest’s home
network, in many cases it will be implemented in the guest’s
own access point. Then, the remote station approval concept
can be combined with an idea from [18]: the remote station
can relay the guest’s Internet traffic, thereby making a fully
decentralized, peer-to-peer AP sharing community possible.

The indirect routing of a guest users’ traffic via its home
access point can result in a performance degradation due to the
introduced triangle routing. This has already been observed
and discussed in previous work, and ways to alleviate this
problem have been devised. Heer et al. [12], for instance, sug-
gest to offer a corresponding relay service in the network core.
However, regardless of the specific realization and location of
the guest user’s relay, the problem of authorizing the traffic to
the relay remains. This is where the key contribution of this
paper steps into the breach: our remote station approval mech-
anism allows to perform this authorization and the exchange
of necessary cryptographic secrets in a completely distributed
way and without any central authority.

©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.



It turns out that this approval mechanism can be designed
in a way that exhibits a number of additional benefits. The
mechanism we introduce does not require any communication
between the guest and any other node on the Internet before
approval from the remote station has been obtained. At the
same time, it does not require the guest to disclose his identity.
In typical usage scenarios, it is not even possible for the host
to recognize a returning guest. All this is possible without
asymmetric cryptography; this is a desirable feature because
asymmetric cryptosystems require high computational efforts
and are therefore prone to denial of service attacks.

In the remainder of this paper, Section II reviews related
work and Section III presents our approach. Section IV
then discusses a number of different attack scenarios before
Section V presents a prototypical implementation and a per-
formance evaluation. Section VI concludes the paper.

II. RELATED WORK

The most well-known access point sharing community
FON [8] is built around a central, commercially operated au-
thority that verifies user identities. Users logging on to a FON
host access point are authenticated via an authentication server,
using a combination of username and password. FON exhibits
the typical problems of a strongly centralized approach, for
example with regard to the service availability: the system is
only available if the central authentication server is reachable.
The FON community operator can furthermore easily generate
movement profiles of the guests, from the history of their au-
thentication processes. These disadvantages could be partially
overcome by the recently proposed AGE approach [21]. It
uses centrally issued certificates and a distributed certificate
revocation list for the authentication task. Nevertheless, it
is still possible for the host to recognize a guest, which
may allow to create movement profiles. Furthermore, as in
FON, the guest’s traffic is routed directly to the Internet by
the host access point. This shifts the liability, i. e., the legal
responsibility for this traffic, to the host. Finally, FON (and
AGE) access points challenge the security of the users’ traffic
as it is transmitted potentially unencrypted over the wireless
link and the host access point. None of these problems exist
in the architecture that we are proposing.

A solution approach for the latter issue is offered by So-
fanet [20], which provides VPN tunnel endpoints for rent. This
allows hotspot users to route their IP traffic via an encrypted
tunnel to the VPN provider and from there to the Internet,
instead of sending it unencrypted over the wireless link and
through the (untrusted) hotspot AP. This does, however, not
address the host’s liability problem (because guests may still
send traffic directly to the Internet, using the host’s IP address),
and it does also not solve the movement profile issue.

To avoid not only the security problems of unencrypted
traffic via foreign access points, but also the liability problems
for the host, Sastry et al. [18] and Heer et al. [12] propose to
establish a mandatory encrypted tunnel between the host AP
and a trusted relay associated with the guest. The guest’s traffic
is then routed via this relay to the Internet. In the simplest case,

the trusted relay is the guest’s own access point (the home AP)
or a Sofanet-like rented endpoint.

Sastry et. al.’s approach is targeted to local communities
within one city. Fixed addresses from a private subnet are
assigned to each user, limiting the system’s scalability. Heer et
al. build upon the Host Identity Protocol (HIP) [15] which they
adapt for their system. This overcomes the scalability issues,
but requires a modified network stack in all participating
devices, which may constitute a severe practical drawback for
user acceptance and deployment. Furthermore, neither Sastry
et al. nor Heer et al. consider an AP sharing community
without a central authority for user authentication (either as an
authentication server or a certificate authority (CA)), resulting
in the problems outlined above. We avoid such an authority
and present a solution that can be implemented in user-space.

Authentication schemes in GSM [7], Kerberos [16], or
LTPA [1] share the basic idea of a client A (e. g., a mobile
phone) authenticating towards a service providing entity B
(like a base transceive station) with the help of an authenti-
cating entity C (for instance, a GSM authentication center),
so parallels are apparent. However, the trust relationships in
these systems differ in one central aspect: in these systems,
there is trust between B and C, both of which are typically
associated with the service provider. In our system, such a
trust relationship does generally not exist. In some sense, we
do therefore not authenticate A with the help of C, but A and
C conjointly prove towards B that they “belong together”.

