
ww.sciencedirect.com

c om p u t e r s & s e c u r i t y 3 5 (2 0 1 3) 2 5e3 6
Available online at w
journal homepage: www.elsevier .com/locate/cose
Modular square root puzzles: Design of non-
parallelizable and non-interactive client puzzles
Yves Igor Jerschow a,*, Martin Mauve b

a Institute for Experimental Mathematics, University of Duisburg-Essen, Ellernstraße 29, 45326 Essen, Germany
b Institute of Computer Science, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
a r t i c l e i n f o

Article history:

Received 31 May 2012

Received in revised form

3 November 2012

Accepted 19 November 2012

Keywords:

Client puzzles

Denial of Service (DoS)

Network protocols

Authentication

Computational puzzles
* Corresponding author. Tel.: þ49 2011837637
E-mail addresses: jerschow@iem.uni-due

0167-4048/$ e see front matter ª 2012 Elsev
http://dx.doi.org/10.1016/j.cose.2012.11.008
a b s t r a c t

Denial of Service (DoS) attacks aiming to exhaust the resources of a server by over-

whelming it with bogus requests have become a serious threat. Especially protocols that

rely on public key cryptography and perform expensive authentication handshakes may be

an easy target. A well-known countermeasure against resource depletion attacks are client

puzzles. The victimized server demands from the clients to commit computing resources

before it processes their requests. To get service, a client must solve a cryptographic puzzle

and submit the right solution. Existing client puzzle schemes have some drawbacks. They

are either parallelizable, coarse-grained or can be used only interactively. In case of

interactive client puzzles where the server poses the challenge an attacker might mount

a counterattack on the clients by injecting faked packets with bogus puzzle parameters

bearing the server’s sender address. In this paper we introduce a novel scheme for client

puzzles which relies on the computation of square roots modulo a prime. Modular square

root puzzles are non-parallelizable, i.e., the solution cannot be obtained faster than

scheduled by distributing the puzzle to multiple machines or CPU cores, and they can be

employed both interactively and non-interactively. Our puzzles provide polynomial gran-

ularity and compact solution and verification functions. Benchmark results demonstrate

the feasibility of our approach to mitigate DoS attacks on hosts in 1 or even 10 Gbit

networks. In addition, we show how to raise the efficiency of our puzzle scheme by

introducing a bandwidth-based cost factor for the client. Furthermore, we also investigate

the construction of client puzzles from modular cube roots.

ª 2012 Elsevier Ltd. All rights reserved.
1. Introduction looking requests, for example authentication handshakes,
Denial of Service (DoS) attacks aiming to exhaust the resources

of a server by overwhelming it with bogus requests pose an

increasing threat to network protocols not only in the

Internet. Corporate Intranets and public local area networks

like Wi-Fi hotspots also constitute promising targets for

mounting an effective DoS attack. Especially protocols that

perform authentication and key exchange relying on expen-

sive public key cryptography are likely vulnerable to DoS, e.g.,

SSL/TLS, IPsec, or IEEE 802.1X (EAPOL). By flooding valid-
.
.de (Y.I. Jerschow), mauv
ier Ltd. All rights reserved
an attacker may try to overload his victim. But even services

that do not involve expensive operations can be vulnerable to

DoS attacks that exploit worst-case behavior of classical data

structures like hash tables (Crosby andWallach, 2003). A well-

known countermeasure against resource exhaustion are client

puzzles (Juels and Brainard, 1999; Back, 2002; Aura et al., 2001).

A server being under attack processes requests only from

those clients that themselves spend resources in solving

a cryptographic puzzle and submit the right solution. By

imposing a computational task on the client the victimized
e@cs.uni-duesseldorf.de (M. Mauve).
.

mailto:jerschow@iem.uni-due.de
mailto:mauve@cs.uni-duesseldorf.de
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2012.11.008
http://dx.doi.org/10.1016/j.cose.2012.11.008
http://dx.doi.org/10.1016/j.cose.2012.11.008

c om p u t e r s & s e c u r i t y 3 5 (2 0 1 3) 2 5e3 626
server dramatically cuts down the number of valid requests

that the attacker can emit. However, benign hosts having only

a single request are hardly penalized. The puzzle difficulty

(i.e., the time it takes the client to solve the challenge) should

be adjustable from easy to hard, while puzzle verification

must be always cheap so that it can be performed at full link

speed. Otherwise an attacker could mount a second DoS

flooding attack with bogus puzzle solutions to overwhelm the

server. A widely-used cost function for client puzzles is the

reversal of a one-way hash function by brute force. Verifying

such a puzzle involves only a single hash operation.

Client puzzles can be interactive or non-interactive. In the first

case, as shown in Fig. 1, the server constructs the puzzle upon

receiving a request and demands from the client to solve it

before continuingwith the protocol. In the latter case the client

constructs the puzzle by itself, solves it and attaches the solu-

tion to its request. An important characteristic of client puzzles

is granularity, i.e., the ability to finely adjust the puzzle difficulty

to different levels. Another desirable property is non-paralleliz-

ability, which prevents an attacker from obtaining the solution

faster than scheduled by distributing the puzzle to multiple

CPU cores or to other compromisedmachines (Tritilanunt et al.,

2007; Schaller et al., 2007; Karame and �Capkun, 2010). Existing

client puzzle schemes are either parallelizable, coarse-grained

or can be used only interactively. Interactive puzzles have the

drawback that the packetwith the puzzle parameters sent from

server to client lacks authentication. A second DoS attack

against the clients with faked packets pretending to come from

the defending server and containing bogus puzzle parameters

may thwart the clients’ connection attempts. Such a counter-

attack becomes feasible if no address authenticity is provided

by the underlying layers, e.g., if operating at the link layer. To

the best of our knowledge, no puzzle scheme proposed in the

literature provides all the desired properties.

In this paper we introduce a novel scheme for client

puzzles based on the computation of square roots modulo

a prime.Modular square root puzzles are non-parallelizable, can

be employed both interactively and non-interactively and

provide polynomial granularity. We construct the puzzle for

a particular request by assigning to it a unique quadratic

residue a modulo a prime p. Then the client solves the puzzle

by extracting themodular square root x of a and sends it to the

server as proof of work. Computation is performed by

repeated squaring, which is assumed to be an intrinsically
Fig. 1 e Interactive clie
sequential process. Fig. 2 illustrates our scheme in a non-

interactive scenario. Verifying the puzzle on the server side

is easydit requires a single modular squaring operation and

a few hash operations. Puzzle difficulty can be tuned by

selecting a larger or smaller prime modulus. We evaluate the

performance of modular square root puzzles by bench-

marking the verification throughput and the solution time for

different levels of difficulty. The results demonstrate the

feasibility of our approach to mitigate DoS attacks on hosts

having 1 or even 10 Gbit links. To compensate for raising

verification costs in high-speed networks we strengthen our

puzzle scheme by introducing a bandwidth-based cost factor

for the client. Furthermore, we also investigate the construc-

tion of client puzzles from modular cube roots.

