
Thoughts on Mobile Ad-hoc Network Testbeds

Wolfgang Kieß, Stephan Zalewski, Andreas Tarp, Martin Mauve
Heinrich-Heine University Düsseldorf
{kiess,mauve}@cs.uni-duesseldorf.de

{stephan.zalewski, andreas.tarp}@uni-duesseldorf.de

Abstract

Currently, several research groups seek to develop
appropriate tools and methodologies for real-world
experiments on mobile ad-hoc networks. We argue that
this should be done as a community effort rather than
as independent projects. Furthermore we present our
view on the functionality a good testbed should pro-
vide based on reports from other research groups as
well as on our own experiences. This paper aims at
stimulating a discussion, it is not meant to be a com-
prehensive specification of requirements or a detailed
workplan.

1 Introduction

The two most common instruments used to evalu-
ate algorithms for mobile ad-hoc networks (MANETs)
are theoretical analysis and network simulation. Theo-
retical analysis provides fundamental insights into the
characteristics of the investigated approaches, simula-
tion enables their exploration in a dynamic environ-
ment. Both methods require a significant level of ab-
straction to reduce the real-world complexity of mo-
bility, radio propagation, and hardware. As it has been
discussed in [13], the direct transfer of findings from
simulations to real-world systems is thus not advis-
able. As a consequence, theoretical analysis and sim-
ulation should be complemented by real-world exper-
iments.

A surprisingly large number of these real-world ex-
periments have already been conducted, leading to re-
sults and insights that were not foreseen in simula-
tion or theoretical analysis. Most of the experimenters
also had to face unforeseen difficulties. Nodes failed

during experiments which was only discovered after
the experiment, results were difficult to reproduce and
therefore work was unnecessarily duplicated by multi-
ple work groups or the network showed unexplainable
behavior. We believe that these problems can be alle-
viated if future experiments satisfy three key require-
ments of scientific experimentation:

• Reproducibility. Independent research groups
must be able to reproduce the results of an experi-
ment. For mobile ad-hoc networks, reproducibil-
ity is a significant challenge due to the complex
impact of radio propagation and node mobility on
the results of an experiment.

• Comprehension. A scientist conducting an ex-
periment must be able to access all relevant infor-
mation to comprehend and explain the results of
the experiment. There is a need for tools that col-
lect information on different layers and combine
this information to allow a detailed analysis.

• Correctness. Any experiment may suffer from
broken tools, errors with the setup and problems
when conducting the experiment. While repro-
ducibility and comprehension will most likely re-
veal these problems, it is vital to the efficiency of
a researcher to be able to verify whether any given
experiment has produced valid results. This can
be supported by an established methodology and
a selection of appropriate tools.

To address these issues, there are efforts under-
way that aim at the development of methodology and
testbeds to support systematic experiments in mobile
ad-hoc networks. One early example is the APE



project [14], introducing, among other things, virtual
metrics for node distance in order to increase repro-
ducibility. Several other testbeds are currently being
worked on [19, 8]. All these efforts provide very valu-
able individual contributions. However, it is our belief
that a community effort is necessary to establish real-
world experiments as the third standard instrument to
evaluate algorithms and protocols for MANETs. This
effort must include an analysis of the functionality ex-
pected from a “perfect” testbed as well as a discussion
of the methodology for conducting experiments. Ide-
ally this will lead to the design of a common archi-
tecture where the individual research groups can con-
tribute reusable building blocks for a testbed that is
supported by the ad-hoc networking community.

This paper is meant as our initial contribution to this
effort. It describes work in progress not final results. In
Section Two we present our view on a perfect testbed
for mobile ad-hoc networks. Section Three describes
some of our experiences with experimenting and Sec-
tion Four concludes the paper.

2 The Perfect Testbed

In the following we assume that a testbed consists
of two key elements: a number of physical devices
(nodes) which may be moved around individually and
the software to support and conduct the experiments.

In general an experiment for MANETs can be di-
vided in several phases: implementation, experiment
specification, node configuration, setup verification,
execution, and analysis. For each of these phases we
discuss how an ideal testbed could support them and
present the current state of the art in this area.