III. APPROACH

The two key goals of this paper are to strengthen the
host’s position as an altruistic, yet fully autonomous entity
while at the same time removing any central authority and
authentication system. From a practical perspective these aims
may appear contradictory: in existing systems, the central
authority is the means to provide authentication. It is used
to authorize and legitimate the guest. If this central authority
is to be removed, how can the host be sure that it is (legally)
safe to forward a guest’s traffic?

Ideally, not one single packet generated by the guest should
be forwarded unless the host knows for sure that this packet
will not cause any harm. Of course, the host cannot definitely
verify whether a guest generated packet is malicious, thus
the intended recipient of the transmission should be asked.
If the recipient explicitly agrees to receive the guest’s traffic,
it takes over the risk from the host access point. And just
this is where we can tackle the problem: we replace the
centralized or central-CA-supported authentication process by
a fully decentralized and authority-free mechanism to obtain
approval from the guest’s intended communication partner. We
call this communication partner the remote station. In an AP
sharing scenario, it will be a trusted relay like the guest’s home
AP or a Sofanet-like tunnel endpoint.

In contrast to the host, the remote station does have a trust
relationship with the guest. This trust relationship allows the
guest to prove to the host that the remote station agrees to
receive his traffic. In this section, we will show how this



can be realized in a completely decentralized fashion, without
direct communication between guest and remote station before
their trust relationship is verified by the host. We call this
mechanism remote station approval.

A. Remote Station Approval

When arriving at a host access point, the guest first obtains
a local IP address (typically via DHCP [5]). The guest will
then inform the host access point about his intention to talk to
his remote station. Because there is no central trust entity, it is
not possible to tie the guest’s identity in any way to a specific
remote station; therefore, the guest could, in principle, name
any arbitrary Internet host1, claiming that it is “his” remote
station. Therefore, further steps are necessary to convince the
host access point that this guest can indeed be safely allowed
to talk to the named remote station.

The scenario we are confronted with is thus a rather un-
common one: we have two parties—the guest and the remote
station—that mutually trust each other, and whose aim is to
prove this to a “man in the middle”—the host—, without being
allowed to communicate directly. The key idea to solve this is
to let the remote station create and transmit a secret to both
host and guest in such a way that the host can verify that the
claimed trust relationship exists.

The protocol handshake is outlined in Figure 1. When a
guest G claims that he is allowed to talk to a specific remote
station R and issues a connection request, the host access
point H will contact R. This key request is tagged with a
randomly generated nonce2 n. As an expression of their trust
relationship, G and R share a symmetric secret key s. This
key is leveraged to prove the existence of the trust relationship
to the host. Upon receiving H’s request, R will generate
a temporary, symmetric encryption key t (i. e., essentially a
random number). This key is used only during this connection,
as shared secret between host (!) and guest. t is then encrypted
with the shared secret s, and the result s(t) and t itself as well
as the key request nonce n are returned to the host. While
it might seem awkward to pass t to the host in clear text,
note that the ability to intercept t already requires a situation
where the possession of t does not provide any advantages.
We discuss this in detail in Section IV.

H subsequently passes s(t) on to G while keeping the
unencrypted key t for himself. If the guest shares a trust
relationship with the remote station, he knows the shared key
s and can obtain t by decrypting s(t). Thus, H and G are
now in possession of the same shared secret t.

To verify this, packets from the guest to the remote station
are authenticated on the hop between guest and host, using
key t. The guest attaches a sequence number sn, used to
prevent replay attacks, and a hashed message authentication

1Note the double meaning of “host”: the term host or host access point
refers to the access point used by the guest to establish a connection, whereas
an Internet host is an arbitrary computer connected to the Internet.

2A random number used once. As TCP can be used as transport protocol
for the handshake between host and remote station, the initial TCP sequence
number already serves the purpose of this nonce [2].

Fig. 1. Remote station approval.

code (HMAC) [13] to each of his packets p, proving that he is
in possession of t and thus trusted by the remote station. Only
valid packets are forwarded to the remote station. Note that
this kind of packet authentication can easily be implemented
without modifications in the guest’s or host’s network stack
by setting up an authenticated tunnel between the guest and
the host using key t. We can even employ existing standard
VPN software for that purpose.

