
Modular Network Trace Analysis

Wolfgang Kiess Nadine Chmill Ulrich Wittelsbürger
Martin Mauve

Computer Networks Research Group
University of Düsseldorf, Germany

{kiess, chmill, wittelsbuerger, mauve}@cs.uni-duesseldorf.de

ABSTRACT
In this paper we present EDAT, a tool designed for the anal-
ysis of trace files from network simulations and experiments.
The EDAT framework encapsulates analysis steps in exten-
sible operators. These can be arbitrarily combined to a flow-
based analysis. The core of EDAT is a library of these oper-
ators implemented as classes in the scripting language Ruby.
For ease of use, these can be visually assembled by means
of a graphical user interface that also allows to configure
and execute these operators. The results can be plotted in
graphs that are directly usable in scientific publications.

Categories and Subject Descriptors
C.2 [Network Architecture and Design]: Miscellaneous;
I.6.6 [Simulation Output Analysis]

General Terms
Experimentation, Measurement, Performance, Verification

Keywords
Trace file analysis, wireless networks, ad hoc networks, ex-
periments, simulation, visualization

1. INTRODUCTION
After a real-world experiment or a simulation is com-

pleted, it has to be interpreted based on the recorded trace
files. The result of such an analysis are graphs usable e.g.
for scientific publications. As an example for this process,
consider the calculation of the packet delivery ratio between
two stations A and B of a protocol X based on data from a
real experiment. For this, the information in the two packet
traces has to be processed by: 1) parsing the traces, 2) re-
moving packets not sent by A or not belonging to protocol
X, 3) counting the number of packets for each time interval
in both files, 4) dividing the matching values through each
other, and 5) producing a plot of these values.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PE-WASUN’08, October 27–28, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-236-8/08/10 ...$5.00.

Obviously this requires a significant, custom-made pro-
cessing of the input data1. Therefore, such analyses are
most often performed with custom-made software tools writ-
ten in scripting languages like Perl, Python, Sed, or Ruby.
When such a program is built from scratch, it can be crafted
for the current analysis. However, these programs are only
a by-product of an examination and their creation can be
time consuming. As a result, such analysis programs are
often “quick hacks” and lack a good software design, thus
reducing maintainability and reusability. Furthermore, ev-
ery small change in the analysis process requires the manual
adaptation of the program source code and the subsequent
rerunning of the whole analysis.

After examining our own programs written over the last
years for the analysis of simulations and real experiments,
it became obvious that a lot of simple as well as complex
operations recur in modified form in nearly each program.
Therefore, we have developed the Extensible Data Analysis
Toolkit (EDAT) to encapsulate and reuse these recurring
functionalities in so-called operators. EDAT treats the data
to be analyzed as a flow that runs through a chain of con-
catenated operators. Each operator in the chain modifies
the incoming data stream and hands the result over to the
next operator. EDAT itself provides more than 40 operators
and can be easily extended within a few minutes by either
implementing new operator classes or combining existing op-
erators to more complex ones. The tool can produce graphs
in postscript-format, a functionality already used in a num-
ber of our own publications [1–3]. For fast analysis develop-
ment, EDAT features a graphical user interface to combine
operators by simple drag-and-drop. EDAT is designed for
1) the rapid development of analyses with 2) detailed con-
trol over the whole process of data manipulation with 3) the
same power as directly programming it in a scripting lan-
guage. EDAT has been created for the analysis of network
simulations and experiments and the flow-based, sequential
processing approach is especially suited to examine packet
traces. However, this does not limit the tool to such analy-
ses. As only a certain number of the provided operators (e.g.,
the parsers) is network-specific and flow-based processing is
a general, powerful principle, the tool can be easily extended
to also support non-network-specific analyses.

This paper is structured as follows. In Section 2 we review
the related work. Section 3 then explains concept, architec-
ture, and user interface of EDAT. Advanced features like
caching are presented in Section 4 and the usage of EDAT

1According to our own experiences, simulation and experi-
mental data can be treated similarly.

for the analysis outlined in the introduction is presented in
Section 5. The conclusion can be found in Section 6.