2.1 Implementation

The first phase of an experiment is the implemen-
tation of the algorithm to be tested. A good testbed
will support this phase in three ways: it will 1) help
to minimize the work required for the implementation;
2) seek to reduce implementation errors; 3) encourage
interoperability between algorithms implemented and
evaluated by distinct research groups.

As a lot of algorithms will be initially analyzed by
means of simulation, reusing the simulation code in-
stead of reimplementing it eases the workload and re-

duces the potential for errors. Thus tools allowing to
use the same code both for simulation and the real ex-
periment are a vital component of a MANET testbed.
Additionally, the testbed should support the imple-
mentation by providing well tested libraries for com-
mon MANET functionalities such as beaconing or for
tasks such as tracing.

Encouraging interoperability is mainly a matter of
interfaces and methodology. A good testbed will spec-
ify concise interfaces and best-practice methods for in-
tegrating new functionality such that it can be reused
by other research groups. It will also support interop-
erability through a clean and simple architecture.

The concept of reusing simulation code for real-
world experiments has already been utilized in some
projects, namely in SURAN [1], WINGS [5] and the
routing protocol evaluation presented in [23]. A par-
ticularly promising approach seems to be nsclick [16]
which allows to run a click router [12] inside the
ns-2 [17] network simulator.

There also exist libraries supporting the implemen-
tation of algorithms for ad-hoc networks. One class are
libraries such as the PICA API [2], designed to provide
platform-independency for the implementations using
them. Other libraries offer additional functionality like
neighbor discovery, flooding or packet buffering dur-
ing route discovery. One example is the ad-hoc support
library [11].

2.2 Experiment Specification

After the implementation is complete, the experi-
menter specifies the scenario used for the evaluation.
In order to allow other research groups to verify the
results, the specification should be a complete descrip-
tion of the experiment made available as a file in a stan-
dardized format.

There exist at least two variants of scenarios,strict
andloose scenarios. In a strict scenario each node fol-
lows detailed instructions on when to perform which
action. Although a rigid description of the experiment
fosters repeatability, there are setups in which this is
not suitable, e.g., if experiments are run as background
tasks on devices primarily used for other purposes. In
this case, a scenario with loose descriptions of the ser-
vices and actions able to adapt to the current state of
the node is better suited. In both cases a good testbed



will support the specification of an experiment through
a set of tools. At the very least these tools will allow
the planning of node mobility and the timing of events
via a graphical user interface.

The only widely known tool for the specification of
strict scenarios are the choreography descriptions for
the APE testbed [14]. To our knowledge there are no
tools that support the specification of loose scenarios.

2.3 Node Configuration

When the scenario is prepared, the nodes need to
be configured with the information required to run the
experiment. This includes the implementation of the
investigated algorithms as well as the specification of
the actions and the movements of each node. This step
mainly comprises the distribution of files and the con-
figuration of nodes (e.g., setting of addresses), thus it
should be automated as much as possible.

The key to the autonomous configuration of the
nodes is the experiment specification. Since this speci-
fication contains any relevant information on how each
node should behave, a good testbed will be able to in-
stall the required software and perform the necessary
configuration based solely on this information. This
can either be done by directly distributing the spec-
ification to each node or it can require its “compila-
tion” to gain configuration files that are specific for
each node.

If the nodes are physically accessible to the experi-
menter, the automatic file distribution can be provided
with simple means, e.g., through a one-hop download.
However, in loose scenarios the devices are normally
not available for a direct download and the required
files therefore have to be distributed to nodes that are
already in the field. One approach to do this is to let
the nodes distribute the required files amongst them-
selves, i.e., whenever two nodes come in radio range,
they will exchange information and files on the sched-
uled experiments.

Automatic configuration is a concept used in
APE [14], the PRNET project [9] provided a mech-
anism for the remote configuration of nodes.

2.4 Verification of the Setup

The actual execution of an experiment that uses a
strict scenario is extremely costly in terms of man-

power and time. A verification of the test setup and
the used hardware in the forefield of the experiment in
a controlled laboratory environment is therefore vital
and should be supported by the testbed.