If there is no trust relationship between G and R—i. e., the
guest wrongly claimed that R is a trusted remote station—,
then there are two possible cases. Either R does participate
as a remote station in the community, but not for this guest,
or R is some other Internet host. In the former case, R will
understand H’s request and will provide a pair (t, s(t)). But
since G does not have the matching secret key s, he cannot
recover t and cannot generate correct HMACs. In the latter
case, R will probably not understand H’s request to provide
an authentication key pair; in any case, it will not provide a
valid response to H’s request. Consequently, H will not allow
G to send packets to R.

B. Internet Connectivity for the Guest

Note that, from the host’s perspective, the nature of the
traffic between the guest and a consenting remote station
does not matter at all. There is no fundamental difference
whether Web or VPN traffic or any other protocol is used
by the guest. Thus, from the starting point of a network with
altruistic hosts willing to make Internet access available to
strangers, we have arrived at an entirely new paradigm for
deciding whether forwarding a guest’s traffic is safe for the
host. Of course, at this point, the guest will only be allowed
to talk to the consenting remote station, but not to arbitrary
Internet hosts. However, combining remote station approval
with a mechanism that lets the guest establish an encrypted
tunnel to the remote station [12], [18], using it as a relay as
sketched in Figure 2, allows to provide full Internet access to
the guest, still without liability problems for the host: from
the perspective of any Internet host, a guest’s traffic originates
from its remote station. Unlike previous solutions, our system
does not require centrally managed identities to achieve that.



Fig. 2. VPN tunnel structure.

In the simplest case, the remote station will be the guest’s
own access point at home. Since this AP will typically have
a dynamically changing IP address, a dynamic DNS service
like DynDNS [6] can be used to locate such a remote station.

An apparent drawback of relaying all Internet traffic of
the guest via the remote station is that it implies triangle
routing, incurring, e. g., additional delays in the network. This,
however, seems to be a reasonable price for disburdening
the host from being held responsible for the traffic of its
guests. Furthermore, our experimental results presented later
on show that practical usability is virtually unaffected for most
applications. (As a side note: triangle routing does not always
decrease performance; in a different context it has been ob-
served that it can potentially even increase performance [19].)

As pointed out in [12], a Sofanet-like approach with
“rented” remote stations is an alternative to using the guest’s
own home network. This does not only eliminate the band-
width limitation caused by the guest’s own access point’s
upstream (which is assumed to be connected to the Internet
by an asymmetric broadband connection), but also tackles the
triangular routing problem in a simple, yet effective way:
since those “rented” remote access point are expected to
be available at different locations, the geographically closest
remote station can be used, which reduces the triangular
routing’s performance impact to a minimum.

Note that the system is not in any way limited to one
such remote station provider or to one specific dynamic DNS
service. Each mobile user is entirely free in his decision to
choose any provider on the market, or to stay fully independent
by setting up his own service. In all these cases, he can
use any host access point made available in the loose WiFi
sharing community. Therefore, even though dynamic DNS
services as well as commercially offered remote stations are
“infrastructure services”, neither of both constitutes a single
central instance in the network, neither is vital for the network
to operate, and neither requires that all network participants
(especially not the hosts) trust them.

Privacy and data security concerns are overcome, because
from the perspective of the host (and all other users of the host
access point) all traffic by the guest is encrypted. The remote
station serves as a trusted relay for the guest.

Moreover, many tunneling solutions that could be used by
a guest also easily provide guest mobility without additional
effort. For instance, OpenVPN [17], which we utilize in our
prototype implementation discussed later on, typically uses IP

addresses from a private subnet within the encrypted tunnel. In
combination with NAT this allows to keep, for instance, TCP
connections open when the IP address of the guest changes.
Therefore, if the guest moves on to another host access point,
he may simply move his existing tunnel to the new host access
point (after a new remote station approval handshake), thereby
keeping all his connections to Internet hosts open.

C. Guest Anonymity

A central problem in many existing access point sharing
approaches is a lack of anonymity and privacy of the guest.
In systems like FON [8], where authentication is performed
in a centralized way, the community operator can track and
locate user logins, allowing the operator to generate movement
profiles. This is surely not desirable. Since the solution with an
encrypted tunnel to a trusted relay solves the liability problem
for the generated traffic by making it appear to originate from
this relay, it is not necessary that the host learns the identity
of his guests. Therefore, ideally, no entity in the AP sharing
network except for the remote station should be able to infer
the guest’s identity.