The remainder of this paper is organized as follows. In the

next section, we discuss existing approaches for DoS protec-

tion with the aid of puzzles. Section 3 introduces algorithms

for computing modular square roots, investigates paralleli-

zation aspects, and forms the mathematical basis for our

client puzzles. In Section 4 we then describe how to construct,

solve and verify a modular square root puzzle, which can be

employed in a non-interactive or interactive manner. Section

5 evaluates the performance of our puzzle scheme and

extends it by a bandwidth-based cost factor. Finally, we

conclude the paper with a summary in Section 6.
2. Related work

Comprehensive surveys on DoS/DDoS attacks and proposed

defense mechanisms can be found in Peng et al. (2007),

Douligeris and Mitrokotsa (2004), Mirkovic and Reiher (2004).

Peng et al. (2007) classify four categories of defense: (1) attack

prevention, (2) attack detection, (3) attack source identifica-

tion, and (4) attack reaction. Juels and Brainard (1999) intro-

duced client puzzles to protect servers from TCP SYN flooding

attacks. This countermeasure falls into the last category and

constitutes a currency-based approach where clients have to

pay before getting served. Being under attack, a server

distributes to its clients cryptographic puzzles in a stateless

manner asking them to reverse a one-way hash function by

brute force. The difficulty of the puzzle is chosen depending

on the attack strength. Only after receiving a correct solution

from the client the server allocates resources for the dangling
nt puzzle scheme.

http://dx.doi.org/10.1016/j.cose.2012.11.008
http://dx.doi.org/10.1016/j.cose.2012.11.008

Fig. 2 e Modular square root puzzle (solve x2 h a (mod p)) employed non-interactively.

c om p u t e r s & s e c u r i t y 3 5 (2 0 1 3) 2 5e3 6 27
TCP connection. The idea of CPU-bound client puzzles has

been applied to authentication protocols in general by Aura

et al. (2001). An implementation of client puzzles to protect

the TLS handshake against DoS is described in Dean and

Stubblefield (2001).

Hash-reversal puzzles can be used both interactively and

non-interactively. They are simple to construct and verify but

havethedisadvantageofbeinghighlyparallelizableandprovide

only exponential granularity. The task of reversing a one-way

hash function by brute force can be easily distributed across

many machines. To make them fine-grained Feng et al. (2005)

proposed hint-based hash reversal puzzleswhere the server gives

the client a hint about the rangewithin which the solution lies.

Thus, thegranularitybecomes linear.Thedrawbackis thathint-

based puzzles can be employed only interactively. The authors

designed a puzzle architecture, called network puzzles, which

relies on hint-based hash reversal puzzles and operates at the

“weakest link”dthe IP layerdtomakeclientpuzzlesuniversally

usable. The feasibility of the puzzle protocol has been demon-

strated through an implementation on Linux with iptables. The

authors use ICMP source quench messages to deliver puzzles

and IP options to transmit client cookies and puzzle answers.

Waters et al. (2004) suggested a client puzzle scheme based

ontheDiffieeHellmankeyexchangewherepuzzle construction

and distribution are outsourced to a secure entity called bastion.

The bastion periodically issues puzzles for a specific number of

virtual channels that are valid during the next time slot. Puzzle

construction is quite expensive since it requires a modular

exponentiation, but many servers can rely on puzzles distrib-

uted by the samebastion. A client solves a puzzle by computing

thediscrete logarithmthroughbrute force testingda taskthat is

highly parallelizable. The granularity of the puzzle is linear. On

the server side, verifying a puzzle involves a table lookup and

another costly modular exponentiation, which, however, is

performed in advance during the previous time slot.

Tritilanunt et al. (2007) introduced a non-parallelizable

client puzzle scheme that is based on the subset sum problem.

The client solves the puzzle by applying Lenstra’s lattice

reduction algorithm LLL. However, the authors point out that

the memory requirements for LLL are quite high, which

results in some implementation issues. Puzzle verification is

quite cheap. It takes one hash operation and about 25e100
additions. Subset sum puzzles are interactive and provide

polynomial granularity. In contrast, our puzzle scheme can be

also employed non-interactively, has a small memory foot-

print, and is easy to implement.

Non-parallelizable puzzles based on repeated squaring are

well-known in timed-release cryptography. Rivest et al. (1996),

introduced interactive time-lock puzzles to encrypt messages

that can be decrypted by others only after a pre-determined

amount of time has passed. Like the RSA cryptosystem time-

lock puzzles rely on the intractability of factoring large inte-

gers. Constructing a time-lock puzzle requires the server to

perform an expensive modular exponentiation. In detail, to

encrypt a message m for a period of T seconds Alice:

� generates the RSA modulus n ¼ pq and computes

4(n) ¼ (p � 1) (q � 1).

� determines the number of squaring operations modulo n

per second, denoted by S, that can be performed by the

solver Bob, and computes t ¼ T$S.

� encrypts m with a symmetric cipher using the key K.

� picks a random a, 1 < a < n, and encrypts K as:

CK ¼ Kþ a2t mod n: (1)

To make the exponentiation efficient, Alice reduces the
exponent modulo 4(n) by computing:

r ¼ 2t mod 4ðnÞ (2)

and obtains a2t mod n from ar mod n.

� outputs the time-lock puzzle (n, a, t, CK).

To reveal K from CK, Bob needs to compute a2
t
mod n and in

contrast to Alice cannot take the shortcut via 4(n), since

determining 4(n) is provably as hard as factoring n. Instead,

Bob must do the computation step by step by repeatedly

performing modular squaringsdaltogether t times, which is

a non-parallelizable task and takes T seconds.

Seeking for a non-parallelizable (but still interactive) client

puzzle scheme Karame and �Capkun (2010) adapted Rivest’s

puzzle by employing an RSA key pair with small private

exponent to reduce the costs for puzzle verification. The server

http://dx.doi.org/10.1016/j.cose.2012.11.008
http://dx.doi.org/10.1016/j.cose.2012.11.008

c om p u t e r s & s e c u r i t y 3 5 (2 0 1 3) 2 5e3 628
muststill performamodular exponentiationbut thenumberof

multiplications is decreased by some factor, e.g., factor 12.8 for

a 1024-bit modulus resulting in 120 modular multiplications

instead of 1536. We find that these verification costs are

nevertheless too high to provide a viable DoS protection for

high-speed links. In contrast, verifying our modular square

root puzzle takes only a single modular squaring operation.

With the discussed RSA based puzzle schemes we share

the idea of a non-parallelizable solution function that relies on

modular exponentiation. Apart from that, our approach is

different and does not use any trapdoor information. Dwork

and Naor (1992) mentioned the extraction of modular square

roots as one of three candidate families of pricing functions to

combat spam. Our main contribution here to counteract DoS

attacks is the computation of modular square roots from so-

called “hard” primes resulting in a novel scheme for non-

parallelizable client puzzles. Moreover, we point out a coun-

terattack on interactive client puzzles, argue for a non-

interactive scheme, and discuss the pros and cons.

Wang and Reiter (2008) proposed a multi-layer framework

for puzzle-based DoS protection, which embeds puzzle tech-

niques into both IP-layer and end-to-end services. The

authors have presented two mechanisms: Congestion puzzles

address bandwidth-exhaustion attacks in routers by cooper-

atively imposing puzzles to clients whose traffic is traversing

a congested link. A traffic flow must be accompanied by

a corresponding computation flow of puzzle solutions. The

second mechanism called puzzle auctions protects an end-to-

end service like TCP against protocol-specific DoS attacks.

Clients bid for server resources by tuning the difficulty of the

hash-reversal puzzle that they solve and the server allocates

its limited resources to the highest bidder first.