The verification can be divided into tests involving
one or multiple devices. Single device tests allow to
avoid problems such as lack of memory, low battery
power or physical damages. Tests with multiple de-
vices can reveal problems only occuring due to the in-
teraction between devices. An important multiple de-
vice test which should always precede an experiment
is running the complete setup installed on real devices
under laboratory conditions. Although these artificial
conditions prevent the acquisition of quantitative re-
sults, the setup is not expensive, can be repeated easily,
and allows the isolation of errors.

There exist a number of approaches on how to cre-
ate a multi-hop network topology for the in-lab ver-
ification, e.g signal attenuation [10] or MAC filters
that drop packets based on the MAC source address of
packets and the virtual position of the sender [15, 22].
A good testbed can use the position information in the
scenario file to compute the virtual distances and con-
trol the topology accordingly.

2.5 Support during the Experiment

The main phase of the experiment starts with the
distribution of the devices. Each experiment will most
likely consist of several runs in which the nodes move
around. Finally, the devices need to be collected and
the phase is concluded by collecting the tracefiles from
the devices. The main phase has some properties
which necessitate a dedicated support by the testbed:
1) The time in this phase is expensive, only an opti-
mal usage of the experimental time makes experiments
economically feasible; 2) Repeatability of this phase
is crucial for a scientific evaluation; 3) All informa-
tion available here is valuable; Therefore, the testbed
should support the experiment by optimizing the us-
age of experimental time, by guaranteeing, or at least
fostering, repeatability and by collecting detailed in-
formation on the nodes’ actions.

The usage of the experimental time can be opti-
mized by automating tasks and by avoiding errors and
therefore unnecessary repetitions. As device distri-
bution and collection are physical tasks, the potential



for automation is small, here. This is different with
tasks not requiring a direct (human) interaction like
the tracefile collection or the movement of the nodes
which can be automated by mounting the nodes on
robots [3]. A large optimization potential also lies
in the avoidance of the execution of erroneous ex-
periments. By controlling that all nodes act within
the parameters specified in the scenario, the testbed
should assure that exactly the intended experiment is
executed.

The repeatability of an experiment is provided if it
is possible to rerun the same experiment such that the
relevant parameters in both runs have sufficiently sim-
ilar values. There are two ways to support repeatable
experiments, either by comparing the parameters af-
ter an experiment to determine if it was a repetition of
a prior experiment or by steering the experiments to
ensure that these parameters lie within an acceptable
threshold. Open issues in this context are the deter-
mination of the relevant parameters and the question
if it is technically and economically possible to record
these parameters.

For all aspects mentioned so far it is crucial to trace
the data on the behavior of nodes and on external in-
fluences as completely as possible. This data can be
used for a detailed post-run analysis as well as for the
steering of the experiment. The data to be recorded in-
volves packet-level traces, timing and positioning in-
formation, states of higher level protocols as well as
physical and MAC layer logging.

To steer the experiment, theexperiment control
component of the testbed should continuously com-
pare the actual values of the relevant parameters to
those specified in the scenario. The testbed therefore
should provide a method to specify and control bound-
aries for these parameters, soft boundaries like “posi-
tion between x-5 and x+5” as well as hard boundaries
like “GPS daemon running”. In case some of these
boundaries are violated, the testbed can adjust the be-
havior of the node during the run or mark the run as
invalid. If the violation is severe, this can render the
whole experiment unusable and should therefore be
known right during the experiment. Thus, the testbed
should support the transmission of status information
to a central monitor station and it should also be poss-
bile to remotely login to the affected node to correct
errors or alter the configuration.

The experiment monitoring and the remote login
necessitate the exchange of management messages be-
tween the nodes and the monitoring station, possibly
during the experiment. This counteracts a primary de-
sign goal of the testbed, i.e., minimizing the interfer-
ence of the test equipment (both hard- and software)
with the experiment. A solution to this is the “out-of-
band”-transmission of all management messages. This
can be achieved either via a separate network inter-
faces during the experiment, as payload of experiment
packets with a dummy payload or in the pauses be-
tween the single runs of an experiment using the tested
network itself. Although the last method does not al-
low to stop erroneous runs directly, this is not problem-
atic if runs are short. Furthermore, it is more practical
than the other methods as the first method is more ex-
pensive and the second not always feasible.