2. RELATED WORK
The tasks in the post-experiment analysis based on re-

corded data can be divided into parsing, processing, data
modeling/mining, and visualization. After extracting the
raw data from a collection of files in the parsing step, this
data is processed by combining, filtering, and transforming
the information. Data modeling/mining is the application
of statistical methods or clustering techniques to discover
patterns and dependencies in the data, and visualization
consists of producing a two or three-dimensional graphical
representation of the result.

The processing on a per-packet basis is supported by net-
work tracers like tcpdump [4] or wireshark [5] in an offline-
mode. In this mode, packets in capture files can be filtered,
and these tools also provide some basic manipulation of the
files’ content like cropping or altering packet timestamps.
If the data has been parsed and inserted into a relational
database, processing can also be performed by means of SQL
with operations like joining or averaging. For more complex
processing, the network data mining tool CoMo [6] can be
used. CoMo manages the recording and storage of raw cap-
ture data as a data flow and provides callbacks in this flow.
Via these callbacks, the user can insert custom functions
written in C to implement the analysis.

The idea to combine generic elements to a processing
pipeline can already be found in tools like the Unix shell bash
or in dataflow programming languages. Here, we concen-
trate on tools that use this approach mainly for visualization
or data mining. Huginn [7], a 3D visualizer for simulation
trace files, allows to combine a predefined set of processing
components within a fixed pipeline. The resulting informa-
tion is used to alter the properties of the displayed network
nodes. In the data mining tool KNIME [8], the necessary
statistical calculations are created by graphically combining
processing components. KNIME also supports simple (pre-
)processing of the input data, e.g., via filtering or sorting.
For more complex processing however, KNIME would have
to be extended with new components. As their creation
requires a lot of work [8] this may be too time consuming
for an analysis process requiring such extensions on a regu-
lar basis. Such custom extensions would also be necessary
for mathematical computation frameworks like Matlab [9]
or Maple [10] which are designed for matrix manipulation
or symbolic and numerical computations. OpenDX [11] is a
data visualization tool for 2D or 3D plotting and also allows
the production of animations. It provides a visual program
editor to configure the plotting with predefined, connectable
components. LabView [12] is a commercial visual program-
ming language mainly used to build measurement and con-
trol applications. The analyses provided by LabView con-
centrate on the description of physical phenomena, e.g., by
means of signal or image processing or wavelet transform.

Instead of performing custom analyses, it is also possi-
ble to use standard analysis. One example here are the
metrics, e.g. for connectivity, loss, or delay defined by the
IETF IPPM WG [13]. Another example is the trace file an-
alyzer TraceGraph [14] that defines over 200 different stan-
dard evaluations for files produced by the network simulator
ns-2. If the data has already been processed, plotting can
be performed with gnuplot [15]. It requires an input file in

a table style format and some configuration parameters and
is able to plot the corresponding graph in a large number of
output formats.

3. PHILOSOPHY, ARCHITECTURE AND
IMPLEMENTATION

An examination of custom-made, handwritten programs
for the analysis of network simulations and traces from real
experiments shows that these programs share a lot of similar
functionality. Instead of implementing each of these recur-
ring operations from scratch upon design of a new analy-
sis, EDAT provides a framework to encapsulate them in so
called operators. These operators can be combined to form
a data processing pipeline where the data is handed from
one processing element to the next and successively trans-
formed in each step. To adapt to the processing needs, each
operator can be configured by means of certain parameters.
With this approach, an analysis is a concatenated sequence
of operations on the input data.

3.1 Graphical User Interface
As shown in Figure 1, a data processing pipeline is created

with the EDAT graphical user interface (GUI). The GUI
provides boxes as visual representations of the operators that
can be added and combined by simple drag and drop. The
user interface is divided into four main areas, the operator
library on the left, the workbench in the center, the operator
inspector on the right and a result and feedback view at the
bottom. Once an operator is on the workbench, selecting it
shows its current configuration in the inspector. To integrate
an operator into the analysis, its input and output ports
must be connected to other operators. Existing connections
are represented by lines drawn from an output port at the
bottom of one box to an input port at the top of another box.
Each box provides a context menu to delete the operator or
view and modify the operator’s source code. The “execute”
entry in this menu triggers the processing of this operator.
The result is then shown in the text box at the bottom,
allowing for an inspection of the data in the flow.