Martinovic et al. (2008) addressedDoS attacks in IEEE 802.11

networks aiming to exhaust the access point’s (AP) resources

by flooding it with faked authentication requests. The authors

introduced wireless client puzzles that are distributed by

a defending AP to joining stations. To support highly hetero-

geneous stations these puzzles are not CPU-bound. Instead of

inverting a one-way function, a station has to measure the

signal strength of the links to its neighbors and to find out

those neighbors, whose link reaches a certain Neighborhood

Signal Threshold (NST). The NST is randomly chosen and

frequently changed by the AP. A station replying with a wrong

solution is detected by its neighbors, which thereupon issue

a warning to the AP.

Further client puzzle architectures are, e.g., Hlavacs et al.

(2008), Schaller et al. (2007), Tang and Jeckmans (2010).

Puzzle-based DoS defense mechanisms can also rely on other

payment schemes than CPU cycles, for example on memory

(Abadi et al., 2005; Dwork et al., 2003; Doshi et al., 2006),

bandwidth (Walfish et al., 2006; Jerschow et al., 2009), or

human interaction where so-called CAPTCHAs (von Ahn et al.,

2003) have become the most common technique. Besides DoS

protection various other applications for computational

puzzles have been proposed, e.g., mitigating spam (Dwork and

Naor, 1992; Back, 2002), uncheatable benchmarks (Cai et al.,

1993), a zero-knowledge protocol for timed-release encryp-

tion and signatures (Mao, 2001), a timed commitment scheme

for contract signing (Boneh and Naor, 2000), or offline

submission of documents (Jerschow and Mauve, 2010).
3. Modular square roots

3.1. Extracting square roots modulo a prime

Let p be an odd prime and a ˛ Z�
p an integer, i.e., 1 � a � p � 1.

The solution of the congruence x2h a (mod p) is called a square

root modulo p. There exist either two solutions x and �x or no

solution. In the first case, a is named a quadratic residue, and in

the latter case a quadratic non-residue modulo p. Half of the

elements in Z�
p are quadratic residues and the other half are

quadratic non-residues. To express whether a is a quadratic

residue or not the Legendre symbol

�
a
p

�
is used. It is defined as

being 1 if a is quadratic residue, �1 if a is a quadratic non-

residue and 0 if operating in Zp and a ¼ 0. The Legendre

symbol can be efficiently computed in O ððlog pÞ2Þ bit opera-

tions (Cohen, 1996; Menezes et al., 1996).

Finding a square root modulo p is quite easy for half of the

primes p, namely if p h 3 (mod 4). In this case the solution is

given by

x ¼ aðpþ1Þ=4 mod p: (3)

For half of the remaining primes where p h 5 (mod 8) a less

trivial, but also straightforward solution exists:

x ¼
�
aðpþ3Þ=8 mod p if aðp�1Þ=4 mod p ¼ 1
2að4aÞðp�5Þ=8 mod p otherwise:

(4)

The remaining case p h 1 (mod 8) is the most difficult one.

However, there exist two well-known algorithms (Bach and

Shallit, 1996; Nishihara et al., 2009) to compute square roots

modulo p for all primes p, namely the TonellieShanks method

(Tonelli, 1891; Shanks, 1972) (see Algorithm 1 (Menezes et al.,

1996)) and the CipollaeLehmer method (Cipolla, 1903; Lehmer,

1969) (see Algorithm 2 (Menezes et al., 1996)). The group-

theoretic TonellieShanks method has a running time of

O ððlog pÞ4Þ bit operations if p� 1 contains a large power of two

in its prime factorization. But for small s (see line 3) it runs in

O ððlog pÞ3Þ since in this case the for loop is executed only

a small number of times. The CipollaeLehmer method is

based on the theory of finite fields and works with poly-

nomials over the field Zp. In contrast to the algorithm of

TonellieShanks its running time does not depend on the

decomposition of p � 1 and is always in O ððlog pÞ3Þ. Note that

for primes p where s is very small the TonellieShanks algo-

rithm will outperform the CipollaeLehmer method, because

an exponentiation in the polynomial ring Zp½x� is more

expensive than in Zp. Both algorithms have a probabilistic

component, namely finding a quadratic non-residue modulo

p. For the TonellieShanks method this quadratic non-residue

does not depend on a and can be precomputed if p is fixed. A

random integer b ˛ Zp is a quadratic non-residue with proba-

bility 0.5. In case of the CipollaeLehmer method we need to

know a to find a suitable quadratic non-residue and the

probability for succeedingwith a random integer b is 0.5� 1/2p

(Bach and Shallit, 1996), which converges to 0.5 for large

primes p. On average, two trials should suffice for both

methods to find a quadratic non-residue. The time required

for this test is negligible compared to the total computation of

http://dx.doi.org/10.1016/j.cose.2012.11.008
http://dx.doi.org/10.1016/j.cose.2012.11.008

c om p u t e r s & s e c u r i t y 3 5 (2 0 1 3) 2 5e3 6 29
the square root. It is an open questionwhether randomization

can be eliminated, although this will be possible if the

extended Riemann hypothesis turns out to be true. So far

modular square roots can be computed only in random poly-

nomial time by a Las Vegas algorithm (Bach and Shallit, 1996).

3.2. Modular exponentiation

Extracting amodular square root requires to performmodular

exponentiations. This task can be accomplished by the basic

binary exponentiation method (commonly referred to as square-

and-multiply) or a more sophisticated algorithm like the k-ary

method or the sliding-window method (Menezes et al., 1996). In

case p h 3 (mod 4) only one modular exponentiation is

needed. If p h 5 (mod 8) then two modular exponentiations
Algorithm 1. TonellieShanks: square roots modulo a prime p.

Algorithm 2. CipollaeLehmer: square roots modulo a prime p.
have to be performed. Finally, if p h 1 (mod 8) the Tonellie-

Shanks or CipollaeLehmer algorithm has to be applied. In the

worst case, namely if s is large, the TonellieShanks method

carries out up to O ðlog pÞ modular exponentiations in the for

loop and becomes quite inefficient. Primes p h 1 (mod 8) of

appropriate size where the prime factorization of p � 1

contains a large power of two can be easily found. We suggest

Algorithm 3 for this purpose. In line 5 the function IsProba-

blePrime() repeatedly performs a randomized primality test,

e.g., the MillereRabin test, to achieve a given error bound

(which is less than 4�k after k rounds in case of the Miller-

eRabin test). Finding such a “hard” prime p with an error

probability below 10�15 takes less than 50 ms for a 1031-bit

prime (input: l ¼ 1024) and less than 1 s for a 2058-bit prime

(input: l ¼ 2048) on a modern 64-bit CPU.