The concept of monitoring the state of the network
during the experiment has been used in the PRNET
Network Monitoring [9], the SURAN Automated Net-
work Manager [1], the CMU Position and Communi-
cation Tracking daemon [15] and ATMA [18]. For
some of the tracing tasks, there exist standard tools
like tcpdump [21] for packet level tracing or gpsd [6]
which can help to record the node position. A means
to synchronize the clocks of the nodes is the usage of
a combination of NTP and GPS. The concept of deter-
mining if an experiment is a repetition of another one
by hindsight has been used in the APE virtual mobil-
ity [14]. To our knowledge, there exists no experiment
control that adapts the nodes’ behavior dynamically to
changes in the environment to foster repeatability.

2.6 Postprocessing of the Experiment

The postprocessing can be divided into organiz-
ing the raw data gathered during the experiment and
analysing it. This phase should be governed by the
principle that the raw data is a valuable resource. It
needs to be documented, stored and published. Based
on this data, independent researchers must be able to
verify any conclusions that are drawn from the exper-
iments. A good testbed will provide mechanisms to
ease the documentation, storage and publication of the
involved files. Furthermore it will provide or incorpo-
rate an extensible toolset for analysing the raw data.



The first postprocessing step is the structured, per-
manent storage of all raw data. As there are also a
lot of other files involved in the postprocessing such
as scenario files or tools, the testbed’s automatic file
handling should include these. One possibility is the
implementation of a file management framework that
defines interfaces to access, view, annotate, process,
and store these files. The organization of the raw data
is concluded by the documentation of the events and
conditions not recorded in the traces but perceived by
the human participants.

The tools used to process the raw data provide func-
tionality for consistency checks, data analysis or for
enabling trace-based simulation. All these tools can be
used for multiple experiments, thus the testbed should
foster reusability to reduce work. If the tools are mod-
ular and reusable, this also increases reliability as re-
sults can be easily reproduced. Therefore the goal
has to be the creation of a reusable standard toolset
for the postprocessing of MANET experiments which
should be publically available, extensible and well
documented. The analysis tools should support the
different input formats of real-world traces and simu-
lator traces as this allows a direct comparison of results
from both evaluation methods.

The file management as well as the toolset can be
combined with a server that is publically available. If
software tools and raw data are available in an open
repository, other researchers can access and reuse the
data and tools or verify the results. We are not aware
of a toolset or testbed that supports the properties de-
scribed above.

2.7 Orthogonal Concepts

The previous sections show how a testbed can sup-
port the single steps of an experiment. Besides that,
there are general concepts such as error avoidance,
reduction of workload, portability, modularity and
benchmarking not limited to single steps.

Benchmarks provide references to improve com-
parability. One option to realize benchmarks for
MANETs arebaseline protocols. A baseline protocol
must 1) have the best performance in its class, typi-
cally achieved through the use of “illegal” means such
as global knowledge; 2) be easy to implement; 3) be
easy to test; If the baseline protocol is included in the

experiment, it builds an upper bound for the perfor-
mance of the whole class of algorithms in this spe-
cial setting. Instead of giving absolute numbers for
the performance of an evaluated protocol, it can be ex-
pressed as percentage of the maximum. Candidates for
baseline routing protocols are MERIT [4] or the “best-
case” routing described in [22] which both use global
knowledge to make routing decisions.

Another form of benchmarks arestandard testsand
standard measure values. Standard tests can be stan-
dard topologies such as chains or grids as well as tests
on the maximum load the network can support or the
load without data traffic. Standard measure values pro-
vide characteristics of a protocol. Examples are delay,
packet order, route length or loss rate.

To reduce the workload and the errors arising due to
reimplementing the same code multiple times, using
the same source code for simulation, emulation, and
real-world experiments is highly desirable. We call
this SER integration. An additional advantage of this
approach is the feedback that can be given between
simulation and experiment. SER integration should be
used for the evaluated algorithms as well as for sce-
nario files and analysis tools. This means that the same
scenario file should be able to drive a simulation as
well as an experiment or that the output of both steps
can be processed with the same analysis script.