Some existing systems, most notably [12], explicitly take
anonymity into consideration. However, while they hide the
real-world identity of the guest from the host, there is still
a guest-specific ID in the guest’s packets, making the guest
recognizable. But this should be avoided, too: for instance,
hosts might—alone or collaboratively with others—trace the
guest’s appearances and connection durations, analyze his
behavior (working hours, movement profiles, . . . ), combine
this with other information sources and may ultimately even
reveal the real-world identity of the guest.

In contrast to existing systems, the remote station approval
handshake does not reveal any persistent ID to the host access
point and can thus be extended such that it provides what
we call unrecognizable anonymity: the host is not able to
recognize a guest as having visited his access point before.
This notion is similar to long-term unlinkability defined—in a
somewhat different context—in [10], but we achieve it in user-
space. Achieving this level of anonymity is another central
difference to authentication schemes like those in GSM [7]
or Kerberos [16]: in GSM, the mobile station needs to be
identified by a unique ID seen by the base transceive station;
Kerberos could generally provide anonymous key material, but
only if direct communication between client and authenticating
server is allowed.

For the key material exchanged, the preservation of unrec-
ognizable anonymity is immediately clear as a new session
key t is generated upon each connection. However, a client
that strives for full anonymity must also take care of other
persistent attributes visible to the host. These include the MAC
address of the guest’s WiFi device and the address of the
remote station. The MAC address issue is relatively easy to
solve by randomly changing the WiFi adapter’s MAC address
before each connection [11]. The indirect identification via
the used remote station is more tricky to address. If it is
a Sofanet-like relay, many guests use the same relay, thus



obfuscating single guest identities. If the remote station is
located at the guest’s home and connected to the Internet via a
common broadband connection like DSL, the remote station’s
IP address will change often enough so that it becomes
inapplicable to recognize the guest over a longer time span.
However, a regularly changing IP address makes need for a
(dynamic) DNS name for the remote station to be reachable
by the client, which again could identify the client.

To alleviate this issue, multiple DNS names could be
registered per remote station, so that the guest can randomly
pick one. However, the problem could also be tackled in a
more fundamental way, by extending DNS with anonymization
techniques. These could encrypt the host name part of the DNS
request such that it changes with every request, so that only
the authoritative name server is able to recover it. To this end,
it is necessary to create an extension for DNS. The host name
part myname of a domain name myname.somedomain.org is
then not transmitted in cleartext, it is instead concatenated
with a random string, encrypted, and ASCII encoded. Such
a system, which would seamlessly integrate into existing
DNS, is currently subject of ongoing research and not further
described here due to space contraints.

IV. ATTACK SCENARIOS

In this section, we discuss a number of different attack sce-
narios that can be conceived in connection with the proposed
access point sharing system. To this end, it is examined what
can be achieved by attackers with different abilities.

It is very easy for an attacker to acquire access to the
wireless connection between host and guest. For example, such
an attacker can try to overtake the guest’s current identity
in the host’s wireless LAN to pretend that he is an already
authenticated guest. This could easily happen if the attacker
starts to use the guest’s IP and MAC address in the very
moment the guest disappears from the host (without correctly
closing the connection, e. g. by leaving the host’s radio range),
or the attacker may even be able to force the guest to
disconnect from the host. Furthermore, an attacker with access
to the wireless channel could also overhear the communication
on the wireless medium or connect to an arbitrary host and
request approval from an arbitrary remote station. In all these
cases, the attacker is faced with the problem that he must
correctly authenticate packets. Although the attacker may be
able to overhear s(t), this does not provide the corresponding
session key t necessary for this task.

We can also think of situations where an attacker can
successfully obtain t and convince a host to let his traffic pass
through. To this end, the adversary—in addition to his wireless
connection to the host—must be able to intercept traffic at
some point along the Internet route between the host access
point and the remote station. In fact, such a powerful attacker
could even mount a man-in-the-middle attack, by claiming
that any arbitrary machine X on the Internet is his remote
station, waiting for the key request from the host to X , and
then spoofing a reply with X’s sender address and the correct
nonce n from the intercepted key request. This would fool the

host and allow the attacker to send arbitrary traffic to X via
the host. However, if the attacker already does have the ability
to intercept Internet traffic between the host and X , and can
furthermore inject IP packets with a spoofed sender address,
he does not really gain anything from such an attack: for such
an attacker it would likewise be easy to attack X directly,
potentially even spoofing the source address of the attack to
make the packets look as if they originated from the host.