A noteworthy feature of the EDAT GUI is operator folding
that allows to create a new operator by combining other
operators. As a simple example, imagine that an analysis of
all packets with a size between 500 and 1 000 bytes should
be performed. To extract these packets, two consecutive
filters can be inserted in the data flow, the first filtering
out all packets below 500 bytes while the second discards all
packets above 1 000 bytes. However, if such a range filter is
needed in another analysis, the same two filters would have
to be configured once again. Instead, these filters can be
combined to a new operator: once they have been selected
on the workbench, their context menus provide the “Create
compound operator” option. This inserts a new operator
into the library that internally uses the two filters to perform
its tasks. In order to create a generic range filter, special tags
can be used as configuration parameters. Each of these tags
is used as argument of the newly created range filter and
handed over as configuration option to the internal filter
operators.

3.2 Operators and their Data Format
Under the hood, an EDAT operator is implemented as

class in the scripting language Ruby. The input ports are

Figure 1: Screenshot of the EDAT GUI. The analysis shown on the workbench produces a plot of the number
of packets a node has sent per second.

realized as references to other operator objects, and the re-
maining configuration is performed via additional construc-
tor parameters. Between operators, data is exchanged in
generic data containers. The format of these containers is
related to the tables of relational databases but allows for
“rows”with arbitrary structure. To this end, each row is im-
plemented as an associative array of key-value pairs, and all
rows together are stored in an array that preserves the input
order. The processing in an operator is performed in three
steps: 1) get the container with the output of the preceding
operator; 2) modify the data and put the result in another
container; 3) return the result container to the subsequent
operator.

This mechanism is best explained by means of an example:
consider an experiment where packets are transmitted over
a network with lossy links. The goal of the analysis is to
calculate the length of the occurring error bursts based on
the receiver packet trace. The corresponding EDAT parser
for this trace format produces a data container in which each
row corresponds to one packet. The different header fields
are stored as key-value pairs. A row from this container
looks as follows:

{"ip_src"=>192.168.5.50,

"time"=>Wed Jul 25 09:03:02 +0200 2007,

"ip_dst"=>192.168.5.255, "id"=>46, ...}

To compute the length of the error bursts, we use the
CalculateInterrowDifference operator. It calculates the
difference of the same field between each consecutive pair of
rows. The idea is to compute this for the packet-id field: if
the id of consecutive packets (rows) differs by n, n−1 pack-
ets are missing. The processing is performed in the process

method: by calling the getResult method of the preceding
operator,this operators’ process method is triggered that
returns the input data container. The calculation of the dif-
ference is performed in a loop over all rows in this container.
The result is stored in a new container and returned at the
end of the method.

With the correct configuration, the operator Calculate-

InterrowDifference transforms the input data into

{"ip_src"=>192.168.5.50, ...,

"id"=>46, "id_delta"=>36, ...}

{"ip_src"=>192.168.5.50, ...,

"id"=>54, "id_delta"=>8, ...}

where the new field id_delta contains the difference be-
tween consecutive ids. In the current example this difference
is eight, thus a total of seven packets have been lost between
these two successively recorded packets.

3.3 Creating an Analysis
From an implementation point of view, an analysis is a

concatenation of operator instances in a stand-alone Ruby
script. This script consists of commands to instantiate and
configure the different operators and a call to the last oper-
ators’ getResult method. If the GUI needs to execute an
analysis, it generates the corresponding script and then ex-
ecutes it in a separate process. Due to this architecture, an
analysis can also be invoked from shell or Ruby scripts to
perform batch processing, or it can even be integrated into
other programs.

3.4 Example Operators
Up to now, the general architecture of EDAT and the idea

behind the operator concept have been described. In order
to get an impression of the capabilities of this concept as well
as on the different operations that are already supported,
this section presents some of the existing operators.