http://dx.doi.org/10.1016/j.cose.2012.11.008
http://dx.doi.org/10.1016/j.cose.2012.11.008

c om p u t e r s & s e c u r i t y 3 5 (2 0 1 3) 2 5e3 630
Algorithm3. Finding a “hard” prime formodular square roots.
In the following, we thus concentrate on such “hard”

primes and the CipollaeLehmer method, which ignores the

structure of p � 1. Here the computation consists of a single

modular exponentiation x(pþ1)/2 mod f, but with polynomials

instead of integers. The modulus f is a polynomial of degree 2

with leading coefficient 1. Howmanymodular multiplication/

squaring operations on integers are involved in this expo-

nentiation? First, we observe that if p is a “hard” prime the

exponent (p þ 1)/2 has the form 2S–1$i þ 1 where i is a small

integer. Only some of the most significant bits and the least

significant bit are set. Hence, the computation actually

reduces to an exponentiation with a power-of-two exponent,

where repeated squaringda special case of the binary expo-

nentiationdconstitutes the most efficient technique. To

compute gy mod nwith y¼ 2k it takes kmodular squarings and

no additional multiplications while Plog yR is the lower bound

for the number of multiplications to carry out a single expo-

nentiation in a general group. Squaring a polynomial ax þ b of

degree 1 over the field Zp requires 3 modular integer multi-

plications/squarings. Reducing the resulting polynomial of

degree 2 modulo f, i.e., performing a polynomial division,

involves 2 modular multiplications and 2 modular subtrac-

tions on integers. While modular multiplication/squaring of

N-bit numbers runs in O ðN2Þ (or in O ðN1:585Þ with a sophisti-

cated technique like Karatsuba’s algorithm), modular

subtraction takes linear time, and thus is negligible. Alto-

gether, themodular exponentiation in Zp½x� takes about 5$log p

modular multiplication/squaring operations on integers.
3.3. Non-parallelizability

In all exponentiation algorithms the main workload accounts

to repeatedly performing modular squarings. This is assumed

to be an intrinsically sequential, i.e., non-parallelizable

process since each next step requires the intermediate result

from the previous one (Rivest et al., 1996). Parallelization of

the squaring operation itself cannot achieve a significant

speedup either. Each squaring requires only trivial computa-

tional resources and any non-trivial scale of parallelization

inside the squaring operation would be likely penalized by

communication overhead among the processors (Mao, 2001).

In complexity theory, the class P contains all decision prob-

lems that can be solved by a deterministic Turing machine in
polynomial time. NC4 P represents the class of problems that

can be efficiently solved by a parallel computer. However, it is

still an open question whether modular exponentiation is P-

complete, i.e., not in NC (Adleman and Kompella, 1988;

Sorenson, 1999). Likewise, it is unknown if factoring is really

not in P.

We now want to point out those parts of modular square

root computation that are parallelizable. If applying the basic

binary exponentiation method the 1/2$log p multiply steps

can be performed in parallel to the log p squaring steps. Thus,

only log p sequential modular squaring operations can be

accounted for when extracting a square root modulo p h 3

(mod 4). The same applies to the case p h 5 (mod 8) where

two modular exponentiations are performed (see Equation

(4)). Instead of evaluating a(p�1)/4 mod p first and then

deciding on which will be the second exponentiation, one

could carry out all three modular exponentiations in parallel

and then determine the correct square root instantly by

checking the result of a(p�1)/4 mod p. When dealing with

“hard” primes p h 1 (mod 8) parallelization is also possible to

some degree. We can do the 3 modular multiplications/

squarings to square the polynomial simultaneously. After-

ward the 2 modular multiplications for polynomial division

can be also performed in parallel. This results in about 2$log p

sequential modular multiplications to compute a square root

modulo a “hard” prime p h 1 (mod 8) and takes more than

twice as long as for other primes, since multiplying is

somewhat slower than squaring (GMP). Thus we have found

a way to increase the time for square root extraction by more

than factor 2, which cannot be diminished by raising the

number of available processors.
4. Client puzzles from modular square roots

4.1. Constructing and solving a non-interactive puzzle

The benign host A having a request (e.g., an authentication

handshake) to host B that is under a DoS attack constructs for

its request a unique puzzle. We suppose that both parties

share a list L ¼ {p1, ., pj} of “hard” primes p h 1 (mod 8) with

different bit lengths which have been generated once and

henceforth can be used by all hosts an unlimited number of

times. The puzzle must be bound to A’s request message m.

Depending on the layer the protocol is operating at m may be

an Ethernet frame, an IP datagram or a TCP/UDP segment.

First, host A selects from the list L a prime p of appropriate bit

length n and applies a cryptographic hash function H with

digest length k on m recursively c ¼
hn
k

i
times to produce the

(n � 1)-bit digest:

d ¼ Firstn�1ðHðmÞ k HðHðmÞÞ k ::: k HcðmÞ Þ: (5)

Here jj denotes the concatenation of two bit strings and Firsti
extracts the first i bits from a bit string. Next host A considers

d as a (n � 1)-bit number and computes the Legendre symbol�
d
p

�
to check whether d is a quadratic residue modulo p. If it

turns out to be a quadratic non-residue, d is decremented by

one until the quadratic residue a is found:

http://dx.doi.org/10.1016/j.cose.2012.11.008
http://dx.doi.org/10.1016/j.cose.2012.11.008

c om p u t e r s & s e c u r i t y 3 5 (2 0 1 3) 2 5e3 6 31
Algorithm 4. Assigning a unique quadratic residue to the

digest d, method 1.
Since half of the elements in Z�
p are quadratic residues,

a few trials will usually suffice. A more efficient and deter-

ministic approach for the puzzle solver A to generate

a quadratic residue from the digest d is the following method:

Algorithm 5. Assigning a unique quadratic residue to the

digest d, method 2.
According to the properties of the Legendre symbol, the

product of two quadratic non-residues is a quadratic residue.

Unfortunately,

�
1
p

�
¼ 1 for all p and two other simple candi-

dates for b, namely �1 and 2, also are quadratic residues if

p h 1 (mod 8). Thus, some other (small) number has to be

found for b. This can be done in advance for each prime from

the list L. Method 2 requires one evaluation of the Legendre

symbol and at most one modular multiplication. However, as

we will point out in the next subsection, applying the second

method makes the verification of the puzzle more expensive

compared to the first method.

Now, a unique quadratic residue a has been assigned to A’s

request. The puzzle to solve is the computation of the square

root of a modulo p by applying the CipollaeLehmer method,

which takes about 2$log p sequential modular multiplications.

Without parallelization, about 5$log p modular multiplica-

tions/squarings have to be performed. Having extracted the

square root x, host A attaches this n-bit number to its request

and sends it to host B. The other square root �x is of no

importance for the protocol. There is no need to transmit the

prime p. Host A can simply indicate themodulus by stating its

position in the list L. Usually, all primes in the list will differ in

size so that the corresponding prime may even be deduced

from the size of x.
4.2. Puzzle verification

The victimized host B verifies the puzzle solution x prior to

allocating resources and processing host A’s request, which
may require to perform a public or even private key operation

or an expensive database lookup. Puzzle verification is quite

cheapdbesides a few hash operations (c times, depends on

the hash size and the length of the prime) to compute the

digest d from the request only a single modular squaring

operation x2 mod p has to be carried out.

If the first method (Algorithm 4) has been applied for

assigning a quadratic residue to the digest d, then host B does

not need to rerun the algorithm to verify the quadratic residue

a¼ x2mod p presented by the puzzle solver A.With probability

0.5 we have a ¼ d, with probability 0.25 we have a ¼ d � 1 and

so on. Thus, if d � (x2 mod p) < d where d is a small constant,

e.g., d ¼ 20, the verification can be considered as successful,

otherwise A’s request is dropped. This check requires only

a singlemodular subtraction and a comparison. Host A cannot

take any advantage of extracting the modular square root

from a0 ¼ a� b instead of from a if b is bounded by the small

constant d. Even if host A cheats in this manner for some

reason, host B can be certain that A has indeed computed

a modular square root specially for its request m. A drawback

of the secondmethod (Algorithm 5) is that the verifier B has to

rerun it to ensure that the puzzle solver A has actually

extracted the modular square root from the quadratic residue

that belongs to the digest d.