A different kind of attack could target the anonymity of
the guest. Although we removed every persistent identifier
to make the guest unrecognizable, its anonymity can still be
compromised on a physical level as proposed in [3]. However,
this weakness is caused by hardware characteristics and is
thus not solvable in software. Beyond that the host does not
pose any threat neither to guest nor remote station: they are
connected via an encrypted VPN tunnel, and the only way the
host could interfere with this connection is by interrupting it.
A host can also not initiate a VPN connection to a foreign
remote station, as he does not possess the required key.

V. IMPLEMENTATION & PERFORMANCE

We have implemented a prototype software for an AP
sharing community. It comprises the guest part, the host, and
the remote station server (in the typical form to be installed
on an access point).

In our implementation, the host’s access point initially
accepts associations from arriving guests and assigns them
private IP addresses via DHCP. In this phase, the host’s firewall
blocks all traffic between the wireless network and the Internet.
Guests may only issue connection requests to the host as
described in Section III-A. If successful, guest and host have
both obtained the same shared secret t. To connect to the
remote station, the guest will then consecutively set up two
tunnels A and B as outlined in Figure 2. First, an authenticated
(but unencrypted) tunnel A is established to the host using key
t, to allow the host to authenticate the guest’s packets. This
tunnel uses t to attach an HMAC to every packet sent, so
the host can verify that the packets originate from a guest in
possession of t. Upon establishment of this tunnel, the host
adjusts its firewall rules to let packets traverse if they arrive
via the guest-host tunnel A and are destined to the matching
remote station or vice-versa. Only authenticated traffic will
thus pass to the remote station. Through this first tunnel, the
guest will typically set up another, encrypted and authenticated
tunnel B to the remote station, which can then be used for
accessing the Internet.

Both tunnels are implemented with OpenVPN [17],
a platform-independent userspace VPN daemon based on
TUN/TAP virtual network devices. All that is needed in terms
of additional software for our AP sharing system are therefore
user-space applications performing the remote station approval
handshake; after a successful handshake, this software sets up
the firewall rules at the host, fires up OpenVPN for the tunnels
A and B, and provides all OpenVPN instances with the correct
keys. This simplicity makes the system both easy to implement
and robust.



TABLE I
LATENCY COMPARISON.

RTT in ms Attempt 1 Attempt 2 Attempt 3
Guest to Host 0.3 0.3 0.3
Host to Remote Station 35.2 35.5 35.4
Remote Station to 28.0 27.9 30.0
www.google.de
Guest via Host and Remote 65.9 73.9 77.3
Station to www.google.de
Overhead 2.3 10.3 11.6

As the proposed scheme requires triangle routing via the
remote station, we were interested in the performance degra-
dation imposed by this indirection. To measure this, we have
created the setup shown in Figure 2 in a city-wide deployment
with this software. The host is located in our institute’s
laboratory and the remote station was installed at another
location and was connected to the Internet via a private
DSL link (6 Mbit/s downlink, 256 kbit/s uplink). In a first
step, we examined unencrypted direct connections between
the single entities. We concentrate on the round trip times
(RTT) here. The results can be found in Table I in lines 2–
4; they are averages over 100 samples each. The latencies
are, as expected, very small for the local connection and a
few tens of milliseconds over the wireline links. The line
“Guest ... to www.google.de” then shows the RTT of the VPN-
tunneled connection from guest via host and remote station
to www.google.de, which is used in the role of an arbitrary
Internet host. The “Overhead” line shows the difference be-
tween this tunneled connection and the sum of RTTs of the
single hops, indicating that the overhead caused by routing and
cryptographic operations in the triangular connection is not a
bottleneck. As can be seen, routing traffic via a remote station
deteriorates the service not further than to the expected extent
due to the triangle routing: the latencies essentially add.

So, even if the guest’s traffic is routed via a remote station
located on another continent, we can expect this to increase
the one-way latency by typically no more than 50-100 ms3.
If we now consider the worst case of an intercontinental
traveller who accesses a server right at her current location
with triangle routing forth and back over the intercontinental
link, the total increase in latency will not exceed 200 ms. Even
in this exceptional situation, the performance would suffice for
many applications—not only for Web and email, but also, for
instance, for VoIP calls.

With respect to the bandwidth available to the guest, the
impact of triangle routing is similar: it is constrained by the
remote station’s uplink. The header information of 69 bytes
added by OpenVPN (for VPN, UDP, and IP headers) does
not affect the bandwidth significantly and may even be com-
pensated by OpenVPN’s LZO compression. Already with the
current asymmetric Internet connections, the available band-
width will be adequate for the vast majority of applications.
Note also that latency and bandwidth can be improved further
with Sofanet-like remote stations closer to the current host.