In our experiments, it was often necessary to partition
the input data into subsets and perform a certain operation
on each subset. An example is the calculation of delivery
ratio per second, where the packets sent in a certain second
are the subset and the operation is counting these packets.
This operation is implemented by the GroupBy operator that
is inspired by the group by clause of SQL. It builds such
subsets and executes an operator on each subset. However,

it is not limited to simple aggregate functions but can also
apply any operator to the data in the groups. Similar to
GroupBy, the Join operator is inspired by the corresponding
SQL expression. Join combines or matches the input from
two flows to one flow based on a configurable key that serves
as join-criterion. The problem of duplicate keys that occurs
when two rows of data with the same content are joined is
solved by appending “1” or “2” as a suffix to each key.

In order to interact with an SQLite database, the oper-
ator SimpleSQL can be used. It is configured with an SQL
statement and returns the result in the well-known form of
an array of hashes. Furthermore, there also exists an Insert

operator to load the data in the flow into an SQL table. For
this, the structure of the flow is analyzed and an appropri-
ate table is created, then the single lines are inserted into
this table. A concatenation of these two operators even al-
lows arbitrary SQL statements to be executed on the data
in the flow: Insert integrates the data in the database and
SimpleSQL executes the target query.

The important task of visualizing analysis results is per-
formed by the PlotAll operator. It is designed to produce
two dimensional plots with one or more curves. To do this,
the operator assumes that each row in the input flow con-
tains the data for one point on the x-axis. The field rep-
resenting this point can be configured as one of the input
parameters. All other values in a row are plotted as data
points that belong to the configured x-value. The plotting
itself is performed by gnuplot: the preprocessed data is writ-
ten to a file in appropriate format and then an instance of
gnuplot is created for plotting. As the gnuplot files as well as
the resulting postscript graphs are stored in the filesystem,
PlotAll implicitly creates a chronologically sorted archive
of all plots.

4. ADVANCED FEATURES

4.1 Automated Caching
When analyzing data and working with it, a user often

just changes the parameter of one operator (e.g., the scope
of a filter) and re-executes the whole analysis to examine
the influence on the result. Furthermore, most analyses are
developed in a step-by-step process in which the user adds
a new operator to the end of the current analysis-flow and
then re-executes it to examine the output. In both cases,
the same calculations are repeated over and over again, a
rather time consuming task for large amounts of data.

To cope with this, EDAT supports the caching of previ-
ous computations. This is implemented in the base class
Operator from which all other operators are derived. Thus,
newly created operators automatically inherit this feature.
For the caching, the result of a computation is serialized and
written to a file-system directory. If the configuration of an
operator has changed, a recalculation is necessary, other-
wise the result can be loaded from the cache. To determine
whether a recalculation is necessary, EDAT uses a finger-
print of the operators’ configuration that changes as soon
as the configuration parameters change. Depending on their
type, these parameters are treated differently when included
in the fingerprint: 1) in order to determine whether the in-
put provided by another operator has changed, its finger-
print is used. 2) If the parameter is a file, the modifica-
tion timestamp is considered. 3) Parameters like strings or
numbers can be directly included. All this different infor-

mation is then concatenated. In order to avoid that the
fingerprint becomes too large due to these concatenations,
an md5sum [16] over all these values then represents the
operators’ fingerprint2.

4.2 Executable Pieces of Code
As EDAT is implemented in a scripting language, it is pos-

sible to configure operators with pieces of code that are eval-
uated and executed at runtime. In contrast to a compiled
language like C/C++ or Java in which the operations must
be specified at compile time, this allows for more generic
operators. With EDAT, the data can be modified in ways
that would normally require a significant amount of man-
ual programming. For example, in one of our experiments
packets of varying size have been sent over a multihop net-
work. To allow for a unique identification as a packet travels
from node to node, each packet carries a consecutive num-
ber. This number is wrapped in a UDP packet that is itself
wrapped in an IP packet. Extracting this number requires
to take the payload of the IP packet (i.e. the UDP packet),
strip the eight UDP header bytes, and convert the rest to an
integer. For this task, the operator ApplyOperation is con-
figured with an executable piece of code as third argument:

ApplyOperation.new(output, "ip_data",

"[8..-1].to_i()")

The code snipped from ApplyOperation that performs the
modifications in the process method looks as follows:

lines.each do |line|

line[@key] = eval("line[@key]" + @operation)

result.push(line)

end

The eval method provided by Ruby evaluates the expres-
sion that it gets as argument. Instance variables start in
Ruby with the at sign “@”. In the current example @key

is the second and @operation the third argument of the
ApplyOperation constructor. Due to the above configura-
tion, the performed operation is thus

line[ip_data] = (line[ip_data])[8..-1].to_i()

Thereby the bytes starting at position eight until the end
are extracted from the payload and the “to integer” method
is applied to the resulting substring. The configuration of
this transformation via the GUI is shown in Figure 2. After
the data flow has passed the corresponding operator, the
ip_data field contains the decoded packet sequence number
instead of the IP payload.

5. CASE STUDY
In the introduction, the calculation and plotting of deliv-

ery ratio has been used as an example for a standard anal-
ysis. How this analysis is conducted with EDAT will be
demonstrated with data from one of our experiments. Here,
we use the libpcap trace files from two laptops equipped

2Note that a harmful fingerprint collision is very unlikely.
For this to happen, 1) an md5sum collision has to occur and
2) the wrongly loaded result must not lead to a crash of the
analysis. However, to avoid this, caching can be switched
off for the final analysis or the “detect fingerprint collision”
option that verifies the fingerprint can be activated.

Figure 2: Configuration of ApplyOperation.

with 802.11b network interfaces. The first laptop broad-
casted 80 packets/s and the second recorded these packets
with tcpdump. A screenshot of this analysis on the EDAT
workbench can be found in Figure 3.

The first half of the analysis shown in Figure 3(a) starts
with parsing the files and filtering the packets according to
the correct sender address. In the GroupBy operator, the
packets are first sorted according to their timestamps in 5-
second buckets, followed by counting the number of packets
in these buckets. After the results are extracted from the
special “GroupBy” data structure, they are joined accord-
ing to their bucket id. The data flow now contains lines
of the form [value_input1 = 416, value_input2 = 220,

time_i = 1185347050] where the first value represents the
sent packets, the second the received packets, and the third
the timestamp of the bucket. The second half of the pro-
cessing can now be found in Figure 3(b). After the ratio
between the two input-values has been added as additional
field to each line of the flow, only the fields required for the
plot are extracted. The following operator sorts the rows
according to their timestamp which is then normalized to
start at time zero. The result of this analysis as it is plotted
when executing PlotAll can be found in Figure 4.

To get an impression of the impact of caching, the run-
time of the above analysis has been measured and averaged
over 100 repetitions. Without caching, analyzing the 14 000
packets in the two files took 3.2 s on a 2GHz Opteron. If
caching is activated, the runtime with empty cache is 5.5 s
as new results must be written to the cache files. This im-
proves if cached data can be reused, e.g., if the bucket size in
the GroupBy-operators is changed from five to ten seconds.
Here, the results of the two previous Filter-operators are
reused, resulting in a duration of 2.5 s. This shows the trade-
off: although twice as fast as the analysis with empty cache,
the improvement is only moderate compared to the execu-
tion without caching. This changes if more of the previous
calculations can be reused, e.g., if the delta calculation in
the first operator of Figure 3(b) is changed to a subtraction
instead of a division. Here the analysis only takes 0.02 s.