Host B’s decision whether to allocate resources for pro-

cessing A’s request or not can, of course, also depend on the

puzzle difficulty (that is, on the size of the chosen prime) and

on the strength of the ongoing DoS attack. The rate of

accepted requests with correct puzzle solutions shall not

exceed host B’s processing capacity, i.e., the rate at which B

can actually complete these requests. Being rejected, host A

may then retry by taking a larger prime from the list L and

solving a more difficult puzzle.

4.3. Puzzle granularity and public auditability

The ability to finely adjust the puzzle difficulty to different

levels represents an important criterion for the practical

applicability of a puzzle. Solving amodular square root puzzle

with an N-bit prime takes O ðN3Þ time while the verification

runs in O ðN2Þ. Thus, having polynomial granularity, our

puzzle is quite fine-grained. In contrast, a non-interactive

puzzle scheme based on hash-reversal has exponential

granularity and is highly parallelizable. Since a third party can

efficiently verify the solution of the square root puzzle

without access to any trapdoor information, its cost-function

is called publicly auditable (Back, 2002). Time-lock (Rivest et al.,

1996) and DiffieeHellman based (Waters et al., 2004) puzzles

are, by contrast, not publicly auditable.

4.4. Interactive client puzzles

Our modular square root puzzles can be also employed in an

interactive way, where the victimized server (host B) issues

a challenge to the client (host A), as is the case with client

puzzles proposed by Juels and Brainard (1999) and reworked

by Aura et al. (2001). In the interactive setting the prime

modulus p and the quadratic residue a are dictated by the

server. This can be done in a stateless manner by hashing the

client’s request along with a secret number to produce the

http://dx.doi.org/10.1016/j.cose.2012.11.008
http://dx.doi.org/10.1016/j.cose.2012.11.008

c om p u t e r s & s e c u r i t y 3 5 (2 0 1 3) 2 5e3 632
digest d and sending d back to the client, which derives from it

the quadratic residue a for the puzzle. Thus, the server needs

to store only the secret number and the prime which are

reused across all clients.

The advantages of interactive client puzzles are the

prevention of precomputation attacks and the precise choice

of the puzzle’s level of difficulty since it is prescribed by the

defending server. However, a major drawback of interactive

client puzzles that we have already indicated in the intro-

duction is the lack of authentication for the packet containing

the puzzle parameters, which the server sends to the client. A

second DoS attack against prospective clients with faked

packets bearing the server’s sender address and containing

bogus puzzle parameters may thwart the clients’ connection

attempts. A client receiving a plethora of bogus challenges

that were possibly chosen to be even more difficult than the

puzzle of the genuine server may easily become over-

whelmed. Most likely, it will not be able to solve the authentic

challenge and thus its request will not be processed by the

server. Depending on the chosen puzzle difficulty, even

a modest puzzle packet rate may be sufficient for the attacker

to succeed. The feasibility of such a counterattack depends on

the network environment and the attacker’s location. Forging

the sender address and eavesdropping on the traffic is espe-

cially easy in wired andwireless LANswhile it is more difficult

in the Internet. The ability to eavesdrop on the traffic signifi-

cantly alleviates the puzzle attack since the attacker gets to

know the clients that currently issue a request. Hence, only in

environments where counterattacks on the clients are very

unlikely, our square root puzzles should be used in the

interactive manner.

4.5. Non-interactive client puzzles from a random
beacon

In case of the favored non-interactive puzzle construction an

attacker might compute the puzzle solutions in advance. If

precomputationisanissue, it canbemitigatedbyconcatenating

the message m with an unpredictable, periodically changing

number pior to producing the digest d. Lottery results (Back,

2002) or stock market prices are possible sources of random-

ness which are easily accessible to both parties A and B. In this

case host B will accept only requests bearing an up-to-date

random number. In Jerschow and Mauve (2012), we have

fundamentally solved the precomputation issue of non-

interactive client puzzles by deriving the puzzle froma periodi-

cally changing, secure random beacon. We now briefly sketch

the central ideas of our secure client puzzle architecture.

The beacons are generated in advance for a longer time

span and periodically broadcasted in the LAN by a special

beacon server. All hosts obtain a signed fingerprint package

consisting of cryptographic digests of these beacons in

advance. Verifying a beacon is very easydit takes only a single

hash operation, which can be performed at line speed by all

hosts. Thus, DoS attacks on the beacon service are virtually

impossible. Since the beacon server does not need to interact

with any host, it can even drop all incoming packets without

inspecting them to be resistant against network-based attacks

of any kind. Broadcasting beacons is its sole task. If a server

becomes overloaded due to a DoS attack, it asks all clients to
solve and submit a puzzle prior to processing their requests. A

client constructs a non-interactive puzzle by taking its request

and the current beacon as input for a cost function. This can

be, e.g., the computation of a modular square root or the

reversal of a one-way hash function by brute force. Having

solved the puzzle, the client attaches the puzzle parameters

and the solution to the pending request and retransmits it. To

provide a robust and secure beacon service, we have

addressed time synchronization aspects and especially elab-

orated the deployment of beacon fingerprints. Even if hosts

were not able to obtain the signed fingerprint package in

advance using one of the regular distribution channels, they

can acquire it on the fly from the beacon server and verify its

signature despite of possible DoS flooding attacks. The secure

client puzzle architecture is primarily designed for LANs. But

the beacon service can be adopted to operate with a single

beacon server in Intranets or even in the Internet by

employing multicast or unicast transmissions or even by

resorting to DNS.
4.6. Client puzzles from modular cube roots?

We have investigated whether our non-parallelizable and

non-interactive client puzzles can be improved by resorting to

modular cube roots instead of modular square roots. Obvi-

ously, verifying a modular cube root is about twice as expen-

sive since in x3 mod p a modular squaring and a modular

multiplication have to be carried out. What about the

computation of modular cube roots? Like with modular

square roots, the difficulty of solving the congruence x3 h a

(mod p) depends on the prime p. If ph 2 (mod 3) extracting the

cube root modulo p is very easydit requires a single modular

inversion and exponentiation (Bach and Shallit, 1996). The

remaining case ph 1 (mod 3), and especially if ph 1 (mod 9), is

the difficult one (Nishihara et al., 2009). For p h 1 (mod 3) one

third of the elements in Zp are cubic residues. Adleman et al.

(1977) generalized the TonellieShanks method to compute n-

th roots in Zp. Its running time again depends on the decom-

position of p� 1, in case of cube roots on p� 1¼ 3stwhere 3 t,

and is in O ððlog pÞ4Þ in the worst case. Nishihara et al. (2009),

proposed two algorithms to extend the CipollaeLehmer

method for cube root computation. Its running time is always

in O ððlog pÞ3Þ since it ignores the structure of p � 1. To extract

a modular cube root an irreduciblemonic polynomial f in Zp½x�
of degree 3 has to be constructed first. This step requires

randomization and in case of the more efficient algorithm it

takes one modular exponentiation per trial to verify f. The

success probability is approximately 2/3. The actual cube root

computation is very similar to the CipollaeLehmer method

and consists of a single exponentiation in the polynomial

ring Zp½x�:

r ¼ xðp2þpþ1Þ=3 mod f : ðNote : rwill be an integer:Þ (6)

To perform this exponentiation, at least 2$log p squarings in

Zp½x� have to be carried out. Squaring a polynomial of degree 2

over the field Zp requires 6 modular integer multiplications/

squarings. Note that they can be performed in parallel.