Portability of the testbed software is very important
since a test setup used for large MANET experiments
will consist of heterogenous devices. As the full num-
ber of devices is only needed for a short time, sharing
devices among workgroups and using devices like lap-
tops or cell phones not especially bought for experi-
menting will be common in experiments. Furthermore
not all workgroups will buy the same devices, leading
to further heterogeneity. Apart from this, the product
live cycle of mobile devices is short. If a device is
bought today, it may be not possible to buy the same
product in a year. Thus, the testbed software must be
very portable to run on these different platforms.

Finally, it seems beneficial to employ a highly mod-
ular testbed architecture rather than a monolithic ap-
proach. This mainly is due to the large selection of
tools allready available, including standard software
such as tcpdump [21] or gpsd [6]. These tools should
be used rather than reimplemented. In addition mod-
ularity will allow the easy exchange of components to



enable a competition on the level of individual compo-
nents rather than complete testbeds. As a consequence
we believe that the system should be only loosely cou-
pled with some kind of “glue” combining these com-
ponents to form the testbed. An example where this
concept has been used to some extend are the scripts
controlling APE [14].

3 Experiences

Since 2002 we have conducted experiments on real-
world vehicular ad-hoc networks within the context
of the FleetNet project [7]. The experiences gained
through these experiments and the problems we en-
countered motivated us to investigate how to improve
experimentation with real-world implementations of
ad-hoc networks in general.

In a first step we tried to repeat experiments con-
ducted by other research groups to confirm their re-
sults. This turned out to be extraordinarily difficult
since there is almost always insufficient information
available to reproduce the described results. Key is-
sues were the lack of information on the environment
(in particular regarding the setup of the experiment,
the radio characteristics and the connectivity between
nodes), no access to the raw data gathered during the
experiment and a vast heterogeneity in the tools to
setup, conduct and evaluate an experiment. These ex-
periences led us to the first attributes of a good testbed:
all information, code and tools need to be published,
preferably in a standardized way.

We have conducted in- and outdoor experiments of
a simple flooding algorithm for static ad-hoc networks
with seven to ten nodes. The motivation for this very
simple setup was to isolate problems that would lead
us to general design criteria for experiments with mo-
bile ad-hoc networks. In the following we sketch the
main observations, more details can be found in [20].

Inspired by [15], we started by measuring the radio
ranges of our hardware (iPAQ5550 IEEE 802.11b) and
discovered that the iPAQ radios were sometimes able
to successfully deliver ping packets over more than
900 m while already a tree in the line-of-sight between
two nodes can block a transmission. Thus, setting up a
reliable, reconstructible 7-node/6-hop string topology
for preparatory tests was only possible by carefully po-
sitioning each device around the edges of a building.

Our next step was to set up a multi-hop topol-
ogy where every node had multiple neighbors. After
several measurement sessions, a suitable experimental
site seemed to be the university parking lot. Later on
we discovered some undesirable properties of this lo-
cation. As the library and other university buildings
are close, there were other WLANs present requiring
the careful selection of the radio channel (a problem
also described in [18]). Another issue were moving
cars possibly leading to frequent changes in the topol-
ogy even though the nodes themselves did not move.

To determine the connectivity between the nodes
at the start of an experiment, each node transmitted
a number of beacons. While one node transmits its
beacon at a time, all other nodes record the packet re-
ception. The necessary exact coordination is difficult
in a distributed ad-hoc network but can be achieved
with adomino effect. Prior to the experiment a route is
determined that includes all nodes of the network. The
nodes use the sequence imposed by this route to co-
ordinate their beaconing. The first node starts with its
beaconing. Its successor will take over once this node
has finished. This is repeated until the last node has
transmitted its beacons. The domino approach worked
well for our small networks, however it can be fore-
seen that a more sophisticated mechanism is required
for larger and more dynamic networks.