6. CONCLUSIONS
In this paper, we have presented the extensible data anal-

ysis toolkit EDAT that is designed for the evaluation of net-

(a) Part 1 (b) Part 2

Figure 3: Example analysis for plotting the through-
put between two nodes.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 20 40 60 80 100 120 140

fr
a

c
ti
o

n
 o

f
p

a
c
k
e

ts
 r

e
c
e

iv
e

d

time absolute [s]

 id: 1192795866

delta

Figure 4: Graph resulting from the analysis shown
in Figure 3.

work simulations and experiments. It follows a flow-based
approach where modular operators are combined to form
the analysis. The tool is easily extensible, comes with a
rich set of operators, and has already been used to produce
the graphics for a number of our own scientific publications.
Although extending the tools’ capabilities requires some pro-
gramming knowledge, analyses that use existing components
can be created by non-programmers with its graphical user
interface. EDAT eases the task of evaluating network simu-
lations and experiments, allowing researchers to concentrate
on the original problems rather than on the development of
tools to analyze them.

The extensible data analysis toolkit EDAT is available
on www.cn.uni-duesseldorf.de/projects/EDAT under the
terms of the GPL.

7. REFERENCES
[1] W. Kiess, A. Tarp, and M. Mauve, “Real-World

Evaluation of Ring Flooding,” Mobile Computing and
Communications Review, vol. 10, no. 4, pp. 11–12,
Oct. 2006.

[2] W. Kiess, S. Zalewski, and M. Mauve, “Improving
System Clock Precision With NTP Offline Skew
Correction,” in MedHocNet ’07: Proceedings of the 6th
Annual Mediterranean Ad Hoc Networking Workshop,
June 2007, pp. 159–164.

[3] B. Scheuermann, W. Kiess, M. Roos, F. Jarre, and
M. Mauve, “On the time synchronization of
distributed log files in networks with local broadcast
media,” IEEE/ACM Transactions on Networking,
2008, accepted.

[4] “Tcpdump: a tool for network monitoring,”
http://www.tcpdump.org.

[5] “The wireshark network protocol analyzer,”
http://www.wireshark.org/.

[6] G. Iannaccone, “Fast prototyping of network data
mining applications,” in PAM ’06: Proceedings of the
Passive and Active Measurement Conference, Mar.
2006.

[7] B. Scheuermann, H. Füßler, M. Transier, M. Busse,
M. Mauve, and W. Effelsberg, “Huginn: A 3D
visualizer for wireless ns-2 traces,” in MSWiM ’05:
Proceedings of the 8th ACM International Symposium
on Modeling, Analysis and Simulation of Wireless and
Mobile Systems, Oct. 2005, pp. 143–150.

[8] “KNIME, The Konstanz Information Miner,”
http://www.knime.org/.

[9] “Matlab,”
http://www.mathworks.com/products/matlab/.

[10] “Maple,” http://www.maplesoft.com/.

[11] “OpenDX - Open Data Explorer,”
http://www.opendx.org/.

[12] “LabVIEW for Measurement and Data Analysis,”
http://zone.ni.com/devzone/cda/tut/p/id/3566.

[13] “IETF IP Performance Metrics Working Group,”
http://www.ietf.org/html.charters/ippm-charter.html.

[14] “Trace graph - Network Simulator NS-2 trace files
analyser,” http://www.tracegraph.com/.

[15] “Gnuplot, a portable command-line driven interactive
data and function plotting utility,”
http://www.gnuplot.info/.

[16] R. Rivest, “The MD5 Message-Digest Algorithm,”
RFC 1321 (Informational), Apr. 1992,
http://www.ietf.org/rfc/rfc1321.txt.

www.cn.uni-duesseldorf.de/projects/EDAT
http://www.tcpdump.org
http://www.wireshark.org/
http://www.knime.org/
http://www.mathworks.com/products/matlab/
http://www.maplesoft.com/
http://www.opendx.org/
http://zone.ni.com/devzone/cda/tut/p/id/3566
http://www.ietf.org/html.charters/ippm-charter.html
http://www.tracegraph.com/
http://www.gnuplot.info/
http://www.ietf.org/rfc/rfc1321.txt

	1 Introduction
	2 Related Work
	3 Philosophy, Architecture and Implementation
	3.1 Graphical User Interface
	3.2 Operators and their Data Format
	3.3 Creating an Analysis
	3.4 Example Operators

	4 Advanced Features
	4.1 Automated Caching
	4.2 Executable Pieces of Code

	5 Case Study
	6 Conclusions
	7 References