Reducing the resulting polynomial of degree 4 modulo f by

means of a polynomial division takes two sequential steps

http://dx.doi.org/10.1016/j.cose.2012.11.008
http://dx.doi.org/10.1016/j.cose.2012.11.008

c om p u t e r s & s e c u r i t y 3 5 (2 0 1 3) 2 5e3 6 33
each one involving 4 modular integer multiplications, which

are also parallelizable. Assuming maximal parallelization,

this results in at least 6$log p sequential modular multiplica-

tions/squarings on integers to carry out the exponentiation.

Taking also the construction of f into account, it requires at

least 7$log p sequential modular multiplications/squarings to

solve a modular cube root puzzle versus 2$log p sequential

operations in case of modular square roots. Since the verifi-

cation of modular cube roots is twice as expensive, the

complexity gain with respect to non-parallelizability is about

1.75. We observe that constructing client puzzles from

modular cube roots is an interesting option, but it also

disproportionately increases the workload for benign hosts

which probably solve the puzzle without parallelization.
5. Evaluation and protocol enhancements

In this section we evaluate the performance of our puzzle

scheme by comparing the puzzle verification throughput on

the victimized server with the time it takes the client to solve

a puzzle. We aim to show that puzzle difficulty (i.e., the

solution time for the client) can be tuned from easy to hard by

raising the size of the prime while for the server puzzle veri-

fication is still cheap enough to be performed at full link speed.

Meanwhile, we enhance our scheme by introducing a band-

width-based cost factor for the client.

5.1. Puzzle benchmark

For “hard” primes of different size ranging from 264 to

8206 bits we measure the number of modular square root

puzzles that an off-the-shelf Intel Core 2 Quad Q9400 2.66 GHz

CPU can verify per second and the time it takes to solve

a single puzzle. Table 1 presents our benchmark results

averaged over 10 runs. In all test series the coefficient of

variation was below 1.5%, which can be attributed to slightly

different CPU scheduling behavior of the operating system

across the runs, since the computation itself is deterministic.

For the large-integer arithmetic we employ the well-known

open source library GMP from GNU (GMP), which claims to

be faster than any other bignum library by using state-of-the-

art algorithms with highly optimized assembly code. Modular
Table 1 e Benchmark: verifying and solving modular square ro

Bit length Modular squarings/sec (one CPU core) Modul

32-Bit 64-Bit

264 1,377,000 2,597,000

520 593,500 1,354,000

776 329,400 698,300

1031 201,300 549,400

1547 102,500 337,400

2058 62,810 199,100

3084 33,030 117,100

4106 20,530 71,630

6155 10,620 39,250

8206 6810 24,430
square root extraction is done using the CipollaeLehmer

method, where the exponentiation in Zp½x� constitutes the

mainworkload. In ourmeasurements we take only the time to

perform the 2$log p sequential modular multiplications into

account, since the remaining 3$log pmodular multiplications/

squarings can be computed in parallel by a well-versed

attacker (see Section 3.3). All computations are performed

using a single CPU core. For full parallelization of a puzzle an

attacker would employ three CPU cores while the defending

host can verify as many puzzles in parallel as CPU cores are

available. Solving a puzzle on a benign host that uses only

a single CPU core actually takes about two and a half times

longer than stated in Table 1. To accelerate the repeated

modular multiplications we make use of Montgomery reduc-

tion instead of performing the classical reduction by dividing.

This results in a speed-up by a factor of 1.2e2.0, especially for

small moduli in the order of 264e2058 bits.

Evaluating the benchmark results, we first observe that

a 64-bit implementation outperforms its 32-bit counterpart by

a factor of up to 3.7 in verifying and up to 4.0 in solving

a puzzle. Since almost all desktop CPUs manufactured during

the last five years are 64-bit capable and 64-bit operating

systems are widely available, we consider the 64-bit results as

reference values. Secondly, the speed gap between the verifier

and the solver (when comparing the time to verify and to solve

a single puzzle) constitutes factor 236 for a 264-bit puzzle and

increases up to factor 18 640 for a 8206-bit puzzle. Now the

main question to pose is whether the verification throughput

of modular square root puzzles is high enough to cope with

a DoS flooding attack of bogus puzzle solutions mounted at

full link speed. Of course, the size of a valid-looking request

containing a puzzle solution plays a role. Before we can defi-

nitely answer this question with “yes” for networks with

100 Mbit, 1 Gbit, and even 10 Gbit links, we extend the puzzle

protocol by a small bandwidth-based cost factor for the client.

The victimized host demands that valid puzzle solution

packetsmust be paddedwith zeros to have fullMTU (Maximum

Transmission Unit) size. In the Internet, the MTU usually is

1500 bytes (in Gigabit Ethernet even up to 9000 bytes). Hence,

besides solving a puzzle the client must additionally pay with

bandwidth. Using bandwidth as a currency for DoS protection

is a known approach in the literature (Walfish et al., 2006;

Jerschow et al., 2009). Now, dealing with 1500 byte packets, the
ot puzzles on Intel Core 2 Quad Q9400 2.66 GHz.

ar square root: time in msec (assuming full parallelization)

32-Bit 64-Bit

0.238 0.091

1.35 0.411

4.15 1.10

9.01 2.42

27.7 7.09

62.9 15.7

196 48.1

429 109

1350 340

3020 763

http://dx.doi.org/10.1016/j.cose.2012.11.008
http://dx.doi.org/10.1016/j.cose.2012.11.008

c om p u t e r s & s e c u r i t y 3 5 (2 0 1 3) 2 5e3 634
victimized host will receive up to 8300 (100 Mbit link), 83 000

(1 Gbit link) or 830 000 (10 Gbit link) valid-looking puzzle solu-

tions per second. We note that it will perfectly cope with 8206-

bit puzzles on a 100 Mbit link, with 3084-bit puzzles on a 1 Gbit

link andwith 520-bit puzzles on a 10Gbit link assuming a single

CPU core engaged in puzzle verification. The time to compute

the digest d must also be taken into account. But only the

meaningful part of the request and not the whole packet needs

to be hashed, while cryptographic hash functions like MD5 or

SHA-1 process about 2.8e3.6 Gbit of data per second on our test

machine. Furthermore it is conceivable to produce the (n � 1)-

bit digest d by applying a very fast pseudorandom number

generator to H(m) instead of executing the hash function c

times. On the opposite side it takes an attacker 763 ms to solve

a 8206-bit puzzle, 48.1 ms to solve a 3084-bit puzzle, and

0.411 ms to solve a 520-bit puzzle, respectively, assuming full

parallelization.

5.2. Increasing the bandwidth-based payment

Besides prescribing that puzzle solution packets must be

padded to have full MTU size we may go a step further and

increase the bandwidth-based payment requested from the

client. The victimized host can demand to receive from the

client multiple copies of the puzzle solution packet prior to

processing the associated request. By thismeanswe reduce the

maximum number of valid-looking puzzle solutions that have

to be taken into account and verified per second. This enables

us to employ more complex puzzles in high-speed networks

and thus to strengthen the DoS protection. For example, by

prescribing that clients must send four copies of their puzzle

solution packet we can cut down on the number of valid-

looking puzzle solutions to process per second by factor four

and verify even 8206-bit puzzles on a 1 Gbit link. Sending

multiple copies of the puzzle solution packet is feasible for all

clients regardless of their link speed, while DoS protection

schemes based solely on bandwidth payment penalize clients

behind slow links. To implement this protocol extension, the

victimized hostmustmaintain a packet counter for each client.