Based on the experiences gathered during the Fleet-
Net project, we were aware of the problem of hav-
ing to reimplement the algorithms when switching be-
tween simulations and experiments. Therefore, we im-
plemented flooding in click [12]. With the help of
nsclick [16], the same code used for the experiment
can be run in ns-2 [17]. We used the integration for
two purposes: the first is to debug and gain first experi-
ences with the implementation and the setup of the ex-
periment in a controlled simulator environment. When
experiments are conducted without proper tests, this
can waste a huge amount of manpower: a bug in the
configuration of one of our in-building tests rendered
a whole series of test runs useless. A miscalculation of
the pause time between sending packets resulted in in-
termixed flooding attempts. A simulation prior to the
testing could have revealed this problem without in-
curring significant overhead. The second reason for an
integrated simulation and experimentation approach is
to use the data gathered during an experiment to im-



prove simulations with information about real-world
radio characteristics. To model the real setup as ex-
actly as possible, also the positions of the nodes in the
real experiment must be known. We used GPS for this
purpose and encountered the well known problems of
position jitter and dependence on clear view to the sky.

During our experiments it often happened that ei-
ther a link, the used software or a whole node failed.
Every time this happened, we had to check each node
manually. As a provisional solution, we implemented
a simple in-band one-hop status check. Each node
wrote its current status to a file accessible via HTTP.
To control the nodes’ status, it was sufficient to walk
around and use a perl script to retrieve the status file
from each node. Obviously, this approach has sev-
eral limitations: it requires to walk in the radio range
of each node to be checked, the transmissions “con-
taminate” the experimental data, and the correction of
an error still requires physical access to the affected
node. Because of these experiences we believe that
node monitoring will be a very valuable element of a
good testbed.

Another issue appeared during the postprocessing
of the data from the experiments and the simulations.
As the output format of the simulator (ns-2) differs
from the trace format of the experiment (tcpdump),
each tool for the analysis of the results had to be imple-
mented twice. Furthermore there exists currently no
good solution for commentation and documentation of
the raw data such that special events during the exper-
iments can later on be remembered and reconstructed.

One key question occurred during the postprocess-
ing: how good was the performance of the simple
flooding strategy? Of course there are absolute val-
ues on the number of transmitted packets and the rate
of received messages. However, this does not provide
any clue on how good our approach worked under the
given circumstances in comparison to an (illegal) opti-
mal solution. Thus benchmarks would be a great help
in determining how well a given solution performed.

4 Conclusions and Outlook

We believe that a MANET testbed should be open
source, not restricted to special hardware, customiz-
able, and not bound to any specific location. It must
support reproducible, comprehensive, and correct ex-

periments. While there are promising individual con-
tributions towards this goal, currently no approach
fully satisfies these demands. For a multitude of rea-
sons the best way to implement such a testbed seems
to be a joint effort of the MANET community. The
most important one may be a broad acceptance by the
community.

A first step towards this goal should be a specifica-
tion of the functionality that the testbed must provide.
We expect that this will be a controversial discussion
and hope that this paper may contribute to this effort.
Once the specification has become stable, the key fac-
tor to a successfull community effort will be the de-
sign of a highly modular system where each research
group can contribute individual parts. We expect that
the specification of scenarios, the scripting for running
experiments and the format of the raw experiment data
will require immediate attention and provide the glue
for the connection of the individual contributions. In
order to stimulate these first steps we have set up a wiki
athttp://wikicn.cs.uni-duesseldorf.de.

References

[1] D. A. Beyer. Accomplishments of the DARPA
SURAN program. InProceedings of MIL-
COM’90. IEEE, Sept 1990.

[2] C. T. Calafate, R. G. Garcia, and P. Manzoni. Op-
timizing the implementation of a MANET rout-
ing protocol in a heterogeneous environment. In
The Eighth IEEE Symposium on Computers and
Communications, June 2003.

[3] Emulab - mobile wireless networking.http://-
www.emulab.net/tutorial/mobilewireless.php3.

[4] A. Farago and V. R. Syrotiuk. Merit: A uni-
fied framework for routing protocol assessment
in mobile ad hoc networks. InProceedings of
MobiCom’01, pages 53–60. ACM Press, 2001.

[5] J. Garcia-Luna-Aceves. Wireless internet gate-
ways (WINGs) for the internet. Technical report,
University of California, Santa Cruz, 2001.