350 ms: our own measurements of a Europe/US link; 100 ms: results
reported in [14].

VI. CONCLUSIONS & FUTURE WORK

In this paper, we presented the first WiFi access point
sharing approach that is not built around a central authority.
This step is motivated by the insight that such a central entity
must be trusted by all parties, which may deter potential
participants. We showed how an access point that forwards
traffic for other users can altruistically ask for approval from
the user’s desired communication partner. This is safe for
the access point operator, without the need for any central
instance for authentication. The approach also has a number
of other desirable features, amongst them a much higher level
of anonymity for the guest than in existing systems.

The next step is to evaluate the approach in a fully-fledged
field test. Due to the sole usage of symmetric cryptography,
already entry-level devices like the Linksys WRT54G router
have sufficient computational capabilities to support the nec-
essary operations, first measurements on this device show that
the whole remote station approval handshake can be performed
in 2 seconds (including network latencies). We will deploy
a larger number of these devices in the city area to assess
the performance. Furthermore, we are working on the DNS
anonymization outlined in Section III-C and will soon provide
an open source version of the above described software.

REFERENCES

[1] WebSphere and Domino single sign-on.
http://www.ibm.com/developerworks/ibm/library/it-0101art2/.

[2] S. Bellovin. Defending Against Sequence Number Attacks. RFC 1948
(Informational), May 1996.

[3] V. Brik, S. Banerjee, M. Gruteser, and S. Oh. Wireless device identifi-
cation with radiometric signatures. In MobiCom ’08, Sept. 2008.

[4] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-
generation onion router. In USENIX Security ’04, Aug. 2004.

[5] R. Droms. Dynamic Host Configuration Protocol. RFC 2131 (Draft
Standard), Mar. 1997. Updated by RFCs 3396, 4361.

[6] DynDNS: Dynamic DNS. http://www.dyndns.com/services/dns/dyndns/.
[7] ETSI. GSM Recommendation 03.20. Technical Specification.
[8] FON. http://www.fon.com/.
[9] Map of available FON access points. http://maps.fon.com/.

[10] B. Greenstein, D. Mccoy, J. Pang, T. Kohno, S. Seshan, and D. Wetherall.
Improving wireless privacy with an identifier-free link layer protocol. In
MobiSys ’08, pages 40–53, June 2008.

[11] M. Gruteser and D. Grunwald. Enhancing location privacy in wireless
LAN through disposable interface identifiers: a quantitative analysis.
Mobile Networks and Applications, 10(3):315–325, 2005.

[12] T. Heer, S. Götz, E. Weingärtner, and K. Wehrle. Secure Wi-Fi sharing
on global scales. In ICT ’08, June 2008.

[13] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for
Message Authentication. RFC 2104 (Informational), Feb. 1997.

[14] T. Leighton. Improving Performance on the Internet. Communications
of the ACM, 52(2):44–51, Feb. 2009.

[15] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson. Host Identity
Protocol. RFC 5201 (Experimental), Apr. 2008.

[16] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The Kerberos Network
Authentication Service (V5). RFC 4120 (Proposed Standard), July 2005.
Updated by RFCs 4537, 5021.

[17] OpenVPN. http://www.openvpn.net.
[18] N. Sastry, J. Crowcroft, and K. Sollins. Architecting citywide ubiquitous

Wi-Fi access. In HotNets ’07, Nov. 2007.
[19] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson. The end-

to-end effects of Internet path selection. ACM SIGCOMM Computer
Communication Review, 29(4):289–299, 1999.

[20] Sofanet. http://www.sofanet.de/.
[21] N. A. Thompson, Z. Yin, H. Luo, P. Zerfos, and J. P. Singh. Extended

abstract: Authentication on the edge – distributed authentication for a
global open Wi-Fi network. In MobiCom ’07, Sept. 2007.

http://www.ibm.com/developerworks/ibm/library/it-0101art2/
http://www.dyndns.com/services/dns/dyndns/
http://www.fon.com/
http://maps.fon.com/
http://www.openvpn.net
http://www.sofanet.de/

	I Introduction
	II Related Work
	III Approach
	III-A Remote Station Approval
	III-B Internet Connectivity for the Guest
	III-C Guest Anonymity

	IV Attack Scenarios
	V Implementation & Performance
	VI Conclusions & Future Work
	References