An appropriate data structure for this purpose is a hash map

with the client’s address as the key and the pair<packet counter,

timestamp> as the value. Elements with old timestamps must

be purged periodically from thehashmap. Storage overhead for

maintaining the counters is fairly low: Assuming 10 bytes per

client, a 1 Gbit link with 83,000 packets/s, and a maximum

lifetime of 5 s for each entry, the size of the hash map will be

about 10 MB (depending on implementation and pointer size).

5.3. Discussion

Besides providing non-parallelizability, granularity, and the

possibility of non-interactive usage a good client puzzle

scheme must enable to adjust the puzzle difficulty from easy

to hard, while puzzle verification should remain cheap

enough to be performed at full link speed. Though formodular

square root puzzles the level of difficulty cannot be chosen

arbitrarily high without rendering the verification too expen-

sive (i.e., becoming not verifiable at full link speed any more),

we are convinced that the presented solution times for the

client in the order of 0.1e1000 ms are fully viable for DoS
prevention in practice. For this range verification at full link

speed can be ensured for the victimized host. Solution times

much greater than 1 s are possible with hash-reversal puzzles,

but for benign clients such long delays seem to be hardly

reasonable. In a nutshell, we believe that our modular square

root puzzles provide all the desirable properties to protect

today’s networks with links up to 10 Gbit against DoS.

5.4. FPGAs

Fast modular exponentiation has been also successfully

implemented in hardware, especially on FPGAs (CiaranMcIvor

et al., 2003; Suzuki, 2007), and for modern GPUs (Szerwinski

and Güneysu, 2008; Harrison and Waldron, 2009), which are

very competitive. A few years ago FPGAs outperformed ordi-

nary software implementations, but a current comparison

(Szerwinski and Güneysu, 2008) shows that nowadays FPGAs

are about as fast as software implementations on up-to-date

CPUs. A GPU implementation pays off when performing

a large number of modular exponentiations simultaneously.

However, this comes at the expense of high latency. A speed-

up of up to 4 times compared to a modern CPU has been re-

ported in Harrison and Waldron (2009). Though an experi-

enced attacker can benefit from such hardware acceleration,

his advantage over a regular solver running a software

implementation is bounded by a small factor. In general, this

is not an issue for the client puzzle protocol.
6. Conclusion

In this paper we have introduced a novel client puzzle scheme

based on modular square roots as a countermeasure against

DoS attacks. A modular square root puzzle is non-

parallelizable, i.e., the solution cannot be obtained faster

than scheduled by distributing the puzzle to multiple

machines or CPU cores. Our puzzles can be employed non-

interactively, which prevents counterattacks on the client

mounted by injecting packets with fake puzzle parameters.

Providing polynomial granularity and compact solution and

verification functions, modular square root puzzles can be

easily implemented to safeguard network protocols, espe-

cially those performing expensive public key authentication,

against DoS. We have shown how to raise the efficiency of our

puzzle scheme by introducing a bandwidth-based cost factor

for the client and demonstrated its feasibility in 1 and

10 Gigabit networks through benchmarking.
r e f e r e n c e s

Abadi M, Burrows M, Manasse M, Wobber T. Moderately hard,
memory-bound functions. ACM Transactions on Internet
Technology 2005;5:299e327.

Adleman L, Kompella K. Using smoothness to achieve
parallelism. In: STOC ’88: proceedings of the 20th annual ACM
Symposium on Theory of Computing; 1988. p. 528e38.

Adleman L, Manders K, Miller G. On taking roots in finite fields. In:
SFCS ’77: proceedings of the 18th annual Symposium on
Foundations of Computer Science; 1977. p. 175e8.

http://dx.doi.org/10.1016/j.cose.2012.11.008
http://dx.doi.org/10.1016/j.cose.2012.11.008

c om p u t e r s & s e c u r i t y 3 5 (2 0 1 3) 2 5e3 6 35
von Ahn L, Blum M, Hopper NJ, Langford J. CAPTCHA: using hard
AI problems for security. In: EUROCRYPT ’03: proceedings of
the 22nd international conference on theory and applications
of cryptographic techniques; 2003. p. 294e311.

Aura T, Nikander P, Leiwo J. DOS-resistant authentication with
client puzzles. In: Revised papers from the 8th international
workshop on security protocols; 2001. p. 170e7.

Bach E, Shallit J. Algorithmic number theory. In: Efficient
algorithms, vol. I. MIT Press; 1996.

Back A. Hashcash e a denial of service counter-measure, http://
www.hashcash.org/papers/hashcash.pdf; 2002.

Boneh D, Naor M. Timed commitments. In: CRYPTO ’00:
proceedings of the 20th annual international cryptology
conference on advances in cryptology; 2000. p. 236e54.

Cai J-Y, Lipton RJ, Sedgewickand R, Yao AC-C. Towards
uncheatable benchmarks. In: Proceedings of the 8th annual
structure in complexity theory conference; 1993. p. 2e11.

Ciaran McIvor MM, McCanny J, Daly A, Marnane W. Fast
Montgomery modular multiplication and RSA cryptographic
processor architectures. In: Proceedings of the 37th asilomar
conference on signals, systems, and computers; 2003. p.
379e84.

Cipolla M. Un metodo per la risolutione della congruenza di
secondo grado. Rendiconto dell’Accademia Scienze Fisiche e
Matematiche 1903;9(3):154e63.

Cohen H. A course in computational algebraic number theory.
Springer; 1996.

Crosby SA, Wallach DS. Denial of service via algorithmic
complexity attacks. In: SSYM’03: proceedings of the 12th
conference on USENIX security symposium; 2003.

Dean D, Stubblefield A. Using client puzzles to protect TLS. In:
SSYM’01: proceedings of the 10th USENIX security
symposium; 2001.

Doshi S, Monrose F, Rubin AD. Efficient memory bound puzzles
using pattern databases. In: ACNS 2006: proceedings of the 4th
international conference on applied cryptography and
network security; 2006. p. 98e113.

Douligeris C, Mitrokotsa A. DDoS attacks and defense
mechanisms: classification and state-of-the-art. Computer
Networks 2004;44(5):643e66.

Dwork C, Naor M. Pricing via processing or combatting junk mail.
In: CRYPTO ’92: proceedings of the 12th annual international
cryptology conference on advances in cryptology; 1992. p.
139e47.

Dwork C, Goldberg A, Naor M. On memory-bound functions for
fighting spam. In: CRYPTO ’03: proceedings of the 23rd annual
international cryptology conference on advances in
cryptology; 2003. p. 426e44.

GMP: GNU multiple precision arithmetic library. http://gmplib.org.
Harrison O, Waldron J. Efficient acceleration of asymmetric

cryptography on graphics hardware. In: AFRICACRYPT ’09:
proceedings of the 2nd international conference on cryptology
in Africa; 2009. p. 350e67.

Hlavacs H, Gansterer WN, Schabauer H, Zottl J, Petraschek M,
Hoeher T, et al. Enhancing ZRTP by using computational
puzzles. Journal of Universal Computer Science 2008;14(5):
693e716.