[6] gpsd: a GPS service daemon.http://gpsd.-
berlios.de/.

http://www.emulab.net/tutorial/mobilewireless.php3
http://www.emulab.net/tutorial/mobilewireless.php3
http://gpsd.berlios.de/
http://gpsd.berlios.de/


[7] H. Hartenstein, B. Bochow, A. Ebner, M. Lott,
M. Radimirsch, and D. Vollmer. Position-aware
ad hoc wireless networks for inter-vehicle com-
munications: The FleetNet project. InProceed-
ings of MobiHoc’01, Long Beach, California,
October 2001.

[8] S. Jadhav, T. Brown, S. Doshi, D. Henkel, and
R. Thekkekunnel. Lessons learned constructing
a wireless ad hoc network test bed. 1st Workshop
on Wireless Network Measurements (WINMee
2005), April 2005.

[9] J. Jubin and J. D. Turnow. The DARPA packet
radio network protocols. InProceedings of the
IEEE, volume 75, pages 21–32, January 1987.

[10] G. Judd and P. Steenkiste. Repeatable and re-
alistic wireless experimentation through physical
emulation.ACM SIGCOMM Computer Commu-
nication Review (CCR), 34(1):63–68, 2004.

[11] V. Kawadia, Y. Zhang, and B. Gupta. System
services for ad-hoc routing: Architecture, im-
plementation and experiences. InProceedings
of MobiSys’03, San Francisco, California, May
2003.

[12] E. Kohler, R. Morris, B. Chen, and J. Jannotti.
The Click Modular Router.ACM Transactions
on Computer Systems, 18(3):263–297, August
2000.

[13] D. Kotz, C. Newport, R. S. Gray, J. Liu, Y. Yuan,
and C. Elliott. Experimental evaluation of wire-
less simulation assumptions. InProceedings of
MSWiM’04, pages 78–82, October 2004.

[14] H. Lundgren, D. Lundberg, J. Nielsen, E. Nord-
ström, and C. Tschudin. A large-scale testbed
for reproducible Ad Hoc protocol evaluations. In
Proceedings of WCNC’02, pages 337–343, Or-
lando, FL, March 2002.

[15] D. A. Maltz, J. Broch, and D. B. Johnson. Expe-
riences designing and building a multi-hop wire-
less ad hoc network testbed. Technical Report
CMU-CS-99-116, School of Computer Science,
Carnegie Mellon University, 1999.

[16] M. Neufeld, A. Jain, and D. Grunwald. Nsclick:
Bridging Network Simulation and Deployment.
In Proceedings of MSWiM’02, pages 74–81, At-
lanta, Georgia, September 2002.

[17] The ns-2 network simulator.http://www.isi.edu/-
nsnam/ns/.

[18] K. Ramachandran, K. Almeroth, and E. Belding-
Royer. A novel framework for the management
of large-scale wireless network testbeds. 1st
Workshop on Wireless Network Measurements
(WINMee 2005), April 2005.

[19] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu,
K. Ramachandran, H. Kremo, R. Siracusa,
H. Liu, and M. Singh. Overview of the OR-
BIT radio grid testbed for evaluation of next-
generation wireless network protocols. InPro-
ceedings of WCNC’05, New Orleans, LA, March
2005. IEEE. (to appear).

[20] A. Tarp. Experimental evaluation of flooding in
ad-hoc networks. Bachelor thesis, 2005. Depart-
ment of Computer Science, University of Düssel-
dorf.

[21] tcpdump: a tool for network monitoring, proto-
col debugging and data acquisition.http://www.-
tcpdump.org.

[22] Y. Zhang and W. Li. An integrated environ-
ment for testing mobile ad-hoc networks. InPro-
ceedings of MobiHoc’02, pages 104–111. ACM
Press, 2002.

[23] G. Zhou, T. He, S. Krishnamurthy, and J. A.
Stankovic. Impact of radio irregularity on wire-
less sensor networks. InProceedings of Mo-
biSys’04, pages 125–138. ACM Press, May
2004.

http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/
http://www.tcpdump.org
http://www.tcpdump.org

	1 Introduction
	2 The Perfect Testbed
	2.1 Implementation
	2.2 Experiment Specification
	2.3 Node Configuration
	2.4 Verification of the Setup
	2.5 Support during the Experiment
	2.6 Postprocessing of the Experiment
	2.7 Orthogonal Concepts

	3 Experiences
	4 Conclusions and Outlook