Jerschow YI, Mauve M. Offline submission with RSA time-lock
puzzles. In: CIT 2010: proceedings of the 10th IEEE
international conference on Computer and Information
Technology; 2010. p. 1058e64.

Jerschow YI, Mauve M. Secure client puzzles based on random
beacons. In: IFIP networking 2012: proceedings of the 11th
international conference on networking; 2012. p. 184e97.

Jerschow YI, Scheuermann B, Mauve M. Counter-flooding: DoS
protection for public key handshakes in LANs. In: ICNS 2009:
proceedings of the 5th International Conference on
Networking and Services; 2009. p. 376e82.
Juels A, Brainard JG. Client puzzles: a cryptographic
countermeasure against connection depletion attacks. In:
NDSS ’99: proceedings of the Network and Distributed System
Security Symposium; 1999.

Karame GO, �Capkun S. Low-cost client puzzles based on modular
exponentiation. In: ESORICS 2010: proceedings of the 15th
European Symposium on Research in Computer Security;
2010. p. 679e97.

Lehmer DH. Computer technology applied to the theory of
numbers. In: Studies in number theory. Englewood Cliffs, NJ:
Prentice Hall; 1969. p. 117e51.

Mao W. Timed-release cryptography. In: SAC 2001: proceedings of
the 8th annual international workshop on Selected Areas in
Cryptography; 2001. p. 342e57.

Martinovic I, Zdarsky FA, Wilhelm M, Wegmann C, Schmitt JB.
Wireless client puzzles in IEEE 802.11 networks: security by
wireless. In: WiSec ’08: proceedings of the ACM conference on
Wireless Network Security; 2008. p. 36e45.

Menezes AJ, van Oorschot PC, Vanstone SA. Handbook of applied
cryptography. CRC Press; 1996.

Mirkovic J, Reiher P. A taxonomy of DDoS attack and DDoS
defense mechanisms. ACM SIGCOMM Computer
Communication Review 2004;34(2):39e53.

Nishihara N, Harasawa R, Sueyoshi Y, Kudo A. A remark on the
computation of cube roots in finite fields. Cryptology ePrint
Archive, Report 2009/457, http://eprint.iacr.org/2009/457; 2009.

Peng T, Leckie C, Ramamohanarao K. Survey of network-based
defense mechanisms countering the DoS and DDoS problems.
ACM Computing Surveys 2007;39(1):3.

Rivest RL, Shamir A, Wagner DA. Time-lock puzzles and timed-
release Crypto. Tech. rep.. Cambridge, MA, USA:
Massachusetts Institute of Technology; 1996

Schaller P, �Capkun S, Basin D. BAP: broadcast authentication
using cryptographic puzzles. In: ACNS ’07: proceedings of the
5th international conference on Applied Cryptography and
Network Security; 2007. p. 401e19.

Shanks D. Five number-theoretic algorithms. In: Proceedings of
the 2nd Manitoba conference on numerical mathematics;
1972. p. 51e70.

Sorenson JP. A sublinear-time parallel algorithm for integer
modular exponentiation. In: Proceedings of the conference on
the mathematics of public-key cryptography; 1999. p. 528e38.

Suzuki D. How to maximize the potential of FPGA resources for
modular exponentiation. In: CHES ’07: proceedings of the 9th
international workshop on Cryptographic Hardware and
Embedded Systems; 2007. p. 272e88.

Szerwinski R, Güneysu T. Exploiting the power of GPUs for
asymmetric cryptography. In: CHES ’08: proceedings of the
10th international workshop on Cryptographic Hardware and
Embedded Systems; 2008. p. 79e99.

Tang Q, Jeckmans A. On non-parallelizable deterministic client
puzzle scheme with batch verification modes. Centre for
Telematics and Information Technology, University of
Twente, http://doc.utwente.nl/69557/; 2010.

Tonelli A. Bemerkung über die Auflösung quadratischer
Congruenzen. Göttinger Nachrichten 1891:344e6.

Tritilanunt S, Boyd C, Foo E, Nieto JMG. Toward non-parallelizable
client puzzles. In: CANS 2007: proceedings of the 6th
international conference on Cryptology & Network Security;
2007. p. 247e64.

Feng W-c, Kaiser E, Feng W-c, Luu A. The design and
implementation of network puzzles. In: INFOCOM 2005:
proceedings of the 24th IEEE conference on computer
communications; 2005. p. 2372e82.

Walfish M, Vutukuru M, Balakrishnan H, Karger D, Shenker S.
DDoS defense by offense. In: SIGCOMM ’06: proceedings of the
2006 conference on applications, technologies, architectures,
and protocols for computer communications; 2006. p. 303e14.

http://www.hashcash.org/papers/hashcash.pdf
http://www.hashcash.org/papers/hashcash.pdf
http://gmplib.org
http://eprint.iacr.org/2009/457
http://doc.utwente.nl/69557/
http://dx.doi.org/10.1016/j.cose.2012.11.008
http://dx.doi.org/10.1016/j.cose.2012.11.008

c om p u t e r s & s e c u r i t y 3 5 (2 0 1 3) 2 5e3 636
Wang X, Reiter MK. A multi-layer framework for puzzle-based
denial-of-service defense. International Journal of
Information Security 2008;7:243e63.

Waters B, Juels A, Halderman JA, Felten EW. New client puzzle
outsourcing techniques for DoS resistance. In: CCS ’04:
proceedings of the 11th ACM conference on Computer and
Communications Security; 2004. p. 246e56.

Yves Igor Jerschow received the B. Sc., M. Sc., and Ph. D. degrees in
Computer Science from the Heinrich Heine University, Düssel-
dorf, Germany, in 2005, 2007, and 2012 respectively. In late 2012 he
joined the computer networking technology group at the Univer-
sity of Duisburg-Essen, Germany, as a postdoc. His current
research interests include network security and cryptography
with a focus on local area networks and Denial of Service (DoS)
attacks.

Martin Mauve received the M. S. and Ph. D. degrees in Computer
Science from the University of Mannheim, Germany, in 1997 and
2000 respectively. From 2000 to 2003, he was an Assistant
Professor at the University of Mannheim. In 2003, he joined the
Heinrich Heine University, Düsseldorf, Germany, as a Full
Professor and Head of the research group for computer networks
and communication systems. His research interests include
distributed multimedia systems, multimedia transport protocols,
mobile ad-hoc networks and inter-vehicle communication.

http://dx.doi.org/10.1016/j.cose.2012.11.008
http://dx.doi.org/10.1016/j.cose.2012.11.008

	Modular square root puzzles: Design of non-parallelizable and non-interactive client puzzles
	1. Introduction
	2. Related work
	3. Modular square roots
	3.1. Extracting square roots modulo a prime
	3.2. Modular exponentiation
	3.3. Non-parallelizability

	4. Client puzzles from modular square roots
	4.1. Constructing and solving a non-interactive puzzle
	4.2. Puzzle verification
	4.3. Puzzle granularity and public auditability
	4.4. Interactive client puzzles
	4.5. Non-interactive client puzzles from a random beacon
	4.6. Client puzzles from modular cube roots?

	5. Evaluation and protocol enhancements
	5.1. Puzzle benchmark
	5.2. Increasing the bandwidth-based payment
	5.3. Discussion
	5.4. FPGAs

	6. Conclusion
	References

